research communications
Structural study of bioisosteric derivatives of 5-(1H-indol-3-yl)-benzotriazole and their ability to form chalcogen bonds
aNamur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS) University of Namur (UNamur), 61 Rue de Bruxelles, 5000, Namur, Belgium, and bLouvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
*Correspondence e-mail: manon.mirgaux@unamur.be, johan.wouters@unamur.be
Recently, interest in the isosteric replacement of a nitrogen atom to selenium, sulfur or oxygen atoms has been highlighted in the design of potential inhibitors for cancer research. In this context, the structures of 5-(1H-indol-3-yl)-2,1,3-benzotriazole derivatives [5-(1H-indol-3-yl)-2,1,3-benzothiadiazole (bS, C14H9N3S) and 5-(1H-indol-3-yl)-2,1,3-benzoxadiazole (bO, C14H9N3O)], as well as a synthesis intermediate of the selenated bioisostere [5-[1-(benzensulfonyl)-1H-indol-3-yl]-2,1,3-benzoselenadiazole (p-bSe, C20H13N3O2SSe)] were determined using single-crystal X-ray diffraction (SCXRD) analyses. Despite being analogues, different crystal packing, torsion angles and supramolecular features were observed, depending on the substitution of the central atoms of the benzotriazole. In particular, chalcogen interactions were described in the case of p-bSe and not in the bS and bO derivatives. An investigation by ab initio computational methods was therefore conducted to understand the effect of the substitution on the ability to form chalcogen bonds and the flexibility of the compounds.
1. Chemical context
Isosteric replacement is a common strategy in drug design to modulate the physicochemical properties of potential inhibitors. In 2021, Kozlova and co-workers (Kozlova et al., 2021a) highlighted a series of bioisosteric derivatives acting as potential new inhibitors of the protein hTDO2, a therapeutic target in cancer research. These new molecules differ in the replacement of the central atom of benzotriazole by an oxygen, sulfur or selenium atom (Fig. 1). At this time, these inhibitors have not yet been crystallized or structurally characterized. In this context, the present work provides a structural characterization of the inhibitors described by Kozlova et al. (2021b) completed by ab initio calculations for their conformational characterization.
The contribution of an oxygen, a sulfur or a selenium atom instead of a nitrogen affects the ability of these inhibitors to participate in the formation of chalcogen bonds (Vogel et al., 2019). In particular, in these compounds, oxygen, sulfur and selenium atoms could act as chalcogen-bond donors. In recent years, the importance of chalcogen bonds in the stability and folding of proteins as well as their interaction with ligands has been highlighted by numerous investigations (Newberry & Raines, 2019; Kříž et al., 2018; Iwaoka et al., 2001; Iwaoka & Babe, 2015; Burling & Goldstein, 1992). In this article, the potential ability of the compounds to interact with aromatic groups, by chalcogen–π interactions (Aakeroy et al., 2019), was revealed by the crystallization of 5-[1-(benzensulfonyl)-1H-indol-3-yl] −2,1,3-benzoselenadiazole. Therefore, the effect of bioisosteric replacement on the ability to form chalcogen bonds has been studied by ab initio calculated electrostatic potential maps. This interesting series could be the starting point for the study of the effect of chalcogen interaction on protein stability and affinity.
2. Structural commentary
The compounds investigated in this study were kindly provided by the team of Raphaël Frédérick (UCLouvain, Belgium). Crystallization assays were performed, by slow evaporation at room temperature (293–298 K), in four different solvents [tetrahydrofuran (THF), chloroform, dichloromethane and N,N-dimethylformamide (DMF)]. Crystals of 5-(1H-indol-3-yl)-2,1,3-benzoxadiazole (bO) and of 5-(1H-indol-3-yl)-2,1,3-benzothiadiazole (bS) were obtained from chloroform. Despite numerous attempts, we were not able to crystallize the compound 5-(1H-indol-3-yl)-2,1,3-benzoselenadiazole (bSe). However, crystals of a synthesis intermediate – 5-[1-(benzensulfonyl)-1H-indol-3-yl]-2,1,3-benzoselenadiazole (p-bSe) – were obtained in THF.
5-[1-(Benzensulfonyl)-1H-indol-3-yl]-2,1,3-benzoselenadiazole (p-bSe) crystallized in P with one molecule of p-bSe in the [Fig. 2(a)]. Interestingly, the molecule adopts an almost planar dihedral angle [−168.3 (2)°] between the indole and benzoselenadiazole ring (Fig. 3). 5-(1H-indol-3-yl)-2,1,3-benzothiadiazole (bS) and 5-(1H-indol-3-yl)-2,1,3-benzoxadiazole (bO) crystallized in Pbca [Fig. 2(b) and (c)]. The asymmetric units contain one molecule of bS or bO without disorder. In the three structures, two mirror images are observed in the crystal packing with a torsion angle of ±168.3 (2)° for p-bSe, ±36.9 (2)° for bS and ±146.7 (2)° for bO between the two aromatic parts of the molecules (Fig. 3). The isosteric replacement does not change significantly the planarity of the benzotriazole ring (r.m.s. deviation from planarity: 0.013 Å for p-bSe, 0.006 Å for bS and bO) or the indole ring (0.010 Å for p-bSe, 0.025 Å for bS and 0.011 Å for bO).
3. Supramolecular features
In the structure of p-bSe, a synthesis intermediate of the selenated bioisostere of 5-(1H-indol-3-yl)benzotriazole, the benzenesulfonyl contributes to the stabilization of the crystal packing through weak hydrogen bonds [Table 1, Fig. 4(a)] and chalcogen–π interactions. π-stacking interactions are observed between the selenadiazole and indole groups [centroid (Se/N1/C1/C6/N2)⋯centroid (N3/C7–C10) distance of 3.732 (2) Å, perpendicular distance of 3.587 (1) Å and horizontal displacement of 1.506 Å, Fig. 4(b)]. A second π-stacking interaction is observed between the selenadiazole group (Se/N1/C1/C6/N2) and the indole group (C9–C14) [centroid⋯centroid distance of 3.915 (2) Å, perpendicular distance of 3.646 (1) Å and horizontal displacement of 1.331 Å, Fig. 4(b)]. A chalcogen–π interaction between Se and the benzensulfonyl group (C15–C20) is also involved in crystal-packing stabilization [Se⋯centroid distance of 3.388 (1) Å and N2—Se⋯centroid angle of 159.83 (8)°, Fig. 4(b)]. The presence of the protecting group (benzenesulfonyl) could explain the crystallization of the p-bSe compound with respect to the bSe compound. Indeed, in p-bSe, the orientation of the protecting group is ideal for allowing a chalcogen–π interaction whereas this type of interactions would be more difficult to set up in bSe.
|
In the structure of compound bS, π-interactions stabilize the crystal packing. π-stacking is observed between benzothiadiazole groups [centroid (C1–C6)⋯centroid (S1/N1/C1/C2/N2) distance of 3.689 (1) Å, perpendicular distance of 3.4989 (7) Å and horizontal displacement of 1.326 Å, Fig. 5(a)]. An N—H⋯π interaction is also observed between indole groups [N3⋯centroid (C9–C14) distance of 3.345 (2) Å, H3N⋯centroid distance of 2.57 (2) Å and N3—H3N⋯centroid angle of 169 (2)°, Fig. 5(b)]. In this structure, no chalcogen interaction involving the sulfur atom is observed.
The crystal packing of bO is stabilized through π-interactions. π-stacking is observed between benzoxadiazole groups [centroid (O1/N1/C1–C6/N2)⋯centroid (O1/N1/C1–C6/N2) distance of 3.893 (1) Å, perpendicular distance of 3.5469 (8) Å and horizontal displacement of 1.570 Å, Fig. 6(a)]. An N—H⋯π interaction is also observed between indole groups [N3⋯centroid (C9–C14) distance of 3.226 (2) Å, H3N⋯centroid distance of 2.57 (2) Å and N3—H3N⋯centroid angle of 138 (2)°, Fig. 6(b)]. No chalcogen interaction is observed.
4. Quantum ab initio studies of the bioisosteric substitution effect
As mentioned previously, the different derivatives vary mainly in their ability to interact through chalcogen bonds. In order to characterize these differences in depth, quantum mechanics studies have been conducted. First, the presence of a σ-hole in the electron density was studied by means of electrostatic maps. Analysis indicates that the oxygen in benzoxadiazole [Fig. 7(c)] has a weakly positive environment. The σ-hole formation is enhanced by substitution of the central atom with sulfur [Fig. 7(b)] and selenium [Fig. 7(a)], with selenium having the most positive environment. The bioisosteric series thus has different characteristics in terms of the ability to form chalcogen bonds, with the selenium compound being the best chaclogen-bond donor in this bioisosteric series of molecules. These results may explain why chalcogen bonds are observed only in the supramolecular organization of the p-bSe molecule. The donor character of the selenium atom is not affected by the protected group [Fig. 8(a) and (b)]. The difficulty in crystallizing bSe (while p-bSe crystallized readily in THF) could be explained by the absence of the protecting group (benzenesulfonyl) in bSe. Indeed, the benzenesulfonyl group in p-bSe is electron-rich and acts as a well-oriented chalcogen-bond acceptor in p-bSe.
Secondly, in order to determine the effect of the substitution on the flexibility of the derivatives, conformational scans were performed around the torsion angle formed between the indole ring and the benzodiazole part (T1). As presented in Fig. 9, bO and bS are characterized by a very similar ΔE associated with the rotation around T1. For all three molecules (bO, bS and bSe), four minima are observed for each molecule, with symmetry on each side of the planar molecule. The energy transitions are low (maximum 15 kJ mol−1) and the molecules are flexible. Moreover, the T1 torsion angles observed in the crystal structures of bS [±36.9 (2)°] and bO [±146.7 (2)°] are consistent with the energy minima determined by ab initio calculations with a relative deviation lower than 10%. Although the bioisosteric character of the flexibility is retained, two differences are observed between the bSe molecule and the bS and bO molecules. The first one is the energy at a torsion angle of 180°, which is lower for the molecule of bSe while it is slightly higher at 0°. The second one is a small shift observed between the angle associated with the energy minima of the bSe molecule and the bS and bO molecules.
The same calculations were performed for the protected molecule (p-bSe). The T1 in p-bSe is similar to those determined for bS and bO. There is a small shift of the values of the angle corresponding to the energy minimum with respect to bSe. This shift may be due to the protecting group that causes in p-bSe. The energies corresponding to minima A and C are higher than the energies for minima B and D, involving two local minima and a preference in the conformers. The maxima of the energies between A/B and C/D are also lower than in the case of the other compounds, supporting this hypothesis. In the case of p-bSe, the torsion angle observed in the crystallographic structure [±168.3 (2)°] corresponds to an energy maximum on the associated with the rotation around T1 determined by ab initio calculations. The quasi-planarity of the molecule observed in the crystallographic structure could be encouraged by the formation of chalcogen bonds stabilizing this conformation of p-bSe.
associated with the rotation around5. Database survey
The Cambridge Structural Database (CSD version 5.42; Groom et al., 2016) was searched with ConQuest (version 2021.2.0; Bruno et al., 2002) for benzoselenadiazole, benzothiadiazole and benzoxadiazole fragments (Fig. 10). The search for the benzoselenadiazole fragment resulted in 57 hits. Chalcogen bonds are observed in all of these hits. In particular, chalcogen–π interactions are observed in four structures [CSD refcodes: QIBQUQ (Lee et al., 2018), VOPMEV (Lee et al., 2019), VOPNAS (Lee et al., 2019), and YIWLOG (Tan et al., 2008)], listed in Table 2. The search for a benzothiadiazole fragment resulted in 34 hits. Chalcogen bonds but no chalcogen–π interactions are observed in these hits. The search for a benzoxadiazole fragment resulted in 24 hits but no chalcogen interactions are observed with the oxygen atom of benzoxadiazole as a chalcogen donor.
6. Synthesis and crystallization
The synthesis of the various compounds was reported by Kozlova et al. (2021a). Crystallization of the 5-(1H-indol-3-yl)-benzotriazole derivatives were carried out by the solvent evaporation method. The compounds were dissolved in THF, chloroform, dichloromethane or DMF until complete dissolution. Slow evaporation of the solvent at room temperature (293–297 K) yielded colorless crystals that were then picked for XRD analysis. Crystals of 5-(1H-indol-3-yl)-2,1,3-benzothiadiazole and 5-(1H-indol-3-yl)-2,1,3-benzoxadiazole were obtained from chloroform while the protected benzoselenadiazole (5-[1-(benzensulfonyl)-1H-indol-3-yl]-2,1,3-benzoselenadiazole) was crystallized in THF.
7. Refinement
Crystal data, data collection and structure . In all of the structures, hydrogen atoms were placed in calculated positions and refined using a riding model [C—H bond length of 0.93 Å, with Uiso(H) = 1.2Ueq(C)]. In the structure of 5-(1H-indol-3-yl)-2,1,3-benzothiadiazole, bS, the hydrogen on the nitrogen atom in the indole group was refined without constraint and the refined N—H distance is 0.78 (2) Å.
details are summarized in Table 3
|
8. Quantum ab initio methodology
All the molecules investigated in the study (bS, bO, bSe, p-bSe) were optimized starting from the crystal coordinates using the density functional method (DFT) with the exchange-correlation functional ωB97XD and the 6-31+G* basis set. Because we were not able to crystallize the bSe compound, this molecule was created by substitution of the sulfur atom for a selenium atom from the coordinates of the bS molecule. The optimizations were performed with Gaussian16a (Frisch et al., 2016) the in gas phase. The electrostatic potential was calculated from the SCF-type density and was sliced by making 80 cubic points evenly distributed on a rectangular grid automatically generated by Gaussian16a. The resulting maps were visualized using DrawMol (Liegeois, 2021). For the conformational scans, the optimized structures were analyzed using relaxed scans around the torsion angle (T1) formed between the indole ring and the benzodiazole part from 0 to 360° by steps of 20°. The resulting conformations close to an energy minimum were extracted and refined by a new optimization at the same level of approximation. The preparation of the input files, as well as the visualization of the results was performed with the DrawMol and DrawSpectrum suite of programs (Liegeois, 2021). The graphs were drawn with the program Prism from GraphPad (one-way ANOVA followed by Dunnetts multiple comparisons test, Prism version 8.0.0 for Windows; GraphPad, 2021).
Supporting information
https://doi.org/10.1107/S2056989022002948/vm2261sup1.cif
contains datablocks p-bSe, bS, bO. DOI:Structure factors: contains datablock p-bSe. DOI: https://doi.org/10.1107/S2056989022002948/vm2261p-bSesup2.hkl
Structure factors: contains datablock bS. DOI: https://doi.org/10.1107/S2056989022002948/vm2261bSsup3.hkl
Structure factors: contains datablock bO. DOI: https://doi.org/10.1107/S2056989022002948/vm2261bOsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022002948/vm2261p-bSesup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989022002948/vm2261bSsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989022002948/vm2261bOsup7.cml
For all structures, data collection: CrysAlis PRO (Rigaku OD, 2020); cell
CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011), OLEX2 (Dolomanov et al., 2009); molecular graphics: Mercury (Macrae et al., 2020).C20H13N3O2SSe | Z = 2 |
Mr = 438.35 | F(000) = 440 |
Triclinic, P1 | Dx = 1.654 Mg m−3 |
a = 7.7760 (3) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 9.9573 (4) Å | Cell parameters from 4183 reflections |
c = 11.4124 (6) Å | θ = 3.9–66.7° |
α = 90.970 (4)° | µ = 4.18 mm−1 |
β = 92.771 (4)° | T = 295 K |
γ = 94.283 (3)° | Plate, colourless |
V = 879.95 (7) Å3 | 0.19 × 0.10 × 0.01 mm |
Xcalibur, Ruby, Gemini ultra diffractometer | 3113 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance Ultra (Cu) X-ray Source | 2571 reflections with I > 2σ(I) |
Detector resolution: 5.1856 pixels mm-1 | Rint = 0.030 |
ω scans | θmax = 67.2°, θmin = 3.9° |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2020) | h = −9→9 |
Tmin = 0.663, Tmax = 0.958 | k = −11→9 |
9941 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: dual |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0588P)2 + 0.2071P] where P = (Fo2 + 2Fc2)/3 |
3113 reflections | (Δ/σ)max = 0.001 |
244 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.61 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Structures were solved by the dual-space method of ShelXT (Sheldrick, 2015a) within Olex2 (Dolomanov et al., 2009). Structures were refined by the least- squares method implemented in SHELXL (Sheldrick, 2015b) within ShelXle (Hübschle et al., 2011). Structures and crystal packings were visualized using Mercury (Macrae et al., 2020). |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.90079 (4) | 0.81216 (3) | 0.75959 (3) | 0.07181 (16) | |
S1 | 0.52981 (9) | 0.00138 (6) | 0.25117 (6) | 0.05354 (19) | |
O1 | 0.4385 (3) | −0.0082 (2) | 0.13980 (18) | 0.0639 (5) | |
O2 | 0.4503 (3) | −0.0486 (2) | 0.35371 (18) | 0.0650 (5) | |
N1 | 0.9080 (3) | 0.7558 (3) | 0.6120 (2) | 0.0674 (7) | |
N2 | 0.7790 (4) | 0.6657 (3) | 0.8062 (2) | 0.0685 (7) | |
N3 | 0.5808 (3) | 0.1632 (2) | 0.2811 (2) | 0.0539 (5) | |
C1 | 0.8223 (3) | 0.6341 (3) | 0.6050 (2) | 0.0529 (6) | |
C2 | 0.7984 (4) | 0.5541 (3) | 0.5005 (2) | 0.0558 (6) | |
H2 | 0.846444 | 0.585254 | 0.432073 | 0.067* | |
C3 | 0.7060 (3) | 0.4321 (2) | 0.4993 (2) | 0.0481 (6) | |
C4 | 0.6317 (4) | 0.3868 (3) | 0.6070 (2) | 0.0570 (7) | |
H4 | 0.566610 | 0.304496 | 0.606199 | 0.068* | |
C5 | 0.6530 (4) | 0.4592 (3) | 0.7089 (3) | 0.0620 (7) | |
H5 | 0.604349 | 0.426314 | 0.776555 | 0.074* | |
C6 | 0.7506 (4) | 0.5862 (3) | 0.7115 (2) | 0.0553 (6) | |
C7 | 0.6741 (3) | 0.3458 (2) | 0.3939 (2) | 0.0477 (6) | |
C8 | 0.6014 (3) | 0.2176 (3) | 0.3945 (2) | 0.0519 (6) | |
H8 | 0.569709 | 0.172160 | 0.461603 | 0.062* | |
C9 | 0.6494 (3) | 0.2603 (3) | 0.2037 (2) | 0.0517 (6) | |
C10 | 0.7064 (3) | 0.3750 (3) | 0.2714 (2) | 0.0503 (6) | |
C11 | 0.7763 (5) | 0.4873 (3) | 0.2134 (3) | 0.0675 (8) | |
H11 | 0.814269 | 0.565849 | 0.255173 | 0.081* | |
C12 | 0.7881 (5) | 0.4801 (3) | 0.0936 (3) | 0.0802 (10) | |
H12 | 0.834370 | 0.554638 | 0.054712 | 0.096* | |
C13 | 0.7326 (5) | 0.3643 (3) | 0.0297 (3) | 0.0730 (9) | |
H13 | 0.744430 | 0.362173 | −0.050976 | 0.088* | |
C14 | 0.6602 (4) | 0.2520 (3) | 0.0831 (2) | 0.0616 (7) | |
H14 | 0.620702 | 0.174545 | 0.040267 | 0.074* | |
C15 | 0.7292 (4) | −0.0687 (2) | 0.2387 (2) | 0.0545 (6) | |
C16 | 0.8268 (4) | −0.0925 (3) | 0.3403 (3) | 0.0637 (7) | |
H16 | 0.787011 | −0.072995 | 0.413787 | 0.076* | |
C17 | 0.9851 (4) | −0.1459 (3) | 0.3296 (3) | 0.0732 (9) | |
H17 | 1.052470 | −0.162969 | 0.396443 | 0.088* | |
C18 | 1.0426 (4) | −0.1736 (3) | 0.2205 (3) | 0.0733 (9) | |
H18 | 1.149596 | −0.208273 | 0.214087 | 0.088* | |
C19 | 0.9442 (5) | −0.1509 (3) | 0.1210 (3) | 0.0723 (8) | |
H19 | 0.984606 | −0.170801 | 0.047749 | 0.087* | |
C20 | 0.7853 (4) | −0.0986 (3) | 0.1287 (3) | 0.0636 (7) | |
H20 | 0.717547 | −0.083800 | 0.061463 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.0753 (2) | 0.0682 (2) | 0.0690 (3) | −0.00422 (16) | −0.00371 (17) | −0.02183 (16) |
S1 | 0.0587 (4) | 0.0467 (4) | 0.0525 (4) | −0.0097 (3) | −0.0021 (3) | −0.0040 (3) |
O1 | 0.0655 (12) | 0.0654 (12) | 0.0575 (12) | −0.0055 (9) | −0.0107 (9) | −0.0115 (9) |
O2 | 0.0722 (12) | 0.0598 (11) | 0.0604 (12) | −0.0146 (9) | 0.0078 (10) | 0.0011 (9) |
N1 | 0.0683 (15) | 0.0635 (15) | 0.0673 (16) | −0.0116 (11) | 0.0024 (12) | −0.0126 (12) |
N2 | 0.0805 (17) | 0.0695 (16) | 0.0551 (15) | 0.0090 (13) | −0.0007 (13) | −0.0112 (12) |
N3 | 0.0681 (14) | 0.0440 (11) | 0.0473 (12) | −0.0086 (9) | 0.0006 (10) | −0.0024 (9) |
C1 | 0.0520 (14) | 0.0522 (14) | 0.0534 (16) | 0.0035 (11) | −0.0050 (12) | −0.0072 (11) |
C2 | 0.0604 (16) | 0.0571 (15) | 0.0486 (15) | −0.0046 (12) | 0.0043 (12) | −0.0038 (11) |
C3 | 0.0519 (14) | 0.0454 (13) | 0.0471 (14) | 0.0061 (10) | −0.0019 (11) | −0.0009 (10) |
C4 | 0.0734 (18) | 0.0461 (14) | 0.0511 (16) | 0.0018 (12) | 0.0011 (13) | 0.0019 (11) |
C5 | 0.081 (2) | 0.0578 (16) | 0.0477 (16) | 0.0068 (14) | 0.0042 (14) | 0.0048 (12) |
C6 | 0.0607 (16) | 0.0553 (15) | 0.0501 (15) | 0.0136 (12) | −0.0058 (13) | −0.0059 (12) |
C7 | 0.0507 (14) | 0.0481 (13) | 0.0440 (14) | 0.0034 (10) | 0.0012 (11) | −0.0017 (10) |
C8 | 0.0604 (15) | 0.0502 (14) | 0.0443 (14) | −0.0010 (11) | 0.0010 (12) | 0.0005 (11) |
C9 | 0.0562 (15) | 0.0506 (14) | 0.0477 (15) | 0.0020 (11) | −0.0008 (12) | 0.0019 (11) |
C10 | 0.0567 (15) | 0.0463 (14) | 0.0483 (15) | 0.0048 (11) | 0.0041 (12) | 0.0004 (11) |
C11 | 0.096 (2) | 0.0478 (15) | 0.0566 (18) | −0.0091 (14) | 0.0058 (16) | −0.0007 (12) |
C12 | 0.120 (3) | 0.0613 (18) | 0.0573 (19) | −0.0120 (18) | 0.0133 (18) | 0.0073 (14) |
C13 | 0.103 (2) | 0.0705 (19) | 0.0446 (16) | −0.0002 (16) | 0.0070 (16) | 0.0032 (13) |
C14 | 0.0788 (19) | 0.0597 (16) | 0.0450 (15) | 0.0000 (14) | −0.0025 (14) | −0.0026 (12) |
C15 | 0.0639 (16) | 0.0401 (13) | 0.0568 (16) | −0.0098 (11) | −0.0022 (13) | −0.0009 (11) |
C16 | 0.0712 (19) | 0.0583 (16) | 0.0591 (17) | −0.0064 (13) | −0.0054 (14) | 0.0028 (13) |
C17 | 0.072 (2) | 0.0647 (19) | 0.080 (2) | −0.0023 (15) | −0.0186 (17) | 0.0078 (16) |
C18 | 0.0690 (19) | 0.0574 (18) | 0.093 (3) | 0.0020 (14) | 0.0006 (18) | 0.0007 (16) |
C19 | 0.082 (2) | 0.0645 (19) | 0.071 (2) | 0.0070 (16) | 0.0059 (17) | −0.0070 (15) |
C20 | 0.0748 (19) | 0.0565 (16) | 0.0581 (18) | 0.0004 (13) | −0.0013 (15) | −0.0041 (13) |
Se1—N1 | 1.772 (3) | C8—H8 | 0.9300 |
Se1—N2 | 1.782 (3) | C9—C14 | 1.384 (4) |
S1—O1 | 1.424 (2) | C9—C10 | 1.399 (4) |
S1—O2 | 1.430 (2) | C10—C11 | 1.398 (4) |
S1—N3 | 1.657 (2) | C11—C12 | 1.376 (5) |
S1—C15 | 1.758 (3) | C11—H11 | 0.9300 |
N1—C1 | 1.337 (4) | C12—C13 | 1.383 (5) |
N2—C6 | 1.329 (4) | C12—H12 | 0.9300 |
N3—C8 | 1.391 (3) | C13—C14 | 1.379 (4) |
N3—C9 | 1.414 (4) | C13—H13 | 0.9300 |
C1—C2 | 1.420 (4) | C14—H14 | 0.9300 |
C1—C6 | 1.436 (4) | C15—C20 | 1.383 (4) |
C2—C3 | 1.365 (4) | C15—C16 | 1.388 (4) |
C2—H2 | 0.9300 | C16—C17 | 1.386 (5) |
C3—C4 | 1.448 (4) | C16—H16 | 0.9300 |
C3—C7 | 1.466 (4) | C17—C18 | 1.374 (5) |
C4—C5 | 1.355 (4) | C17—H17 | 0.9300 |
C4—H4 | 0.9300 | C18—C19 | 1.370 (5) |
C5—C6 | 1.424 (4) | C18—H18 | 0.9300 |
C5—H5 | 0.9300 | C19—C20 | 1.383 (5) |
C7—C8 | 1.357 (4) | C19—H19 | 0.9300 |
C7—C10 | 1.463 (4) | C20—H20 | 0.9300 |
N1—Se1—N2 | 95.07 (11) | C14—C9—C10 | 123.6 (3) |
O1—S1—O2 | 120.66 (12) | C14—C9—N3 | 129.3 (3) |
O1—S1—N3 | 107.53 (12) | C10—C9—N3 | 107.1 (2) |
O2—S1—N3 | 104.65 (12) | C11—C10—C9 | 117.9 (3) |
O1—S1—C15 | 108.75 (13) | C11—C10—C7 | 134.3 (3) |
O2—S1—C15 | 109.34 (13) | C9—C10—C7 | 107.8 (2) |
N3—S1—C15 | 104.72 (12) | C12—C11—C10 | 119.0 (3) |
C1—N1—Se1 | 106.3 (2) | C12—C11—H11 | 120.5 |
C6—N2—Se1 | 105.8 (2) | C10—C11—H11 | 120.5 |
C8—N3—C9 | 108.0 (2) | C11—C12—C13 | 121.5 (3) |
C8—N3—S1 | 123.64 (18) | C11—C12—H12 | 119.3 |
C9—N3—S1 | 126.7 (2) | C13—C12—H12 | 119.3 |
N1—C1—C2 | 124.0 (3) | C14—C13—C12 | 121.4 (3) |
N1—C1—C6 | 116.0 (3) | C14—C13—H13 | 119.3 |
C2—C1—C6 | 120.0 (2) | C12—C13—H13 | 119.3 |
C3—C2—C1 | 120.8 (3) | C13—C14—C9 | 116.6 (3) |
C3—C2—H2 | 119.6 | C13—C14—H14 | 121.7 |
C1—C2—H2 | 119.6 | C9—C14—H14 | 121.7 |
C2—C3—C4 | 118.3 (2) | C20—C15—C16 | 121.6 (3) |
C2—C3—C7 | 123.5 (2) | C20—C15—S1 | 119.6 (2) |
C4—C3—C7 | 118.2 (2) | C16—C15—S1 | 118.8 (2) |
C5—C4—C3 | 122.8 (3) | C17—C16—C15 | 118.4 (3) |
C5—C4—H4 | 118.6 | C17—C16—H16 | 120.8 |
C3—C4—H4 | 118.6 | C15—C16—H16 | 120.8 |
C4—C5—C6 | 119.4 (3) | C18—C17—C16 | 120.2 (3) |
C4—C5—H5 | 120.3 | C18—C17—H17 | 119.9 |
C6—C5—H5 | 120.3 | C16—C17—H17 | 119.9 |
N2—C6—C5 | 124.5 (3) | C19—C18—C17 | 120.8 (3) |
N2—C6—C1 | 116.8 (3) | C19—C18—H18 | 119.6 |
C5—C6—C1 | 118.7 (2) | C17—C18—H18 | 119.6 |
C8—C7—C10 | 106.2 (2) | C18—C19—C20 | 120.4 (3) |
C8—C7—C3 | 123.9 (2) | C18—C19—H19 | 119.8 |
C10—C7—C3 | 129.8 (2) | C20—C19—H19 | 119.8 |
C7—C8—N3 | 110.8 (2) | C19—C20—C15 | 118.6 (3) |
C7—C8—H8 | 124.6 | C19—C20—H20 | 120.7 |
N3—C8—H8 | 124.6 | C15—C20—H20 | 120.7 |
N2—Se1—N1—C1 | −0.2 (2) | C8—N3—C9—C14 | 179.1 (3) |
N1—Se1—N2—C6 | −0.4 (2) | S1—N3—C9—C14 | 13.3 (4) |
O1—S1—N3—C8 | 151.5 (2) | C8—N3—C9—C10 | −1.8 (3) |
O2—S1—N3—C8 | 22.0 (3) | S1—N3—C9—C10 | −167.7 (2) |
C15—S1—N3—C8 | −93.0 (2) | C14—C9—C10—C11 | 0.7 (4) |
O1—S1—N3—C9 | −44.8 (3) | N3—C9—C10—C11 | −178.4 (3) |
O2—S1—N3—C9 | −174.2 (2) | C14—C9—C10—C7 | −179.9 (3) |
C15—S1—N3—C9 | 70.8 (3) | N3—C9—C10—C7 | 1.0 (3) |
Se1—N1—C1—C2 | −180.0 (2) | C8—C7—C10—C11 | 179.5 (3) |
Se1—N1—C1—C6 | 0.7 (3) | C3—C7—C10—C11 | 0.8 (5) |
N1—C1—C2—C3 | −178.5 (3) | C8—C7—C10—C9 | 0.3 (3) |
C6—C1—C2—C3 | 0.8 (4) | C3—C7—C10—C9 | −178.5 (3) |
C1—C2—C3—C4 | 0.5 (4) | C9—C10—C11—C12 | −0.8 (5) |
C1—C2—C3—C7 | 178.9 (2) | C7—C10—C11—C12 | 180.0 (3) |
C2—C3—C4—C5 | −1.3 (4) | C10—C11—C12—C13 | −0.1 (6) |
C7—C3—C4—C5 | −179.8 (3) | C11—C12—C13—C14 | 1.2 (6) |
C3—C4—C5—C6 | 0.7 (4) | C12—C13—C14—C9 | −1.3 (5) |
Se1—N2—C6—C5 | −178.2 (2) | C10—C9—C14—C13 | 0.3 (5) |
Se1—N2—C6—C1 | 0.9 (3) | N3—C9—C14—C13 | 179.3 (3) |
C4—C5—C6—N2 | 179.7 (3) | O1—S1—C15—C20 | 11.5 (3) |
C4—C5—C6—C1 | 0.6 (4) | O2—S1—C15—C20 | 145.2 (2) |
N1—C1—C6—N2 | −1.2 (4) | N3—S1—C15—C20 | −103.2 (2) |
C2—C1—C6—N2 | 179.5 (3) | O1—S1—C15—C16 | −168.6 (2) |
N1—C1—C6—C5 | 178.0 (3) | O2—S1—C15—C16 | −35.0 (2) |
C2—C1—C6—C5 | −1.4 (4) | N3—S1—C15—C16 | 76.7 (2) |
C2—C3—C7—C8 | 171.4 (3) | C20—C15—C16—C17 | 0.8 (4) |
C4—C3—C7—C8 | −10.2 (4) | S1—C15—C16—C17 | −179.0 (2) |
C2—C3—C7—C10 | −10.1 (4) | C15—C16—C17—C18 | 0.3 (4) |
C4—C3—C7—C10 | 168.3 (3) | C16—C17—C18—C19 | −0.9 (5) |
C10—C7—C8—N3 | −1.4 (3) | C17—C18—C19—C20 | 0.4 (5) |
C3—C7—C8—N3 | 177.4 (2) | C18—C19—C20—C15 | 0.6 (5) |
C9—N3—C8—C7 | 2.1 (3) | C16—C15—C20—C19 | −1.3 (4) |
S1—N3—C8—C7 | 168.4 (2) | S1—C15—C20—C19 | 178.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O2i | 0.93 | 2.46 | 3.380 (3) | 168 |
C14—H14···O1 | 0.93 | 2.54 | 3.099 (4) | 119 |
Symmetry code: (i) −x+1, −y, −z+1. |
C14H9N3S | Dx = 1.432 Mg m−3 |
Mr = 251.30 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbca | Cell parameters from 4620 reflections |
a = 7.5884 (1) Å | θ = 4.1–67.1° |
b = 7.1060 (1) Å | µ = 2.32 mm−1 |
c = 43.2464 (7) Å | T = 295 K |
V = 2331.98 (6) Å3 | Plate, colourless |
Z = 8 | 0.29 × 0.18 × 0.04 mm |
F(000) = 1040 |
Xcalibur, Ruby, Gemini ultra R diffractometer | 2072 independent reflections |
Radiation source: fine-focus sealed tube | 1825 reflections with I > 2σ(I) |
Detector resolution: 5.1856 pixels mm-1 | Rint = 0.025 |
ω scans | θmax = 67.2°, θmin = 4.1° |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2020) | h = −9→8 |
Tmin = 0.663, Tmax = 0.920 | k = −8→7 |
10906 measured reflections | l = −51→49 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: dual |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: mixed |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0478P)2 + 0.7413P] where P = (Fo2 + 2Fc2)/3 |
2072 reflections | (Δ/σ)max = 0.001 |
167 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Structures were solved by the dual-space method of ShelXT (Sheldrick, 2015a) within Olex2 (Dolomanov et al., 2009). Structures were refined by the least- squares method implemented in SHELXL (Sheldrick, 2015b) within ShelXle (Hübschle et al., 2011). Structures and crystal packings were visualized using Mercury (Macrae et al., 2020). |
x | y | z | Uiso*/Ueq | ||
S1 | 1.08880 (6) | 0.65005 (9) | 0.46249 (2) | 0.0684 (2) | |
N1 | 1.05463 (19) | 0.6759 (2) | 0.42591 (3) | 0.0539 (4) | |
N3 | 0.2880 (2) | 0.8454 (2) | 0.33487 (4) | 0.0567 (4) | |
H3N | 0.206 (3) | 0.904 (3) | 0.3295 (5) | 0.065 (6)* | |
C9 | 0.5346 (2) | 0.6723 (2) | 0.33531 (4) | 0.0369 (3) | |
C5 | 0.6078 (2) | 0.7131 (2) | 0.39422 (3) | 0.0384 (4) | |
C6 | 0.7877 (2) | 0.7053 (2) | 0.39392 (3) | 0.0396 (4) | |
H6 | 0.849325 | 0.714886 | 0.375400 | 0.048* | |
C7 | 0.5027 (2) | 0.7429 (2) | 0.36611 (4) | 0.0395 (4) | |
N2 | 0.8896 (2) | 0.6472 (3) | 0.47547 (4) | 0.0649 (5) | |
C14 | 0.6590 (2) | 0.5510 (2) | 0.32215 (4) | 0.0453 (4) | |
H14 | 0.750683 | 0.502873 | 0.334031 | 0.054* | |
C10 | 0.3973 (2) | 0.7415 (2) | 0.31639 (4) | 0.0441 (4) | |
C1 | 0.8784 (2) | 0.6826 (2) | 0.42215 (4) | 0.0415 (4) | |
C4 | 0.5157 (2) | 0.6949 (3) | 0.42314 (4) | 0.0480 (4) | |
H4 | 0.393193 | 0.698955 | 0.422964 | 0.058* | |
C2 | 0.7846 (2) | 0.6662 (3) | 0.45063 (4) | 0.0476 (4) | |
C3 | 0.5985 (2) | 0.6722 (3) | 0.45054 (4) | 0.0543 (5) | |
H3 | 0.534867 | 0.660972 | 0.468820 | 0.065* | |
C13 | 0.6439 (3) | 0.5037 (3) | 0.29140 (4) | 0.0567 (5) | |
H13 | 0.725749 | 0.422248 | 0.282623 | 0.068* | |
C11 | 0.3836 (3) | 0.6946 (3) | 0.28513 (4) | 0.0547 (5) | |
H11 | 0.293096 | 0.742288 | 0.272936 | 0.066* | |
C8 | 0.3506 (2) | 0.8457 (3) | 0.36445 (4) | 0.0518 (4) | |
H8 | 0.297698 | 0.906861 | 0.381037 | 0.062* | |
C12 | 0.5077 (3) | 0.5761 (3) | 0.27307 (4) | 0.0594 (5) | |
H12 | 0.501492 | 0.542837 | 0.252302 | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0416 (3) | 0.1158 (5) | 0.0479 (3) | −0.0007 (3) | −0.00962 (19) | −0.0036 (3) |
N1 | 0.0354 (7) | 0.0777 (11) | 0.0486 (8) | −0.0024 (7) | −0.0023 (6) | −0.0024 (7) |
N3 | 0.0500 (9) | 0.0557 (9) | 0.0645 (10) | 0.0187 (8) | −0.0130 (7) | 0.0043 (7) |
C9 | 0.0349 (8) | 0.0340 (7) | 0.0417 (8) | −0.0034 (6) | −0.0024 (6) | 0.0053 (6) |
C5 | 0.0371 (8) | 0.0380 (8) | 0.0399 (8) | −0.0005 (6) | 0.0003 (6) | −0.0026 (6) |
C6 | 0.0363 (8) | 0.0460 (9) | 0.0365 (8) | 0.0000 (7) | 0.0031 (6) | −0.0003 (6) |
C7 | 0.0363 (8) | 0.0375 (8) | 0.0448 (8) | 0.0013 (7) | −0.0009 (6) | 0.0014 (7) |
N2 | 0.0484 (9) | 0.1062 (14) | 0.0401 (8) | 0.0008 (9) | −0.0042 (7) | −0.0029 (8) |
C14 | 0.0431 (9) | 0.0462 (9) | 0.0466 (9) | 0.0039 (7) | −0.0008 (7) | 0.0019 (7) |
C10 | 0.0456 (9) | 0.0373 (8) | 0.0494 (9) | −0.0009 (7) | −0.0065 (7) | 0.0082 (7) |
C1 | 0.0336 (8) | 0.0490 (9) | 0.0421 (8) | −0.0013 (7) | 0.0012 (6) | −0.0035 (7) |
C4 | 0.0323 (8) | 0.0651 (11) | 0.0465 (9) | 0.0003 (8) | 0.0048 (7) | −0.0020 (8) |
C2 | 0.0423 (9) | 0.0634 (11) | 0.0370 (8) | 0.0001 (8) | −0.0005 (7) | −0.0032 (7) |
C3 | 0.0424 (10) | 0.0812 (13) | 0.0393 (9) | −0.0010 (9) | 0.0090 (7) | −0.0006 (8) |
C13 | 0.0638 (12) | 0.0558 (11) | 0.0504 (10) | 0.0032 (9) | 0.0050 (9) | −0.0068 (8) |
C11 | 0.0603 (11) | 0.0553 (10) | 0.0486 (10) | −0.0060 (9) | −0.0165 (8) | 0.0119 (8) |
C8 | 0.0473 (10) | 0.0537 (10) | 0.0543 (10) | 0.0137 (8) | −0.0026 (8) | −0.0043 (8) |
C12 | 0.0739 (13) | 0.0635 (12) | 0.0409 (9) | −0.0103 (11) | −0.0051 (9) | −0.0008 (8) |
S1—N2 | 1.6128 (17) | N2—C2 | 1.344 (2) |
S1—N1 | 1.6136 (16) | C14—C13 | 1.376 (2) |
N1—C1 | 1.348 (2) | C14—H14 | 0.9300 |
N3—C8 | 1.365 (2) | C10—C11 | 1.396 (2) |
N3—C10 | 1.368 (2) | C1—C2 | 1.428 (2) |
N3—H3N | 0.79 (2) | C4—C3 | 1.351 (2) |
C9—C14 | 1.399 (2) | C4—H4 | 0.9300 |
C9—C10 | 1.413 (2) | C2—C3 | 1.413 (3) |
C9—C7 | 1.444 (2) | C3—H3 | 0.9300 |
C5—C6 | 1.367 (2) | C13—C12 | 1.400 (3) |
C5—C4 | 1.438 (2) | C13—H13 | 0.9300 |
C5—C7 | 1.469 (2) | C11—C12 | 1.366 (3) |
C6—C1 | 1.411 (2) | C11—H11 | 0.9300 |
C6—H6 | 0.9300 | C8—H8 | 0.9300 |
C7—C8 | 1.368 (2) | C12—H12 | 0.9300 |
N2—S1—N1 | 101.07 (8) | N1—C1—C6 | 126.36 (15) |
C1—N1—S1 | 106.37 (12) | N1—C1—C2 | 112.81 (15) |
C8—N3—C10 | 109.73 (15) | C6—C1—C2 | 120.82 (15) |
C8—N3—H3N | 123.5 (16) | C3—C4—C5 | 123.18 (16) |
C10—N3—H3N | 126.6 (16) | C3—C4—H4 | 118.4 |
C14—C9—C10 | 118.42 (15) | C5—C4—H4 | 118.4 |
C14—C9—C7 | 134.62 (15) | N2—C2—C3 | 126.70 (17) |
C10—C9—C7 | 106.86 (14) | N2—C2—C1 | 113.72 (16) |
C6—C5—C4 | 119.35 (15) | C3—C2—C1 | 119.58 (15) |
C6—C5—C7 | 122.68 (14) | C4—C3—C2 | 118.11 (16) |
C4—C5—C7 | 117.97 (14) | C4—C3—H3 | 120.9 |
C5—C6—C1 | 118.95 (14) | C2—C3—H3 | 120.9 |
C5—C6—H6 | 120.5 | C14—C13—C12 | 121.24 (18) |
C1—C6—H6 | 120.5 | C14—C13—H13 | 119.4 |
C8—C7—C9 | 106.16 (14) | C12—C13—H13 | 119.4 |
C8—C7—C5 | 125.33 (15) | C12—C11—C10 | 117.74 (17) |
C9—C7—C5 | 128.51 (14) | C12—C11—H11 | 121.1 |
C2—N2—S1 | 106.03 (13) | C10—C11—H11 | 121.1 |
C13—C14—C9 | 119.16 (16) | N3—C8—C7 | 110.01 (16) |
C13—C14—H14 | 120.4 | N3—C8—H8 | 125.0 |
C9—C14—H14 | 120.4 | C7—C8—H8 | 125.0 |
N3—C10—C11 | 130.51 (16) | C11—C12—C13 | 121.26 (17) |
N3—C10—C9 | 107.23 (15) | C11—C12—H12 | 119.4 |
C11—C10—C9 | 122.17 (16) | C13—C12—H12 | 119.4 |
N2—S1—N1—C1 | −0.35 (15) | C5—C6—C1—N1 | −178.66 (17) |
C4—C5—C6—C1 | −1.0 (2) | C5—C6—C1—C2 | 0.5 (2) |
C7—C5—C6—C1 | 177.87 (14) | C6—C5—C4—C3 | 0.8 (3) |
C14—C9—C7—C8 | −175.18 (18) | C7—C5—C4—C3 | −178.16 (17) |
C10—C9—C7—C8 | 0.92 (18) | S1—N2—C2—C3 | −179.70 (18) |
C14—C9—C7—C5 | 4.5 (3) | S1—N2—C2—C1 | −0.2 (2) |
C10—C9—C7—C5 | −179.43 (15) | N1—C1—C2—N2 | −0.1 (2) |
C6—C5—C7—C8 | −143.47 (18) | C6—C1—C2—N2 | −179.37 (16) |
C4—C5—C7—C8 | 35.4 (2) | N1—C1—C2—C3 | 179.49 (18) |
C6—C5—C7—C9 | 36.9 (3) | C6—C1—C2—C3 | 0.2 (3) |
C4—C5—C7—C9 | −144.19 (17) | C5—C4—C3—C2 | 0.0 (3) |
N1—S1—N2—C2 | 0.31 (16) | N2—C2—C3—C4 | 179.05 (19) |
C10—C9—C14—C13 | 0.2 (2) | C1—C2—C3—C4 | −0.4 (3) |
C7—C9—C14—C13 | 175.93 (18) | C9—C14—C13—C12 | 0.6 (3) |
C8—N3—C10—C11 | 176.87 (18) | N3—C10—C11—C12 | −175.41 (19) |
C8—N3—C10—C9 | 0.3 (2) | C9—C10—C11—C12 | 0.7 (3) |
C14—C9—C10—N3 | 176.06 (14) | C10—N3—C8—C7 | 0.3 (2) |
C7—C9—C10—N3 | −0.78 (18) | C9—C7—C8—N3 | −0.7 (2) |
C14—C9—C10—C11 | −0.8 (2) | C5—C7—C8—N3 | 179.60 (15) |
C7—C9—C10—C11 | −177.65 (15) | C10—C11—C12—C13 | 0.1 (3) |
S1—N1—C1—C6 | 179.53 (14) | C14—C13—C12—C11 | −0.7 (3) |
S1—N1—C1—C2 | 0.27 (19) |
C14H9N3O | Dx = 1.407 Mg m−3 |
Mr = 235.24 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbca | Cell parameters from 1395 reflections |
a = 12.0256 (7) Å | θ = 7.4–66.3° |
b = 7.7396 (5) Å | µ = 0.75 mm−1 |
c = 23.8551 (16) Å | T = 295 K |
V = 2220.3 (2) Å3 | Plate, clear yellow |
Z = 8 | 0.12 × 0.09 × 0.03 mm |
F(000) = 976 |
Xcalibur, Ruby, Gemini ultra diffractometer | 1972 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance Ultra (Cu) X-ray Source | 1275 reflections with I > 2σ(I) |
Detector resolution: 5.1856 pixels mm-1 | Rint = 0.047 |
ω scans | θmax = 67.1°, θmin = 3.7° |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2020) | h = −14→12 |
Tmin = 0.941, Tmax = 0.981 | k = −6→9 |
6883 measured reflections | l = −28→19 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: dual |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: mixed |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0633P)2 + 0.0873P] where P = (Fo2 + 2Fc2)/3 |
1972 reflections | (Δ/σ)max < 0.001 |
166 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Structures were solved by the dual-space method of ShelXT (Sheldrick, 2015a) within Olex2 (Dolomanov et al., 2009). Structures were refined by the least- squares method implemented in SHELXL (Sheldrick, 2015b) within ShelXle (Hübschle et al., 2011). Structures and crystal packings were visualized using Mercury (Macrae et al., 2020). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.26211 (19) | 0.2142 (3) | 0.43917 (8) | 0.0909 (6) | |
N1 | 0.1692 (2) | 0.2567 (3) | 0.46968 (9) | 0.0801 (7) | |
N2 | 0.3589 (2) | 0.2507 (3) | 0.46824 (9) | 0.0822 (7) | |
N3 | 0.52478 (16) | 0.6406 (3) | 0.70573 (9) | 0.0640 (6) | |
H3N | 0.581 (2) | 0.696 (3) | 0.7137 (11) | 0.077* | |
C1 | 0.2075 (2) | 0.3199 (3) | 0.51701 (10) | 0.0629 (6) | |
C2 | 0.3259 (2) | 0.3161 (3) | 0.51611 (10) | 0.0616 (6) | |
C3 | 0.3883 (2) | 0.3735 (3) | 0.56268 (10) | 0.0610 (6) | |
H3A | 0.465597 | 0.368956 | 0.562224 | 0.073* | |
C4 | 0.33330 (18) | 0.4356 (3) | 0.60815 (9) | 0.0520 (6) | |
C5 | 0.21290 (18) | 0.4396 (3) | 0.60788 (10) | 0.0566 (6) | |
H5 | 0.176549 | 0.482253 | 0.639392 | 0.068* | |
C6 | 0.1509 (2) | 0.3849 (3) | 0.56443 (10) | 0.0658 (7) | |
H6 | 0.073675 | 0.389643 | 0.565567 | 0.079* | |
C7 | 0.39274 (17) | 0.5038 (3) | 0.65679 (9) | 0.0506 (5) | |
C8 | 0.49217 (18) | 0.5924 (3) | 0.65382 (10) | 0.0610 (6) | |
H8 | 0.530990 | 0.615615 | 0.620952 | 0.073* | |
C9 | 0.36413 (16) | 0.4987 (2) | 0.71516 (9) | 0.0473 (5) | |
C10 | 0.44927 (17) | 0.5855 (3) | 0.74484 (10) | 0.0513 (6) | |
C11 | 0.4497 (2) | 0.6039 (3) | 0.80242 (11) | 0.0624 (6) | |
H11 | 0.506433 | 0.663393 | 0.820582 | 0.075* | |
C12 | 0.3635 (2) | 0.5313 (3) | 0.83195 (11) | 0.0654 (7) | |
H12 | 0.361933 | 0.541208 | 0.870791 | 0.078* | |
C13 | 0.27815 (19) | 0.4427 (3) | 0.80449 (11) | 0.0606 (6) | |
H13 | 0.220822 | 0.394500 | 0.825468 | 0.073* | |
C14 | 0.27709 (17) | 0.4252 (3) | 0.74691 (10) | 0.0527 (5) | |
H14 | 0.219735 | 0.365798 | 0.729246 | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1045 (15) | 0.1109 (16) | 0.0571 (10) | −0.0033 (12) | −0.0023 (11) | −0.0055 (10) |
N1 | 0.0843 (15) | 0.0991 (17) | 0.0569 (14) | −0.0107 (13) | −0.0056 (13) | 0.0038 (12) |
N2 | 0.0843 (16) | 0.1040 (17) | 0.0582 (14) | 0.0035 (13) | 0.0010 (12) | −0.0021 (12) |
N3 | 0.0455 (10) | 0.0674 (13) | 0.0791 (15) | −0.0127 (9) | −0.0027 (10) | 0.0060 (11) |
C1 | 0.0670 (15) | 0.0709 (15) | 0.0507 (15) | −0.0074 (12) | −0.0041 (12) | 0.0099 (12) |
C2 | 0.0682 (15) | 0.0693 (15) | 0.0473 (14) | 0.0029 (12) | 0.0075 (12) | 0.0066 (12) |
C3 | 0.0510 (13) | 0.0737 (15) | 0.0585 (15) | 0.0027 (12) | 0.0037 (12) | 0.0057 (12) |
C4 | 0.0474 (11) | 0.0533 (12) | 0.0552 (13) | −0.0006 (10) | 0.0027 (11) | 0.0089 (11) |
C5 | 0.0466 (12) | 0.0683 (14) | 0.0547 (14) | 0.0018 (11) | 0.0013 (11) | 0.0035 (11) |
C6 | 0.0506 (13) | 0.0811 (17) | 0.0655 (16) | −0.0038 (12) | −0.0020 (12) | 0.0079 (13) |
C7 | 0.0437 (11) | 0.0512 (11) | 0.0570 (14) | 0.0000 (10) | −0.0030 (10) | 0.0048 (11) |
C8 | 0.0485 (12) | 0.0708 (14) | 0.0636 (15) | −0.0056 (11) | 0.0031 (11) | 0.0118 (12) |
C9 | 0.0414 (10) | 0.0439 (10) | 0.0567 (13) | 0.0029 (9) | 0.0002 (10) | 0.0028 (10) |
C10 | 0.0440 (11) | 0.0474 (12) | 0.0626 (15) | 0.0012 (10) | −0.0038 (11) | 0.0010 (11) |
C11 | 0.0602 (14) | 0.0566 (13) | 0.0704 (16) | 0.0025 (12) | −0.0105 (13) | −0.0099 (12) |
C12 | 0.0720 (16) | 0.0630 (15) | 0.0613 (15) | 0.0119 (13) | 0.0023 (13) | −0.0066 (12) |
C13 | 0.0551 (13) | 0.0618 (14) | 0.0648 (15) | 0.0076 (11) | 0.0122 (12) | 0.0040 (12) |
C14 | 0.0424 (11) | 0.0514 (12) | 0.0642 (14) | 0.0018 (10) | 0.0023 (11) | 0.0031 (11) |
O1—N1 | 1.373 (3) | C5—H5 | 0.9300 |
O1—N2 | 1.384 (3) | C6—H6 | 0.9300 |
N1—C1 | 1.314 (3) | C7—C8 | 1.380 (3) |
N2—C2 | 1.310 (3) | C7—C9 | 1.435 (3) |
N3—C8 | 1.351 (3) | C8—H8 | 0.9300 |
N3—C10 | 1.370 (3) | C9—C14 | 1.411 (3) |
N3—H3N | 0.83 (3) | C9—C10 | 1.415 (3) |
C1—C6 | 1.413 (3) | C10—C11 | 1.381 (3) |
C1—C2 | 1.424 (4) | C11—C12 | 1.374 (3) |
C2—C3 | 1.413 (3) | C11—H11 | 0.9300 |
C3—C4 | 1.358 (3) | C12—C13 | 1.397 (4) |
C3—H3A | 0.9300 | C12—H12 | 0.9300 |
C4—C5 | 1.448 (3) | C13—C14 | 1.380 (3) |
C4—C7 | 1.461 (3) | C13—H13 | 0.9300 |
C5—C6 | 1.345 (3) | C14—H14 | 0.9300 |
N1—O1—N2 | 111.69 (18) | C8—C7—C9 | 105.7 (2) |
C1—N1—O1 | 105.1 (2) | C8—C7—C4 | 124.2 (2) |
C2—N2—O1 | 105.1 (2) | C9—C7—C4 | 130.03 (19) |
C8—N3—C10 | 110.23 (19) | N3—C8—C7 | 110.0 (2) |
C8—N3—H3N | 126.4 (19) | N3—C8—H8 | 125.0 |
C10—N3—H3N | 123.3 (19) | C7—C8—H8 | 125.0 |
N1—C1—C6 | 130.7 (2) | C14—C9—C10 | 117.4 (2) |
N1—C1—C2 | 109.2 (2) | C14—C9—C7 | 135.2 (2) |
C6—C1—C2 | 120.1 (2) | C10—C9—C7 | 107.39 (18) |
N2—C2—C3 | 130.2 (2) | N3—C10—C11 | 130.0 (2) |
N2—C2—C1 | 108.9 (2) | N3—C10—C9 | 106.7 (2) |
C3—C2—C1 | 120.8 (2) | C11—C10—C9 | 123.3 (2) |
C4—C3—C2 | 118.7 (2) | C12—C11—C10 | 117.7 (2) |
C4—C3—H3A | 120.6 | C12—C11—H11 | 121.1 |
C2—C3—H3A | 120.6 | C10—C11—H11 | 121.1 |
C3—C4—C5 | 119.4 (2) | C11—C12—C13 | 121.0 (2) |
C3—C4—C7 | 121.6 (2) | C11—C12—H12 | 119.5 |
C5—C4—C7 | 119.0 (2) | C13—C12—H12 | 119.5 |
C6—C5—C4 | 123.4 (2) | C14—C13—C12 | 121.4 (2) |
C6—C5—H5 | 118.3 | C14—C13—H13 | 119.3 |
C4—C5—H5 | 118.3 | C12—C13—H13 | 119.3 |
C5—C6—C1 | 117.5 (2) | C13—C14—C9 | 119.2 (2) |
C5—C6—H6 | 121.2 | C13—C14—H14 | 120.4 |
C1—C6—H6 | 121.2 | C9—C14—H14 | 120.4 |
N2—O1—N1—C1 | 0.4 (3) | C5—C4—C7—C9 | 35.3 (3) |
N1—O1—N2—C2 | −0.4 (3) | C10—N3—C8—C7 | 0.3 (3) |
O1—N1—C1—C6 | 179.9 (3) | C9—C7—C8—N3 | −0.1 (2) |
O1—N1—C1—C2 | −0.3 (3) | C4—C7—C8—N3 | 179.06 (19) |
O1—N2—C2—C3 | 178.7 (2) | C8—C7—C9—C14 | −177.6 (2) |
O1—N2—C2—C1 | 0.2 (3) | C4—C7—C9—C14 | 3.3 (4) |
N1—C1—C2—N2 | 0.0 (3) | C8—C7—C9—C10 | −0.1 (2) |
C6—C1—C2—N2 | 179.9 (2) | C4—C7—C9—C10 | −179.2 (2) |
N1—C1—C2—C3 | −178.6 (2) | C8—N3—C10—C11 | 179.1 (2) |
C6—C1—C2—C3 | 1.2 (3) | C8—N3—C10—C9 | −0.4 (2) |
N2—C2—C3—C4 | −179.5 (3) | C14—C9—C10—N3 | 178.34 (18) |
C1—C2—C3—C4 | −1.1 (3) | C7—C9—C10—N3 | 0.3 (2) |
C2—C3—C4—C5 | 0.6 (3) | C14—C9—C10—C11 | −1.2 (3) |
C2—C3—C4—C7 | −177.4 (2) | C7—C9—C10—C11 | −179.3 (2) |
C3—C4—C5—C6 | −0.1 (3) | N3—C10—C11—C12 | −178.4 (2) |
C7—C4—C5—C6 | 177.9 (2) | C9—C10—C11—C12 | 1.0 (3) |
C4—C5—C6—C1 | 0.2 (3) | C10—C11—C12—C13 | −0.3 (3) |
N1—C1—C6—C5 | 179.0 (3) | C11—C12—C13—C14 | −0.1 (3) |
C2—C1—C6—C5 | −0.8 (3) | C12—C13—C14—C9 | −0.1 (3) |
C3—C4—C7—C8 | 34.3 (3) | C10—C9—C14—C13 | 0.7 (3) |
C5—C4—C7—C8 | −143.6 (2) | C7—C9—C14—C13 | 178.0 (2) |
C3—C4—C7—C9 | −146.7 (2) |
CCDC refcode | Se label | Atoms of the π system | Se···centroid distance | N—Se···centroid angle |
QIBQUQa | Se1 | C18–C23 | 3.3676 (7) | 147.08 (4) |
QIBQUQa | Se1 | C12–C17 | 3.0597 (8) | 172.30 (5) |
VOPMEVb | Se1 | C5/C7/C10/C5B/C7B/C10B | 3.8142 (3) | 163.56 (4) |
VOPNASc | Se1 | C1–C5/C10 | 3.802 (2) | 162.5 (1) |
VOPNASc | Se2 | C1–C5/C10 | 3.654 (2) | 166.5 (1) |
YIWLOGd | Se5 | C10–C15 | 4.032 (3) | 144.6 (2) |
YIWLOGd | Se6 | C34–C39 | 4.232 (4) | 164.3 (4) |
Notes: (a) Lee et al. (2018); (b) Lee et al., 2019); (c) Lee et al., 2019); (d) Tan et al. (2008). |
Funding information
This research used resources of the `Plateforme Technologique de Calcul Intensif (PTCI)' (https://www.ptci.unamur.be), located at the University of Namur, Belgium, which is supported by the FNRS–FRFC, the Walloon Region, and the University of Namur (Conventions Nos. 2.5020.11, GEQU·G006.15, 1610468, and RW/GEQ2016). The PTCI is a member of the `Consortium des Equipements de Calcul Intensif (CÉCI)` (https://www.ceci-hpc.be). This work is supported by the Belgian Fonds National de la Recherche Scientifique (FRS–FNRS; grant Nos. 3.05557.43, 28252254 and 32704190), the French Community of Belgium (ARC 21/26–115), the Fonds spéciaux de recherche (FSR) at UCLouvain, and a J. Maisin Foundation grant. AK and MM acknowledge the Fonds de la Recherche Scientifique (FRS–FNRS, Belgium) for their Research Fellow grants.
References
Aakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P. & Resnati, G. (2019). Pure Appl. Chem. 91, 1889–1892. Web of Science CrossRef CAS Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burling, F. T. & Goldstein, B. M. (1992). J. Am. Chem. Soc. 114, 2313–2320. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian16a. Gaussian, Inc., Wallingford, CT, USA. Google Scholar
GraphPad (2021). GraphPad. GraphPad Software, San Diego, California USA, www. graphpad. com Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Iwaoka, M. & Babe, N. (2015). Phosphorus Sulfur Silicon, 190, 1257–1264. CrossRef CAS Google Scholar
Iwaoka, M., Takemoto, S., Okada, M. & Tomoda, S. (2001). Chem. Lett. 30, 132–133. Web of Science CrossRef Google Scholar
Kozlova, A., Thabault, L., Dauguet, N., Deskeuvre, M., Stroobant, V., Pilotte, L. & Frédérick, R. (2021a). Eur. J. Med. Chem. 227, 113892. https://doi.org/10.1016/j.ejmech.2021.113892 Google Scholar
Kozlova, A., Thabault, L., Liberelle, M., Klaessens, S., Prévost, J. R., Mathieu, C., Pilotte, L., Stroobant, V., Van den Eynde, B. & Frédérick, R. (2021b). J. Med. Chem. 64, 10967–10980. CrossRef CAS PubMed Google Scholar
Kříž, K., Fanfrlík, J. & Lepšík, M. (2018). ChemPhysChem, 19, 2540–2548. PubMed Google Scholar
Lee, J., Lee, L. M., Arnott, Z., Jenkins, H., Britten, J. F. & Vargas-Baca, I. (2018). New J. Chem. 42, 10555–10562. CSD CrossRef CAS Google Scholar
Lee, L. M., Corless, V., Luu, H., He, A., Jenkins, H., Britten, J. F., Adam Pani, F. & Vargas-Baca, I. (2019). Dalton Trans. 48, 12541–12548. CSD CrossRef CAS PubMed Google Scholar
Liegeois, V. (2021). DrawMol. University of Namur, Belgium. www. unamur. be/drawmol Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Newberry, R. W. & Raines, R. T. (2019). Chem. Biol. 14, 1677–1686. CAS Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tan, C. K., Wang, J., Leng, J. D., Zheng, L. L. & Tong, M. L. (2008). Eur. J. Inorg. Chem. pp. 771–778. CSD CrossRef Google Scholar
Vogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed. 58, 1880–1891. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.