research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The channel structure of trithallium penta­anti­m­on­ate(V), Tl3Sb5O14

crossmark logo

aX-Ray Center, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
*Correspondence e-mail: bstoeger@mail.tuwien.ac.at

Edited by S. Parkin, University of Kentucky, USA (Received 2 March 2022; accepted 14 March 2022; online 17 March 2022)

Single crystals of Tl3Sb5O14 were grown by solid-state reaction in a corundum crucible under air (1273 K, 12 h). The structure was determined by single-crystal X-ray diffraction. It is isotypic to the K3Sb5O14, Rb3Sb5O14 and Cs3Sb5O14 analogues with ortho­rhom­bic Pbam symmetry and cell parameters a = 24.2899 (9) Å, b = 7.1931 (3) Å, c = 7.4182 (3) Å. The Sb atoms form irregular [SbO6] octa­hedra, which are linked via edges and corners into a triperiodic network. The Tl+ ions are located in distinct channels of the network extending along [010] and [001].

1. Chemical context

During an extensive study of M[SbF6] compounds (M = Li, NH4, Na, Tl), precursors in the form of MSbO3 were synthesized. Whereas the chosen conditions (1273 K, 12 h) yielded the expected product for LiSbO3 and NaSbO3, the Tl-poor title compound Tl3Sb5O14 was inadvertently obtained in the case of Tl. TlSbO3 was later successfully synthesized at 1073 K. In fact, prior syntheses of TlSbO3 were performed at even lower temperatures (Bouchama & Tournoux, 1975[Bouchama, M. & Tournoux, M. (1975). Rev. Chim. Min. 12, 80-92.]).

The analogues K3Sb5O14 (Hong, 1974[Hong, H. Y.-P. (1974). Acta Cryst. B30, 945-952.]), Rb3Sb5O14 and Cs3Sb5O14 (Hirschle et al., 2001[Hirschle, C., Rosstauscher, J., Emmerling, F. & Röhr, C. (2001). Z. Naturforsch. B, 56, 169-178.]) have been synthesized at 1373 K using more involved routes. The first structural characterization of K3Sb5O14 was published by Aurivillius (1966[Aurivillius, B. (1966). Ark. Kemi, 25, 505-514.]). However, the author gives an incorrect Sohncke space-group symmetry of type Pba2, which was later corrected to Pbam by (Hong, 1974[Hong, H. Y.-P. (1974). Acta Cryst. B30, 945-952.]).

Hong (1974[Hong, H. Y.-P. (1974). Acta Cryst. B30, 945-952.]) noted unusual enlargement of the atomic displacement parameters (ADP) of K in K3Sb5O14, which are located in distinct channels, suggesting ion conductivity. In fact, the author could partially substitute K for Rb, Ag and Tl in the respective nitrate salt melts. Accordingly, it is expected that the hitherto structurally uncharacterized Ag3Sb5O14 likewise exists. In contrast, substitution with the smaller Na+ ion in an NaNO3 melt led to a collapse of the structure and formation of the Na-poor Na2Sb4O11. The instability of M3Sb5O14 with small ions might explain the successful syntheses of MSbO3 (M = Li, Na) at 1273 K.

2. Structural commentary

Tl3Sb5O14 crystallizes in the space group Pbam and is isotypic to M3Sb5O14 (M = K, Rb, Cs). Two different settings of the Pbam space group were used to describe the structures: a > b by Hong (1974[Hong, H. Y.-P. (1974). Acta Cryst. B30, 945-952.]) and a < b by Hirschle et al. (2001[Hirschle, C., Rosstauscher, J., Emmerling, F. & Röhr, C. (2001). Z. Naturforsch. B, 56, 169-178.]). These are equivalent descriptions, because the (a′, b′, c′) = (b, −a, c) operation is an element of the affine normalizer of the Pbam space group. Herein we use the original setting and atom labeling of Hong (1974[Hong, H. Y.-P. (1974). Acta Cryst. B30, 945-952.]).

In structures of the M3Sb5O14 type, the monovalent metal atoms M are located in channels of a triperiodic network formed by [SbO6] octa­hedra. There are two distinct channels parallel to [010], both with [\scale190% {\scr p}]yb21m symmetry (Fig. 1[link]). In one channel, the M1 atoms are located in zigzag chains and bridged by the M3 atoms, which are located at the boundary of the channels (Fig. 2[link]). In the second channel, the M2 atoms are likewise arranged in the form of zigzag lines (Fig. 2[link]). All of the M atoms are located on or very close to the reflection plane of the channels. Additionally, channels with a smaller diameter extend in the [001] direction (Fig. 3[link]). For K3Sb5O14, Hong (1974[Hong, H. Y.-P. (1974). Acta Cryst. B30, 945-952.]) reports excessive enlargement of the ADPs of the K1 and K2 atoms in the [010] and [001] directions of the channels, with the `thermal motions' in these directions being `eight times bigger' than in the [100] direction. The Tl1 and Tl2 atoms in the title compound show a much milder enlargement of the ADPs. The ratio of the mean-square displacement of the longest and shortest principal axes of the ADP tensor is 3.2 for Tl1 and 2.9 for Tl2. Note that the value for Tl2 is not directly comparable, since it was refined as disordered about the reflection plane. However, even when placing the atom on the reflection plane, the ratio increases to only 3.2. From these values, it appears that Tl3Sb5O14 is not a prime candidate for ion conductivity, at least at the measurement temperature of 100 K. For Rb3Sb5O14 and Cs3Sb5O14, similarly mild enlargement of the ADPs has been reported (Hirschle et al., 2001[Hirschle, C., Rosstauscher, J., Emmerling, F. & Röhr, C. (2001). Z. Naturforsch. B, 56, 169-178.]). In contrast to the Tl3Sb5O14 title compound, these were derived from data collected at room temperature.

[Figure 1]
Figure 1
Tl3Sb5O14 viewed down [010], Tl (green), Sb (gray) and O (red) atoms are represented by ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Tl atoms in Tl3Sb5O14 viewed down [001] with inter­atomic distances. For Tl2⋯Tl2 contacts, two inter­atomic distances are given since the Tl2 atom was refined as disordered about the reflection plane parallel to (001).
[Figure 3]
Figure 3
Tl3Sb5O14 viewed down [001]. Atom color codes as in Fig. 1[link].

All Sb atoms are coordinated by six O atoms forming highly irregular [SbO6] octa­hedra (Table 1[link]) with O—Sb—O cis angles ranging from 73.37 (17) to 103.83 (13)° and trans angles up to 150.66 (16)°. As noted by Hirschle et al. (2001[Hirschle, C., Rosstauscher, J., Emmerling, F. & Röhr, C. (2001). Z. Naturforsch. B, 56, 169-178.]), the framework can be described as being composed of four distinct parts: two infinite octa­hedra chains and two edge-connected pairs of octa­hedra. In general, these elements are connected via corners but there is an additional connection between a pair and a chain via an edge.

Table 1
Selected geometric parameters (Å, °)

Tl1—Tl3i 3.3972 (4) Sb2—O10 1.919 (3)
Tl1—Tl1ii 3.4507 (7) Sb2—O2iv 1.983 (4)
Tl1—Tl3iii 3.6130 (4) Sb2—O2vii 2.140 (4)
Tl3—Tl1iv 3.3972 (4) Sb2—O4vii 2.215 (4)
Tl3—Tl1v 3.6129 (4) Sb3—O5iii 1.952 (4)
Tl1—O3 2.565 (4) Sb3—O5 1.979 (4)
Tl2—O6 2.775 (4) Sb3—O9ix 1.998 (3)
Tl3—O5 2.495 (4) Sb3—O9 1.998 (3)
Sb1—O8vi 1.925 (3) Sb3—O7ix 2.002 (3)
Sb1—O8 1.925 (3) Sb3—O7 2.002 (3)
Sb1—O6vii 1.971 (4) Sb4—O3 1.9233 (15)
Sb1—O1viii 1.996 (2) Sb4—O7 1.936 (3)
Sb1—O1 1.996 (2) Sb4—O9x 1.954 (3)
Sb1—O2 2.081 (4) Sb4—O8 1.975 (3)
Sb2—O6 1.911 (4) Sb4—O4 2.0284 (11)
Sb2—O10vi 1.919 (3) Sb4—O10x 2.041 (3)
       
O8vi—Sb1—O8 96.70 (16) O5iii—Sb3—O5 171.04 (9)
O8vi—Sb1—O6vii 90.34 (11) O5iii—Sb3—O9ix 99.04 (11)
O8—Sb1—O6vii 90.34 (11) O5—Sb3—O9ix 87.50 (11)
O8vi—Sb1—O1viii 90.74 (11) O5iii—Sb3—O9 99.03 (11)
O8—Sb1—O1viii 171.91 (11) O5—Sb3—O9 87.50 (11)
O6vii—Sb1—O1viii 92.82 (8) O9ix—Sb3—O9 85.66 (16)
O8vi—Sb1—O1 171.91 (11) O5iii—Sb3—O7ix 87.14 (11)
O8—Sb1—O1 90.74 (11) O5—Sb3—O7ix 87.54 (11)
O6vii—Sb1—O1 92.82 (8) O9ix—Sb3—O7ix 83.44 (11)
O1viii—Sb1—O1 81.67 (15) O9—Sb3—O7ix 168.21 (11)
O8vi—Sb1—O2 90.17 (11) O5iii—Sb3—O7 87.14 (11)
O8—Sb1—O2 90.17 (11) O5—Sb3—O7 87.54 (11)
O6vii—Sb1—O2 179.23 (15) O9ix—Sb3—O7 168.21 (11)
O1viii—Sb1—O2 86.60 (8) O9—Sb3—O7 83.44 (11)
O1—Sb1—O2 86.60 (8) O7ix—Sb3—O7 107.02 (16)
O6—Sb2—O10vi 96.40 (9) O3—Sb4—O7 93.31 (15)
O6—Sb2—O10 96.40 (9) O3—Sb4—O9x 99.82 (14)
O10vi—Sb2—O10 150.66 (16) O7—Sb4—O9x 92.53 (12)
O6—Sb2—O2iv 100.16 (16) O3—Sb4—O8 83.01 (13)
O10vi—Sb2—O2iv 101.78 (8) O7—Sb4—O8 88.19 (12)
O10—Sb2—O2iv 101.78 (8) O9x—Sb4—O8 177.03 (11)
O6—Sb2—O2vii 173.53 (15) O3—Sb4—O4 160.89 (15)
O10vi—Sb2—O2vii 85.12 (9) O7—Sb4—O4 103.83 (13)
O10—Sb2—O2vii 85.12 (9) O9x—Sb4—O4 87.96 (13)
O2iv—Sb2—O2vii 73.37 (17) O8—Sb4—O4 89.07 (13)
O6—Sb2—O4vii 90.22 (16) O3—Sb4—O10x 84.03 (14)
O10vi—Sb2—O4vii 76.83 (8) O7—Sb4—O10x 177.09 (11)
O10—Sb2—O4vii 76.83 (8) O9x—Sb4—O10x 89.09 (11)
O2iv—Sb2—O4vii 169.63 (15) O8—Sb4—O10x 90.31 (11)
O2vii—Sb2—O4vii 96.25 (14) O4—Sb4—O10x 78.63 (13)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x, -y, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (vi) [x, y, -z]; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z]; (viii) [-x, -y+1, -z]; (ix) [x, y, -z+1]; (x) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

A qu­anti­tative comparison of Tl3Sb5O14 and the alkali-metal analogues M3Sb5O14 (M = K, Rb, Cs) was performed using the COMPSTRU (de la Flor et al., 2016[Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.]) module of the Bilbao Crystallographic Server (Aroyo et al., 2006[Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15-27.]). The Tl2 atom was moved onto the reflection plane to make the sets of Wyckoff positions compatible. The degree of lattice distortion with respect to the Tl compound is S = 0.0042 (M = K), S = 0.0048 (M = Rb) and S = 0.0262 (M = Cs). This shows that the K, Rb and Tl compounds feature very similar cell parameters, with the volume increasing slightly according to K > Rb > Tl (Table 2[link]). In contrast, the lattice of Cs3Sb5O14 features a pronounced distortion with a ca 11% larger unit-cell volume. The enlargement affects foremost the a and b lattice parameters, whereas c is smaller than for the Tl compound. We therefore presume that the unit-cell volume for the M = K, Rb, Tl compounds is mostly determined by the triperiodic anti­monate network, which cannot contract any further. The minimum size of the channels may explain the collapse of the structure when attempting to replace K by Na, as reported by Hong (1974[Hong, H. Y.-P. (1974). Acta Cryst. B30, 945-952.]).

Table 2
Comparison of unit-cell parameters (Å, Å3) of the M3Sb5O14 structures

The setting of the M = Rb and M = Cs compounds was adjusted to the setting used in this work.

Compound K3Sb5O14 Rb3Sb5O14 Cs3Sb5O14 Tl3Sb5O14
a 24.247 (4) 24.478 (2) 26.251 (5) 24.2899 (9)
b 7.157 (2) 7.1881 (9) 7.4337 (13) 7.1931 (3)
c 7.334 (2) 7.331 (2) 7.396 (3) 7.4182 (3)
V 1272.7 (3) 1289.8 (4) 1443.3 (7) 1296.11 (9)

The degree of similarity likewise shows a close relationship of the M = K (Δ = 0.022) and M = Rb (Δ = 0.035) compounds with Tl3Sb5O14, whereas the atomic positions in Cs3Sb5O14 differ distinctly (Δ = 0.178). In particular, the positions of the O atoms that coordinate to the Tl2 atoms feature a strong deviation (dmax = 0.6356 Å for the O4 atom) showing a distinct distortion of the [SbO6] octa­hedra around the respective channels. Thus, it appears that the Tl2 channels are responsible for the distinct enlargement of the unit cell of Cs3Sb5O14.

3. Synthesis and crystallization

A mixture of 0.682 g TlNO3 and 0.373 g Sb2O3 (which makes for an approximate molar ratio of 1:1 for Tl:Sb) was heated in a corundum crucible at 1273 K for 12 h in air. From the reaction, a dark-orange powder was obtained. The single crystals formed as rectangular-prismatic plates. Crystals were isolated under a polarizing microscope and cut to an appropriate size for single crystal diffraction of a highly absorbing crystal.

4. Refinement

Crystal data, data collection and structure refinement are summarized in Table 3[link]. A starting model was generated using the coordinates of K3Sb5O14 (Hong, 1974[Hong, H. Y.-P. (1974). Acta Cryst. B30, 945-952.]). Owing to distinct peaks in the difference-Fourier map, the Tl2 atom was removed from the reflection plane and refined as disordered. Even though the refined distance of the atom from the reflection plane is minute, the residuals improved significantly {R[I > 2σ(I)] from 0.028 to 0.023}, which might be in part due to the increased number of anisotropic displacement parameters.

Table 3
Experimental details

Crystal data
Chemical formula Tl3Sb5O14
Mr 1445.86
Crystal system, space group Orthorhombic, Pbam
Temperature (K) 250
a, b, c (Å) 24.2899 (9), 7.1931 (3), 7.4182 (3)
V3) 1296.11 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 47.48
Crystal size (mm) 0.11 × 0.06 × 0.02
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX3, SAINT and SADABS. Bruker-AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.010, 0.058
No. of measured, independent and observed [I > 2σ(I)] reflections 27499, 3084, 2850
Rint 0.051
(sin θ/λ)max−1) 0.812
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.055, 1.07
No. of reflections 3084
No. of parameters 121
Δρmax, Δρmin (e Å−3) 2.55, −1.52
Computer programs: APEX3 and SAINT-Plus (Bruker, 2021[Bruker (2021). APEX3, SAINT and SADABS. Bruker-AXS Inc. Madison, Wisconsin, USA.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2021[Putz, H. & Brandenburg, K. (2021). DIAMOND - Crystal and Molecular Structure Visualization, Crystal Impact, Bonn, Germany. https://www.crystalimpact.de/diamond.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2021); cell refinement: APEX3 (Bruker, 2021); data reduction: SAINT-Plus (Bruker, 2021); program(s) used to solve structure: undef; program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Putz & Brandenburg, 2021); software used to prepare material for publication: publCIF (Westrip, 2010).

Trithallium pentaantimonate(V) top
Crystal data top
Tl3Sb5O14Dx = 7.410 Mg m3
Mr = 1445.86Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbamCell parameters from 9928 reflections
a = 24.2899 (9) Åθ = 2.8–35.3°
b = 7.1931 (3) ŵ = 47.48 mm1
c = 7.4182 (3) ÅT = 250 K
V = 1296.11 (9) Å3Plate, colourless
Z = 40.11 × 0.06 × 0.02 mm
F(000) = 2440
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2850 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω– and φ–scansθmax = 35.3°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
h = 3939
Tmin = 0.010, Tmax = 0.058k = 1111
27499 measured reflectionsl = 1212
3084 independent reflections
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0199P)2 + 6.584P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.023(Δ/σ)max = 0.001
wR(F2) = 0.055Δρmax = 2.55 e Å3
S = 1.07Δρmin = 1.52 e Å3
3084 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
121 parametersExtinction coefficient: 0.00075 (4)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tl10.01569 (2)0.23393 (5)0.50000.03732 (8)
Tl20.29264 (2)0.12150 (6)0.0170 (5)0.0353 (4)0.5
Tl30.38418 (2)0.10536 (4)0.50000.03177 (7)
Sb10.05715 (2)0.41738 (4)0.00000.00993 (6)
Sb20.43805 (2)0.40456 (4)0.00000.01042 (6)
Sb30.25558 (2)0.32863 (4)0.50000.00998 (6)
Sb40.14535 (2)0.11009 (3)0.26233 (3)0.01011 (5)
O10.00000.50000.1759 (5)0.0131 (6)
O20.01735 (15)0.1611 (5)0.00000.0130 (6)
O30.11974 (15)0.1728 (6)0.50000.0139 (6)
O40.14514 (15)0.0305 (5)0.00000.0124 (6)
O50.28203 (16)0.0685 (5)0.50000.0146 (6)
O60.40613 (16)0.1618 (5)0.00000.0146 (6)
O70.21049 (11)0.2637 (4)0.2830 (4)0.0144 (5)
O80.10390 (11)0.3355 (4)0.1939 (4)0.0138 (4)
O90.31369 (11)0.3832 (4)0.3169 (4)0.0136 (4)
O100.42520 (10)0.4563 (4)0.2502 (3)0.0132 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl10.01779 (11)0.04162 (17)0.05255 (18)0.00612 (10)0.0000.000
Tl20.01922 (12)0.04252 (19)0.0442 (12)0.00204 (11)0.0027 (2)0.0106 (5)
Tl30.01232 (10)0.02797 (13)0.05504 (18)0.00031 (8)0.0000.000
Sb10.00754 (12)0.01037 (13)0.01187 (12)0.00045 (9)0.0000.000
Sb20.00826 (12)0.01106 (13)0.01193 (12)0.00000 (9)0.0000.000
Sb30.00756 (11)0.01032 (13)0.01205 (12)0.00028 (9)0.0000.000
Sb40.00803 (9)0.01136 (10)0.01094 (9)0.00039 (6)0.00072 (6)0.00010 (7)
O10.0106 (14)0.0163 (16)0.0123 (13)0.0028 (12)0.0000.000
O20.0080 (14)0.0098 (15)0.0214 (16)0.0005 (11)0.0000.000
O30.0107 (15)0.0223 (18)0.0086 (13)0.0045 (13)0.0000.000
O40.0119 (14)0.0150 (16)0.0101 (13)0.0016 (12)0.0000.000
O50.0114 (15)0.0106 (15)0.0217 (16)0.0008 (12)0.0000.000
O60.0113 (15)0.0087 (15)0.0238 (17)0.0011 (12)0.0000.000
O70.0123 (11)0.0159 (12)0.0150 (10)0.0035 (9)0.0031 (9)0.0011 (9)
O80.0142 (11)0.0128 (11)0.0144 (10)0.0034 (9)0.0038 (9)0.0013 (9)
O90.0119 (10)0.0125 (11)0.0165 (10)0.0029 (8)0.0023 (9)0.0003 (9)
O100.0093 (10)0.0161 (11)0.0141 (10)0.0003 (8)0.0005 (8)0.0001 (9)
Geometric parameters (Å, º) top
Tl1—Tl3i3.3972 (4)Sb2—Sb2x3.3079 (6)
Tl1—Tl1ii3.4507 (7)Sb3—O5iii1.952 (4)
Tl1—Tl3iii3.6130 (4)Sb3—O51.979 (4)
Tl2—Tl2iv0.252 (7)Sb3—O9xi1.998 (3)
Tl3—Tl1v3.3972 (4)Sb3—O91.998 (3)
Tl3—Tl1vi3.6129 (4)Sb3—O7xi2.002 (3)
Tl1—O32.565 (4)Sb3—O72.002 (3)
Tl2—O62.775 (4)Sb4—O31.9233 (15)
Tl3—O52.495 (4)Sb4—O71.936 (3)
Tl3—Sb33.5123 (4)Sb4—O9xii1.954 (3)
Sb1—O8iv1.925 (3)Sb4—O81.975 (3)
Sb1—O81.925 (3)Sb4—O42.0284 (11)
Sb1—O6vii1.971 (4)Sb4—O10xii2.041 (3)
Sb1—O1viii1.996 (2)Sb4—Sb2xiii3.1743 (3)
Sb1—O11.996 (2)O1—Sb1viii1.996 (2)
Sb1—O22.081 (4)O2—Sb2i1.983 (4)
Sb1—Sb1viii3.0199 (6)O2—Sb2xiii2.140 (4)
Sb2—O61.911 (4)O3—Sb4xi1.9233 (15)
Sb2—O10iv1.919 (3)O4—Sb4iv2.0283 (11)
Sb2—O101.919 (3)O4—Sb2xiii2.215 (4)
Sb2—O2v1.983 (4)O5—Sb3vi1.952 (4)
Sb2—O2vii2.140 (4)O6—Sb1xiii1.971 (4)
Sb2—O4vii2.215 (4)O6—Tl2iv2.775 (4)
Sb2—Sb4vii3.1742 (3)O9—Sb4ix1.954 (3)
Sb2—Sb4ix3.1742 (3)O10—Sb4ix2.042 (3)
O3—Tl1—Tl3i169.98 (10)Sb4vii—Sb2—Sb2x112.786 (12)
O3—Tl1—Tl1ii92.89 (10)Sb4ix—Sb2—Sb2x112.786 (12)
Tl3i—Tl1—Tl1ii97.130 (13)O5iii—Sb3—O5171.04 (9)
O3—Tl1—Tl3iii57.56 (10)O5iii—Sb3—O9xi99.04 (11)
Tl3i—Tl1—Tl3iii112.419 (11)O5—Sb3—O9xi87.50 (11)
Tl1ii—Tl1—Tl3iii150.451 (14)O5iii—Sb3—O999.03 (11)
Tl2iv—Tl2—O687.40 (7)O5—Sb3—O987.50 (11)
O5—Tl3—Tl1v166.21 (9)O9xi—Sb3—O985.66 (16)
O5—Tl3—Sb333.32 (9)O5iii—Sb3—O7xi87.14 (11)
Tl1v—Tl3—Sb3132.896 (12)O5—Sb3—O7xi87.54 (11)
O5—Tl3—Tl1vi126.21 (9)O9xi—Sb3—O7xi83.44 (11)
Tl1v—Tl3—Tl1vi67.581 (11)O9—Sb3—O7xi168.21 (11)
Sb3—Tl3—Tl1vi159.523 (11)O5iii—Sb3—O787.14 (11)
O8iv—Sb1—O896.70 (16)O5—Sb3—O787.54 (11)
O8iv—Sb1—O6vii90.34 (11)O9xi—Sb3—O7168.21 (11)
O8—Sb1—O6vii90.34 (11)O9—Sb3—O783.44 (11)
O8iv—Sb1—O1viii90.74 (11)O7xi—Sb3—O7107.02 (16)
O8—Sb1—O1viii171.91 (11)O5iii—Sb3—Tl3145.11 (12)
O6vii—Sb1—O1viii92.82 (8)O5—Sb3—Tl343.84 (11)
O8iv—Sb1—O1171.91 (11)O9xi—Sb3—Tl357.42 (8)
O8—Sb1—O190.74 (11)O9—Sb3—Tl357.42 (8)
O6vii—Sb1—O192.82 (8)O7xi—Sb3—Tl3112.32 (8)
O1viii—Sb1—O181.67 (15)O7—Sb3—Tl3112.32 (8)
O8iv—Sb1—O290.17 (11)O3—Sb4—O793.31 (15)
O8—Sb1—O290.17 (11)O3—Sb4—O9xii99.82 (14)
O6vii—Sb1—O2179.23 (15)O7—Sb4—O9xii92.53 (12)
O1viii—Sb1—O286.60 (8)O3—Sb4—O883.01 (13)
O1—Sb1—O286.60 (8)O7—Sb4—O888.19 (12)
O8iv—Sb1—Sb1viii131.51 (8)O9xii—Sb4—O8177.03 (11)
O8—Sb1—Sb1viii131.51 (8)O3—Sb4—O4160.89 (15)
O6vii—Sb1—Sb1viii93.72 (11)O7—Sb4—O4103.83 (13)
O1viii—Sb1—Sb1viii40.84 (8)O9xii—Sb4—O487.96 (13)
O1—Sb1—Sb1viii40.84 (8)O8—Sb4—O489.07 (13)
O2—Sb1—Sb1viii85.51 (10)O3—Sb4—O10xii84.03 (14)
O6—Sb2—O10iv96.40 (9)O7—Sb4—O10xii177.09 (11)
O6—Sb2—O1096.40 (9)O9xii—Sb4—O10xii89.09 (11)
O10iv—Sb2—O10150.66 (16)O8—Sb4—O10xii90.31 (11)
O6—Sb2—O2v100.16 (16)O4—Sb4—O10xii78.63 (13)
O10iv—Sb2—O2v101.78 (8)O3—Sb4—Sb2xiii117.70 (12)
O10—Sb2—O2v101.78 (8)O7—Sb4—Sb2xiii146.72 (8)
O6—Sb2—O2vii173.53 (15)O9xii—Sb4—Sb2xiii93.61 (8)
O10iv—Sb2—O2vii85.12 (9)O8—Sb4—Sb2xiii84.23 (8)
O10—Sb2—O2vii85.12 (9)O4—Sb4—Sb2xiii43.86 (10)
O2v—Sb2—O2vii73.37 (17)O10xii—Sb4—Sb2xiii35.42 (7)
O6—Sb2—O4vii90.22 (16)Sb1viii—O1—Sb198.33 (15)
O10iv—Sb2—O4vii76.83 (8)Sb2i—O2—Sb1131.46 (19)
O10—Sb2—O4vii76.83 (8)Sb2i—O2—Sb2xiii106.63 (17)
O2v—Sb2—O4vii169.63 (15)Sb1—O2—Sb2xiii121.92 (17)
O2vii—Sb2—O4vii96.25 (14)Sb4—O3—Sb4xi132.9 (2)
O6—Sb2—Sb4vii99.60 (9)Sb4—O3—Tl1111.03 (11)
O10iv—Sb2—Sb4vii38.07 (8)Sb4xi—O3—Tl1111.03 (11)
O10—Sb2—Sb4vii113.51 (8)Sb4iv—O4—Sb4147.2 (2)
O2v—Sb2—Sb4vii136.95 (5)Sb4iv—O4—Sb2xiii96.76 (11)
O2vii—Sb2—Sb4vii85.49 (8)Sb4—O4—Sb2xiii96.76 (11)
O4vii—Sb2—Sb4vii39.39 (3)Sb3vi—O5—Sb3133.2 (2)
O6—Sb2—Sb4ix99.60 (9)Sb3vi—O5—Tl3124.01 (18)
O10iv—Sb2—Sb4ix113.51 (8)Sb3—O5—Tl3102.84 (16)
O10—Sb2—Sb4ix38.07 (8)Sb2—O6—Sb1xiii129.2 (2)
O2v—Sb2—Sb4ix136.95 (5)Sb2—O6—Tl2119.90 (17)
O2vii—Sb2—Sb4ix85.49 (8)Sb1xiii—O6—Tl2110.88 (16)
O4vii—Sb2—Sb4ix39.39 (3)Sb2—O6—Tl2iv119.90 (17)
Sb4vii—Sb2—Sb4ix75.620 (11)Sb1xiii—O6—Tl2iv110.88 (16)
O6—Sb2—Sb2x138.46 (12)Tl2—O6—Tl2iv5.21 (15)
O10iv—Sb2—Sb2x93.86 (8)Sb4—O7—Sb3130.09 (14)
O10—Sb2—Sb2x93.86 (8)Sb1—O8—Sb4138.08 (15)
O2v—Sb2—Sb2x38.31 (11)Sb4ix—O9—Sb3131.67 (14)
O2vii—Sb2—Sb2x35.07 (10)Sb2—O10—Sb4ix106.51 (12)
O4vii—Sb2—Sb2x131.32 (10)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x, y, z; (v) x+1/2, y+1/2, z; (vi) x+1/2, y1/2, z+1; (vii) x+1/2, y+1/2, z; (viii) x, y+1, z; (ix) x+1/2, y+1/2, z; (x) x+1, y+1, z; (xi) x, y, z+1; (xii) x+1/2, y1/2, z; (xiii) x+1/2, y1/2, z.
Comparison of unit-cell parameters (Å, Å3) of the M3Sb5O14 structures top
The setting of the M = Rb and M = Cs compounds was adjusted to the setting used in this work.
CompoundK3Sb5O14Rb3Sb5O14Cs3Sb5O14Tl3Sb5O14
a24.247 (4)24.478 (2)26.251 (5)24.2899 (9)
b7.157 (2)7.1881 (9)7.4337 (13)7.1931 (3)
c7.334 (2)7.331 (2)7.396 (3)7.4182 (3)
V1272.7 (3)1289.8 (4)1443.3 (7)1296.11 (9)
 

Funding information

The authors acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Programme.

References

First citationAroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27.  Web of Science CrossRef CAS Google Scholar
First citationAurivillius, B. (1966). Ark. Kemi, 25, 505–514.  Google Scholar
First citationBouchama, M. & Tournoux, M. (1975). Rev. Chim. Min. 12, 80–92.  CAS Google Scholar
First citationBruker (2021). APEX3, SAINT and SADABS. Bruker-AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFlor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirschle, C., Rosstauscher, J., Emmerling, F. & Röhr, C. (2001). Z. Naturforsch. B, 56, 169–178.  CrossRef ICSD CAS Google Scholar
First citationHong, H. Y.-P. (1974). Acta Cryst. B30, 945–952.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationPutz, H. & Brandenburg, K. (2021). DIAMOND – Crystal and Molecular Structure Visualization, Crystal Impact, Bonn, Germany. https://www.crystalimpact.de/diamond.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds