research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(2,5-di­meth­­oxy­phen­yl)benzo[d]thia­zole

crossmark logo

aChemistry Department, Faculty of Science, Cairo University, Giza, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 18 March 2022; accepted 23 March 2022; online 31 March 2022)

The title compound, C15H13NO2S, was synthesized efficiently in the solid state by exploiting pepsin catalysis. The ring systems are nearly coplanar [inter­planar angle of 5.38 (2)°] with an associated intra­molecular S⋯O=C short contact of 2.7082 (4) Å. The packing involves C—H⋯O, C—H⋯π and ππ contacts.

1. Chemical context

Although countless synthetic methods are widely available, new and more efficient procedures or approaches are always needed. Enzymes, as `green' catalysts for modern organic synthesis, have attracted increased attention because they may provide alternative and sustainable processes, thus helping to minimize the release of haza­rdous substances into the environment (Witayakran & Ragauskas, 2009[Witayakran, S. & Ragauskas, A. J. (2009). Adv. Synth. Catal. 351, 1187-1209.]). Pepsin, a kind of hydro­lase, belongs to the family of aspartic acid proteases and is involved in chemical digestion of protein (Cooper et al., 1990[Cooper, J. B., Khan, G., Taylor, G., Tickle, I. J. & Blundell, T. L. (1990). J. Mol. Biol. 214, 199-222.]; Lin et al., 1989[Lin, X. L., Wong, R. N. & Tang, J. (1989). J. Biol. Chem. 264, 4482-4489.]). Pepsin-catalysed aldol (and other) reactions have been developed (Li et al., 2010[Li, C., Zhou, Y. J., Wang, N., Feng, X. W., Li, K. & Yu, X. Q. (2010). J. Biotechnol. 150, 539-545.]; He et al., 2016[He, Y. H., He, T., Guo, J. T., Li, R., Xiang, Y., Yang, D. C. & Guan, Z. (2016). Catal. Sci. Technol. 6, 2239-2248.]; Zongbo et al., 2017[Zongbo, X., Shiguo, Z., Guofang, J., Meng, L. & Zhanggao, L. (2017). Chin. J. Org. Chem. 37, 514-519.]).

2-Aryl-benzo­thia­zoles are a class of nitro­gen-containing heterocyclic compounds that can be found in a variety of natural and synthetic compounds. In view of their biological and pharmacological characteristics, we are inter­ested in developing synthetic strategies for heterocyclic ring systems containing a benzo­thia­zole moiety; these have shown significant biological activity as novel anti­viral and anti­microbial agents. (Azzam et al. 2017a[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820-1822.],b[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041-1043.], 2020a[Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023-30036.],b[Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182-26194.],c[Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640-1655.], 2021[Azzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891-894.]; Elgemeie et al., 2000a[Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon Relat. Elem. 165, 265-272.],b[Elgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363-268.], 2020[Elgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020). Inorg. Chim. Acta, 502, 119302.]). The conventional synthesis of 2-aryl-benzo­thia­zoles, which involves heating a mixture containing 2-amino­thio­phenol (1), is disadvantageous because 1 is extremely unstable in air and highly toxic. In a continuation of our recent research in developing `green' and simple syntheses of novel heterocyclic compounds (Metwally et al., 2020[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2020). Acta Cryst. E76, 481-483.], 2021a[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021a). Acta Cryst. E77, 615-617.],b[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021b). Acta Cryst. E77, 1054-1057.]), we have now synthesized 2-(2,5-di­meth­oxy­phen­yl)benzo[d]thia­zole (3) using pepsin as the `green' catalytic reaction. Thus, a mixture of 1 and 2,5-di­meth­oxy­benzaldehyde 2 was ground in a mortar with 0.05 g pepsin for 10 minutes, providing the desired product 3 in 97% yield. The nature of compound 3 was confirmed by spectroscopic analysis and by the single-crystal X-ray structure reported here.

2. Structural commentary

The structure of 3 is shown in Fig. 1[link]. Mol­ecular dimensions may be regarded as normal; a brief selection is presented in Table 1[link]. Both ring systems are effectively planar (r.m.s. values of 0.01 Å for the benzo­thia­zole and 0.004 Å for the phenyl ring, respectively), with an inter­planar angle of 5.38 (2)°. The approximate coplanarity leads to the short intra­molecular contacts S1⋯O1 = 2.7082 (4) and H16⋯N3 = 2.48 Å; the C16—H16⋯N3 angle is 101°.

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

S1—C7A 1.7327 (6) N3—C3A 1.3820 (7)
S1—C2 1.7642 (5) C3A—C7A 1.4082 (8)
C2—N3 1.3064 (7)    
       
C7A—S1—C2 89.40 (3) N3—C3A—C7A 115.25 (5)
N3—C2—S1 114.72 (4) C3A—C7A—S1 109.23 (4)
C2—N3—C3A 111.39 (5)    
[Figure 1]
Figure 1
The mol­ecule of 3 in the crystal. Ellipsoids represent 50% probability levels.

3. Supra­molecular features

There are no markedly short inter­molecular contacts. One borderline `weak' C—H⋯O hydrogen bond can be identified (Table 2[link]), which links mol­ecules via the c-glide operator x, −y + [{1\over 2}], z − [{1\over 2}]. This is reinforced by a C—H⋯π contact from H14 to the centroid of the phenyl ring (H14⋯Cg = 2.67 Å, C14—H14⋯Cg = 138°; Cg is the centroid of the C11–C16 ring). Additionally, the mol­ecules are linked in pairs, related by c-axis translation, in which the benzo­thia­zole ring system of one mol­ecule lies opposite the phenyl ring of the other; the inter­centroid distances are 3.5651 (3) Å for benzo⋯phenyl, and 3.6022 (3) Å for thia­zole⋯phenyl (phenyl operator x, y, −1 + z). The net effect is to form a somewhat flattened herringbone pattern parallel to the c axis (Fig. 2[link]; the ππ inter­actions are not shown explicitly). The contact C18—H18C⋯N3 (Table 2[link]), involving a methyl group, connects the chains in the third dimension via the operator −x + 1, −y + 1, −z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.95 2.65 3.5113 (7) 151
C18—H18C⋯N3ii 0.98 2.60 3.4867 (8) 151
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z].
[Figure 2]
Figure 2
Crystal packing of 3, viewed perpendicular to (100) in the region x ≃ 0.25. Dashed lines indicate `weak' C—H⋯O hydrogen bonds or C—H⋯π contacts. Atom labels correspond to the asymmetric unit.

4. Database survey

A search of the Cambridge Database (Version 2021.3.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave four hits for purely organic, neutral species in which one benzo[d]thia­zole is bonded at its 2-position to an aromatic C6 ring with oxygen substituents at the ortho (2-) and meta (5-) positions. These were CEFWOB [Yousuf et al., 2012[Yousuf, S., Shah, S., Ambreen, N., Khan, K. M. & Ahmad, S. (2012). Acta Cryst. E68, o2877.]; 2-hy­droxy, 5-meth­oxy; no S⋯O contact because of an intra­molecular O—H⋯N hydrogen bond; inter­planar angle 1.23 (9)°]; NOYSOM [Wang et al., 2019[Wang, R., Ding, J., Wang, Y. & Zhang, Y. (2019). Chem. Asian J. 14, 3883-3892.]; 2,5-dimeth­oxy with an additional 4-(2-pyrid­yl) substituent; two independent mol­ecules; S⋯O = 2.650, 2.715 Å; inter­planar angles of 6.0, 5.5°]; UFAHUF [Chen, 2007[Chen, L.-Q. (2007). Acta Cryst. E63, o3395.]; 2,4,5-trimeth­oxy; S⋯O = 2.671 Å, inter­planar angle of 4.5 (2)°] and WACPUO (Sakai et al., 2016[Sakai, K., Tsuchiya, S., Kikuchi, T. & Akutagawa, T. (2016). J. Mater. Chem. C. 4, 2011-2016.]; 2-hy­droxy, 5-meth­oxy with an additional 3-imidazole substituent; S⋯O = 2.695 Å, inter­planar angle of 1.6°). Where not given in the original publications, these values were calculated using the CCDC program Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

5. Synthesis and crystallization

A mixture of o-amino­thio­phenol 1 (0.01 mol), 2,5-di­meth­oxy­benzaldehyde 2 (0.01 mol) and pepsin (0.05 g) was ground together at room temperature for 10 min. The viscous mixture was poured onto ice–water; the solid that formed was filtered off and recrystallized from ethanol to give pale-yellow crystals of 3 in 97% yield, m.p. 414 K; IR (KBr, cm−1): νmax 1581 (C=N); 1H NMR (DMSO-d6): δ = 3.82 (s, 3H, OCH3), 4.0 (s, 3H, OCH3), 7.13–7.15 (m, 1H, Ar), 7.22 (d, 1H, J = 8.8 Hz, Ar), 7.41 (t, 1H, J = 7.6 Hz, Ar), 7.51 (t, 1H, J = 7.6 Hz, Ar), 7.96 (s, 1H, Ar), 8.07 (dd, 2H, J = 8.0 Hz, Ar), 13C NMR (DMSO-d6): δ = 56.0, 57.0, 112.5, 114.7, 119.1, 122.1, 122.2, 122.9, 125.4, 126.7, 136.0, 151.9, 153.8, 154.4, 162.3; m/z = 271 (M+, 100%), 238 (61.4%), 185 (27.6%), 136 (79.0%); Analysis: calculated for C15H13NO2S (271.33) C 66.40, H 4.83, N 5.16, S 11.82%; found C 66.58, H 4.65, N 5.39, S 11.68%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Methyl groups were refined as idealized rigid groups allowed to rotate but not tip (AFIX 137), with C—H = 0.98 Å, H—C—H = 109.5°. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95 Å). The U(H) values were fixed at 1.5 or 1.2 × Ueq of the parent carbon atoms for methyl and aromatic hydrogens, respectively.

Table 3
Experimental details

Crystal data
Chemical formula C15H13NO2S
Mr 271.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 14.6666 (2), 13.8922 (2), 6.26063 (10)
β (°) 100.1273 (14)
V3) 1255.74 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.22 × 0.22 × 0.15
 
Data collection
Diffractometer XtaLAB Synergy, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England])
Tmin, Tmax 0.927, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 123768, 6759, 6156
Rint 0.023
(sin θ/λ)max−1) 0.871
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.084, 1.04
No. of reflections 6759
No. of parameters 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.62, −0.19
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

2-(2,5-Dimethoxyphenyl)benzo[d]thiazole top
Crystal data top
C15H13NO2SF(000) = 568
Mr = 271.32Dx = 1.435 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.6666 (2) ÅCell parameters from 88513 reflections
b = 13.8922 (2) Åθ = 2.8–38.4°
c = 6.26063 (10) ŵ = 0.25 mm1
β = 100.1273 (14)°T = 100 K
V = 1255.74 (3) Å3Block, colourless
Z = 40.22 × 0.22 × 0.15 mm
Data collection top
XtaLAB Synergy, HyPix
diffractometer
6759 independent reflections
Radiation source: micro-focus sealed X-ray tube6156 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.023
ω scansθmax = 38.3°, θmin = 2.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 2425
Tmin = 0.927, Tmax = 1.000k = 2323
123768 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.2455P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6759 reflectionsΔρmax = 0.62 e Å3
174 parametersΔρmin = 0.19 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 0.2606 (0.0025) x + 11.3686 (0.0009) y - 3.5208 (0.0006) z = 4.3561 (0.0009)

* -0.0113 (0.0003) S1 * 0.0122 (0.0004) C2 * 0.0073 (0.0004) N3 * -0.0022 (0.0005) C3A * -0.0178 (0.0004) C4 * 0.0029 (0.0005) C5 * 0.0151 (0.0005) C6 * -0.0033 (0.0005) C7 * -0.0029 (0.0005) C7A

Rms deviation of fitted atoms = 0.0101

- 1.6150 (0.0031) x + 11.4261 (0.0017) y - 3.3180 (0.0011) z = 4.1087 (0.0012)

Angle to previous plane (with approximate esd) = 5.381 ( 0.023 )

* -0.0035 (0.0003) C11 * 0.0058 (0.0004) C12 * -0.0025 (0.0004) C13 * -0.0031 (0.0004) C14 * 0.0054 (0.0004) C15 * -0.0020 (0.0004) C16 -0.0003 (0.0008) O1 0.0801 (0.0011) C17 0.0285 (0.0008) O2 0.1636 (0.0010) C18

Rms deviation of fitted atoms = 0.0040

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13465 (2)0.49165 (2)0.34350 (2)0.01451 (4)
C20.24674 (4)0.47726 (4)0.28209 (8)0.01188 (8)
N30.31247 (3)0.52002 (3)0.41668 (7)0.01347 (7)
C3A0.27752 (4)0.56826 (4)0.57771 (8)0.01360 (8)
C40.33134 (4)0.62033 (4)0.74630 (9)0.01695 (9)
H40.3967550.6234860.7585370.020*
C50.28692 (5)0.66707 (4)0.89466 (9)0.01963 (10)
H50.3223340.7035771.0082190.024*
C60.19042 (5)0.66133 (5)0.87976 (10)0.02095 (11)
H60.1616500.6944720.9828620.025*
C70.13610 (5)0.60805 (4)0.71696 (10)0.01924 (10)
H70.0710020.6030420.7091290.023*
C7A0.18087 (4)0.56196 (4)0.56475 (9)0.01468 (8)
C110.26660 (3)0.42388 (3)0.09270 (8)0.01131 (7)
C120.19879 (3)0.37320 (4)0.05164 (8)0.01179 (8)
C130.22303 (4)0.32478 (4)0.22766 (8)0.01295 (8)
H130.1771140.2900660.3232430.016*
C140.31402 (4)0.32648 (4)0.26592 (8)0.01283 (8)
H140.3299030.2931200.3866740.015*
C150.38132 (3)0.37743 (4)0.12577 (8)0.01215 (8)
C160.35765 (4)0.42522 (4)0.05254 (8)0.01240 (8)
H160.4040040.4592480.1484230.015*
O10.11061 (3)0.37347 (3)0.00594 (7)0.01587 (7)
C170.04056 (4)0.32676 (5)0.15693 (10)0.01998 (10)
H17A0.0366450.3566480.3000500.030*
H17B0.0191530.3330710.1084530.030*
H17C0.0560050.2584300.1661860.030*
O20.47191 (3)0.38509 (3)0.15047 (7)0.01691 (8)
C180.49545 (4)0.34434 (5)0.34295 (10)0.01952 (10)
H18A0.4549020.3711390.4702030.029*
H18B0.4875540.2743290.3404650.029*
H18C0.5600670.3595960.3503010.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01415 (6)0.01602 (6)0.01373 (6)0.00148 (4)0.00352 (4)0.00175 (4)
C20.01436 (18)0.01083 (17)0.01076 (17)0.00014 (14)0.00307 (14)0.00011 (13)
N30.01641 (18)0.01302 (17)0.01139 (16)0.00157 (13)0.00354 (13)0.00175 (13)
C3A0.0193 (2)0.01086 (18)0.01120 (17)0.00042 (15)0.00426 (15)0.00038 (14)
C40.0236 (2)0.0142 (2)0.01336 (19)0.00312 (17)0.00403 (17)0.00254 (15)
C50.0314 (3)0.0140 (2)0.0142 (2)0.00201 (19)0.00606 (19)0.00317 (16)
C60.0321 (3)0.0161 (2)0.0167 (2)0.0025 (2)0.0097 (2)0.00306 (17)
C70.0239 (2)0.0180 (2)0.0176 (2)0.00356 (19)0.00846 (19)0.00219 (18)
C7A0.0190 (2)0.01267 (19)0.01312 (18)0.00175 (15)0.00489 (15)0.00059 (15)
C110.01340 (17)0.01037 (17)0.01029 (16)0.00010 (13)0.00241 (13)0.00034 (13)
C120.01206 (17)0.01134 (18)0.01187 (17)0.00064 (13)0.00182 (14)0.00025 (13)
C130.01318 (18)0.01267 (18)0.01268 (18)0.00015 (14)0.00138 (14)0.00222 (14)
C140.01418 (18)0.01223 (18)0.01217 (18)0.00012 (14)0.00257 (14)0.00183 (14)
C150.01276 (18)0.01177 (18)0.01232 (17)0.00073 (14)0.00333 (14)0.00073 (14)
C160.01365 (18)0.01212 (18)0.01161 (17)0.00128 (14)0.00273 (14)0.00118 (14)
O10.01170 (15)0.01927 (18)0.01672 (16)0.00048 (12)0.00270 (12)0.00411 (13)
C170.01240 (19)0.0272 (3)0.0192 (2)0.00078 (18)0.00011 (17)0.0035 (2)
O20.01379 (16)0.02132 (19)0.01681 (17)0.00358 (13)0.00599 (13)0.00600 (14)
C180.0175 (2)0.0238 (3)0.0190 (2)0.00194 (19)0.00813 (18)0.00580 (19)
Geometric parameters (Å, º) top
S1—C7A1.7327 (6)C15—O21.3686 (6)
S1—C21.7642 (5)C15—C161.3941 (7)
C2—N31.3064 (7)O1—C171.4243 (7)
C2—C111.4704 (7)O2—C181.4276 (7)
N3—C3A1.3820 (7)C4—H40.9500
C3A—C41.4027 (8)C5—H50.9500
C3A—C7A1.4082 (8)C6—H60.9500
C4—C51.3862 (8)C7—H70.9500
C5—C61.4043 (10)C13—H130.9500
C6—C71.3912 (9)C14—H140.9500
C7—C7A1.4032 (8)C16—H160.9500
C11—C161.4017 (7)C17—H17A0.9800
C11—C121.4091 (7)C17—H17B0.9800
C12—O11.3728 (6)C17—H17C0.9800
C12—C131.3896 (7)C18—H18A0.9800
C13—C141.3969 (7)C18—H18B0.9800
C14—C151.3930 (7)C18—H18C0.9800
C7A—S1—C289.40 (3)C15—O2—C18116.63 (4)
N3—C2—C11121.40 (5)C5—C4—H4120.7
N3—C2—S1114.72 (4)C3A—C4—H4120.7
C11—C2—S1123.86 (4)C4—C5—H5119.5
C2—N3—C3A111.39 (5)C6—C5—H5119.5
N3—C3A—C4124.55 (5)C7—C6—H6119.4
N3—C3A—C7A115.25 (5)C5—C6—H6119.4
C4—C3A—C7A120.20 (5)C6—C7—H7121.2
C5—C4—C3A118.50 (6)C7A—C7—H7121.2
C4—C5—C6121.05 (6)C12—C13—H13119.6
C7—C6—C5121.30 (5)C14—C13—H13119.6
C6—C7—C7A117.66 (6)C15—C14—H14120.2
C7—C7A—C3A121.26 (5)C13—C14—H14120.2
C7—C7A—S1129.51 (5)C15—C16—H16119.5
C3A—C7A—S1109.23 (4)C11—C16—H16119.5
C16—C11—C12118.61 (4)O1—C17—H17A109.5
C16—C11—C2117.91 (4)O1—C17—H17B109.5
C12—C11—C2123.47 (4)H17A—C17—H17B109.5
O1—C12—C13123.26 (5)O1—C17—H17C109.5
O1—C12—C11116.71 (4)H17A—C17—H17C109.5
C13—C12—C11120.02 (5)H17B—C17—H17C109.5
C12—C13—C14120.88 (5)O2—C18—H18A109.5
C15—C14—C13119.54 (5)O2—C18—H18B109.5
O2—C15—C14124.24 (5)H18A—C18—H18B109.5
O2—C15—C16115.90 (4)O2—C18—H18C109.5
C14—C15—C16119.85 (5)H18A—C18—H18C109.5
C15—C16—C11121.10 (5)H18B—C18—H18C109.5
C12—O1—C17117.16 (4)
C7A—S1—C2—N30.85 (4)S1—C2—C11—C16174.46 (4)
C7A—S1—C2—C11177.67 (4)N3—C2—C11—C12177.18 (5)
C11—C2—N3—C3A177.97 (4)S1—C2—C11—C124.38 (7)
S1—C2—N3—C3A0.60 (6)C16—C11—C12—O1179.80 (5)
C2—N3—C3A—C4179.57 (5)C2—C11—C12—O11.36 (7)
C2—N3—C3A—C7A0.08 (7)C16—C11—C12—C130.89 (7)
N3—C3A—C4—C5178.64 (5)C2—C11—C12—C13179.73 (5)
C7A—C3A—C4—C51.73 (8)O1—C12—C13—C14179.65 (5)
C3A—C4—C5—C61.12 (9)C11—C12—C13—C140.81 (8)
C4—C5—C6—C70.50 (10)C12—C13—C14—C150.03 (8)
C5—C6—C7—C7A1.46 (9)C13—C14—C15—O2178.84 (5)
C6—C7—C7A—C3A0.83 (9)C13—C14—C15—C160.78 (8)
C6—C7—C7A—S1179.51 (5)O2—C15—C16—C11178.96 (5)
N3—C3A—C7A—C7179.57 (5)C14—C15—C16—C110.69 (8)
C4—C3A—C7A—C70.76 (8)C12—C11—C16—C150.14 (7)
N3—C3A—C7A—S10.70 (6)C2—C11—C16—C15179.05 (5)
C4—C3A—C7A—S1178.96 (4)C13—C12—O1—C174.35 (8)
C2—S1—C7A—C7179.48 (6)C11—C12—O1—C17176.78 (5)
C2—S1—C7A—C3A0.82 (4)C14—C15—O2—C185.35 (8)
N3—C2—C11—C163.97 (7)C16—C15—O2—C18174.28 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.653.5113 (7)151
C18—H18C···N3ii0.982.603.4867 (8)151
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAzzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891–894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChen, L.-Q. (2007). Acta Cryst. E63, o3395.  CrossRef IUCr Journals Google Scholar
First citationCooper, J. B., Khan, G., Taylor, G., Tickle, I. J. & Blundell, T. L. (1990). J. Mol. Biol. 214, 199–222.  CrossRef CAS PubMed Web of Science Google Scholar
First citationElgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020). Inorg. Chim. Acta, 502, 119302.  Web of Science CrossRef Google Scholar
First citationElgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon Relat. Elem. 165, 265–272.  CrossRef CAS Google Scholar
First citationElgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363–268.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, Y. H., He, T., Guo, J. T., Li, R., Xiang, Y., Yang, D. C. & Guan, Z. (2016). Catal. Sci. Technol. 6, 2239–2248.  CrossRef CAS Google Scholar
First citationLi, C., Zhou, Y. J., Wang, N., Feng, X. W., Li, K. & Yu, X. Q. (2010). J. Biotechnol. 150, 539–545.  CrossRef CAS PubMed Google Scholar
First citationLin, X. L., Wong, R. N. & Tang, J. (1989). J. Biol. Chem. 264, 4482–4489.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Jones, P. G. (2020). Acta Cryst. E76, 481–483.  CrossRef IUCr Journals Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021a). Acta Cryst. E77, 615–617.  CrossRef IUCr Journals Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021b). Acta Cryst. E77, 1054–1057.  CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England  Google Scholar
First citationSakai, K., Tsuchiya, S., Kikuchi, T. & Akutagawa, T. (2016). J. Mater. Chem. C. 4, 2011–2016.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationWang, R., Ding, J., Wang, Y. & Zhang, Y. (2019). Chem. Asian J. 14, 3883–3892.  CrossRef CAS PubMed Google Scholar
First citationWitayakran, S. & Ragauskas, A. J. (2009). Adv. Synth. Catal. 351, 1187–1209.  CrossRef CAS Google Scholar
First citationYousuf, S., Shah, S., Ambreen, N., Khan, K. M. & Ahmad, S. (2012). Acta Cryst. E68, o2877.  CrossRef IUCr Journals Google Scholar
First citationZongbo, X., Shiguo, Z., Guofang, J., Meng, L. & Zhanggao, L. (2017). Chin. J. Org. Chem. 37, 514–519.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds