research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 5-(5-phenyl-1,2-oxazol-3-yl)-1,3,4-thia­diazol-2-amine

crossmark logo

aDepartment of Organic Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cLaboratory of the Chemistry of Heterocyclic Compounds, Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13, Surganova Str., 220072, Minsk, Belarus, dN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Av., Moscow, Russian Federation, and eUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 22 March 2022; accepted 27 March 2022; online 31 March 2022)

The title compound, C11H8N4OS, crystallizes with two independent mol­ecules in the asymmetric unit. In the crystal, the N—H⋯N and C—H⋯N hydrogen bonds connect the mol­ecules, generating double layers parallel to the (001) plane. The layers are joined by C—H⋯π inter­actions to form a three-dimensional supra­molecular structure.

1. Chemical context

Compounds with the five-membered isoxazole, iso­thia­zole and 1,3,4-thia­diazole heterocycles possess high potential for biological activity and are privileged scaffolds for the development of pharmaceutical agents (Das & Chanda, 2021[Das, S. & Chanda, K. (2021). RSC Adv. 11, 32680-32705.]; Kletskov et al., 2020[Kletskov, A. V., Bumagin, N. A., Zubkov, F. I., Grudinin, D. G. & Potkin, V. I. (2020). Synthesis, 52, 159-188.]; Khalilullah et al., 2014[Khalilullah, H., Khan, M. U., Mahmood, D., Akhtar, J. & Osman, G. (2014). Int. J. Pharm. Pharm. Sci. 6, 8-15.]; Yadigarov et al., 2009[Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856-1858.]; Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]; Zubkov et al., 2014[Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659-1690.]). In particular, isoxazoles are able to enhance the action of `first-line' anti­tumor substances, which makes it possible to reduce their therapeutic doses and thus reduce toxic side effects (Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Kulchitsky et al., 2012[Kulchitsky, V. A., Potkin, V. I., Zubenko, Y. S., Chernov, A. N., Talabaev, M. V., Demidchik, Y. E., Petkevich, S. K., Kazbanov, V. V., Gurinovich, T. A., Roeva, M. O., Grigoriev, D. G., Kletskov, A. V. & Kalunov, V. N. (2012). Med. Chem. 8, 22-32.]; Naghiyev et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235-2248.]). The combination of the pharmacophore fragments of isoxazole and thia­diazole in one mol­ecule increases the variability of its binding to the key sites of enzymes regulating the biological action. The presence of an amino group additionally increases the biopotential of the mol­ecule, and the introduction of an aromatic fragment makes it possible to implement binding with a biotarget by π-stacking (Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.], 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]; Mahmudov et al., 2011[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159-165.], 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.]; Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22-27.], 2018a[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190-194.],b[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130-136.]). To assess the biological potential of a mol­ecule in silico and the mol­ecular docking procedure, which is widely used for the development of new pharmaceuticals, information about the structures of promising mol­ecules is needed. All this initiated our research on the synthesis of 5-(5-phenyl­isoxazol-3-yl)-1,3,4-thia­diazol-2-amine (1) and the further determination of the accurate structure of its mol­ecule. The synthesis and structure of the compound has not published before. There are many approaches for building a thia­diazole heterocycle based on the use of carb­oxy­lic acids (Bhinge et al., 2015[Bhinge, S. D., Chature, V. & Sonawane, L. V. (2015). Pharm. Chem. J. 49, 367-372.]; Nayak et al., 2014[Nayak, A. S. & Madhav, N. V. (2014). Acta Chim. Pharm. Indica, 4, 63-67.]), carbonyl chlorides (Sun et al., 2001[Sun, X.-W., Hui, X.-P., Chu, C.-H. & Zhang, Z.-Y. (2001). Indian J. Chem. Sect. B, 40, 15-19.]; Kudelko et al., 2020[Kudelko, A., Olesiejuk, M., Luczynski, M., Swiatkowski, M., Sieranski, T. & Kruszynski, R. (2020). Molecules, 25, 2822.]), aldehydes (Shivakumara et al., 2019[Shivakumara, N. & Krishna, P. M. (2019). Curr. Chem. Lett. 8, 157-168.]; Wang et al., 2019[Wang, J., Tang, X. & Yi, L. (2019). Pharmacology, 103, 273-281.]), etc. We chose here a method based on the transformation of carbo­nitriles (as shown in the scheme) as the shortest and most convenient way to achieve this purpose (Sakthivel et al., 2016[Sakthivel, P., Ilangovan, A. & Kaushik, M. P. (2016). Eur. J. Med. Chem. 122, 302-318.]; et al.; Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]). Its efficacy has recently been demonstrated by one of us (Petkevich et al., 2021[Petkevich, S. K., Zhukovskaya, N. A., Dikusar, E. A., Akishina, E. A., Kurman, P. V., Nikitina, E. V., Zaytsev, V. P. & Potkin, V. I. (2021). Chem. Heterocycl. Compd, 57, 594-598.]). The synthetic procedure involves the inter­action of 5-phenyl­isoxazole-3-carbo­nitrile with thio­semicarbazide. The starting 5-phenyl­isoxazole-3-carbo­nitrile was obtained according to the previously described method (Kulchitsky et al., 2012[Kulchitsky, V. A., Potkin, V. I., Zubenko, Y. S., Chernov, A. N., Talabaev, M. V., Demidchik, Y. E., Petkevich, S. K., Kazbanov, V. V., Gurinovich, T. A., Roeva, M. O., Grigoriev, D. G., Kletskov, A. V. & Kalunov, V. N. (2012). Med. Chem. 8, 22-32.]; Bumagin et al., 2018[Bumagin, N. A., Kletskov, A. V., Petkevich, S. K., Kolesnik, I. A., Lyakhov, A. S., Ivashkevich, L. S., Baranovsky, A. V., Kurman, P. V. & Potkin, V. I. (2018). Tetrahedron, 74, 3578-3588.]).

[Scheme 1]

2. Structural commentary

The title compound 1 crystallizes in the ortho­rhom­bic space group Pca21, with two independent mol­ecules (I with S1 and II with S2) in the asymmetric unit (Fig. 1[link]). The oxazole (O1/N2/C3/C4/C5 and O12/N13/C14/C15/C16) and thia­diazole (S1/N3/N4/C1/C2 and S2/N14/N15/C12/C13) rings are essentially planar and inclined to one another by 18.8 (3) and 14.6 (3)° in mol­ecules I and II, respectively. The phenyl rings (C6–C11 and C17–C22) make dihedral angles of 24.6 (3) and 26.8 (3)° with the oxazole rings in mol­ecules I and II, respectively. Fig. 2[link] shows the overlay of mol­ecules I and II in the asymmetric unit, with an r.m.s. deviation of 0.087 Å. The C—N bond distances to the amino N atom of 1.330 (6) and 1.328 (6) Å, respectively, in mol­ecules I and II indicate strong conjugation of the amino groups with the thia­diazole π-systems.

[Figure 1]
Figure 1
View of the two independent mol­ecules, I and II, in the asymmetric unit of the title compound, with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.
[Figure 2]
Figure 2
Overlay image of two independent mol­ecules in the asymmetric unit of the title compound.

3. Supra­molecular features

In the crystal, mol­ecules are linked by N—H⋯N and C—H⋯N hydrogen bonds (Table 1[link], Figs. 3[link] and 4[link]), forming double layers of cross-linked mol­ecules parallel to the (001) plane. The mol­ecules within a layer are further linked by ππ stacking inter­actions between the thia­diazole rings [Cg1⋯Cg4(x, y, z) = 3.636 (3) Å, slippage = 1.283 Å, where Cg1 and Cg4 are the centroids of the rings S1/N3/N4/C1/C2 and S2/N14/N15/C12/C13, respectively]. The layers are linked by van der Waals inter­actions (Table 2[link]), forming a three-dimensional supra­molecular structure (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg6 are the centroids of the S2/N14/N15/C12/C13 and C17–C22 rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N14i 0.88 2.10 2.974 (6) 172
N1—H1B⋯N4ii 0.88 2.20 3.071 (5) 169
N12—H12A⋯N3iii 0.88 2.06 2.933 (6) 174
N12—H12B⋯N15iv 0.88 2.24 3.108 (5) 170
C4—H4⋯N2iv 0.95 2.56 3.363 (6) 142
C15—H15⋯N13ii 0.95 2.46 3.323 (6) 151
C8—H8⋯Cg6v 0.95 2.98 3.774 (6) 142
C22—H22⋯Cg4i 0.95 2.95 3.648 (6) 132
Symmetry codes: (i) [x, y-1, z]; (ii) [x+{\script{1\over 2}}, -y, z]; (iii) x, y+1, z; (iv) [x-{\script{1\over 2}}, -y+1, z]; (v) [-x+{\script{1\over 2}}, y+1, z+{\script{1\over 2}}].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
S1⋯H12B 3.10 [{1\over 2}] + x, 1 − y, z
N2⋯H4 2.56 [{1\over 2}] + x, 1 − y, z
N3⋯H12A 2.06 x, −1 + y, z
H1B⋯S2 3.09 [{1\over 2}] + x, −y, z
H1B⋯N4 2.20 [{1\over 2}] + x, −y, z
C2⋯N14 3.437 (7) x, y, z
C4⋯H10 3.05 x, −1 + y, z
C7⋯H20 2.91 1 − x, −y, [{1\over 2}] + z
H10⋯H19 2.49 1 − x, 1 − y, [{1\over 2}] + z
H8⋯C18 2.87 [{1\over 2}] − x, 1 + y, [{1\over 2}] + z
H9⋯H21 2.59 [{1\over 2}] − x, 2 + y, [{1\over 2}] + z
N13⋯H15 2.46 [{1\over 2}] + x, −y, z
H12B⋯N15 2.24 [{1\over 2}] + x, 1 − y, z
C13⋯H22 2.91 x, 1 + y, z
C19⋯H22 2.94 [{1\over 2}] + x, −1 − y, z
[Figure 3]
Figure 3
A view of the inter­molecular N—H⋯N and C—H⋯N inter­actions in the crystal structure of the title compound projected along the a axis.
[Figure 4]
Figure 4
A view of the inter­molecular N—H⋯N and C—H⋯N inter­actions in the crystal structure of the title compound projected along the b axis.
[Figure 5]
Figure 5
A view of the layer structure formed by inter­molecular N—H⋯N, C—H⋯N, C—H⋯π and ππ inter­actions in the crystal structure of the title compound projected along the b axis.

4. Hirshfeld surface analysis

Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to construct Hirshfeld surfaces for both independent mol­ecules in the asymmetric unit of the title compound. The dnorm mappings for mol­ecule I were performed in the range of −0.5418 to 1.2328 a.u., and for mol­ecule II in the range of −0.5446 to 1.1988 a.u. On the dnorm surfaces, bold red circles show the locations of N—H⋯N inter­actions. Smaller red spots are caused by C—H⋯N inter­actions (Fig. 6[link]a,b for mol­ecule I and Fig. 6[link]c,d for mol­ecule II).

[Figure 6]
Figure 6
Front (a) and back (b) views of the three-dimensional Hirshfeld surface for mol­ecule I. Front (c) and back (d) views of the three-dimensional Hirshfeld surface for mol­ecule II. Some inter­molecular N—H⋯N and C—H⋯N inter­actions are shown as dashed lines.

Fingerprint plots (Fig. 7[link]) reveal that while H⋯H (26.6% for mol­ecule I and 25.3% for mol­ecule II) inter­actions make the largest contributions to the surface contacts (Table 2[link]), N⋯H/H⋯N (24.1% for I and 24.1% for II) and C⋯H/H⋯C (19.3% for I and 21.0% for II) contacts are also significant. The contributions of other, less noteworthy contacts are listed in Table 3[link]. The environments of mol­ecules I and II are quite similar, as indicated in Table 3[link].

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact mol­ecule I mol­ecule II
H⋯H 26.6 25.3
N⋯H/H⋯N 24.1 24.1
C⋯H/H⋯C 19.3 21.0
S⋯C/C⋯S 6.7 5.5
O⋯H/H⋯O 6.0 5.5
S⋯H/H⋯S 5.9 6.9
N⋯C/C⋯N 4.5 5.3
O⋯C/C⋯O 2.5 2.6
C⋯C 1.3 0.9
O⋯N/N⋯O 1.1 1.0
N⋯N 1.0 0.9
S⋯N/N⋯S 0.9 0.8
S⋯O/O⋯S 0.1 0.1
[Figure 7]
Figure 7
The two-dimensional fingerprint plots for mol­ecules I and II of the title compound showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N and (d) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

The only hit related to the title compound found in a search of the Cambridge Structural Database (CSD, Version 5.42; May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was 1-{[3-(thio­phen-2-yl)-4,5-di­hydro-1,2-oxazol-5-yl]meth­yl}-1H-indole-2,3-dione (NAQQOO: Rayni et al., 2017[Rayni, I., El Bakri, Y., Sebhaoui, J., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170315.]). In the structure of NAQQOO, the indole ring system is almost planar as expected. The dihedral angle between this plane and that of the thio­phene ring is 2.01 (2)°. The mean plane of the isoxazole ring is inclined by 19.78 (14) and 20.83 (12)° to the thio­phene and indoline mean planes, respectively. In the crystal, the combin­ation of C—H⋯O hydrogen bonds forms stepped layers two mol­ecules thick, or slabs, which are oriented parallel to ([\overline{1}]03). These layers are associated through offset π-stacking inter­actions, involving inversion-related indole rings in adjacent layers [inter­planar distance of 3.479 (1) Å], forming a supra­molecular three-dimensional structure.

6. Synthesis and crystallization

5-(5-Phenyl­isoxazol-3-yl)-1,3,4-thia­diazol-2-amine:

Thio­semicarbazide (1.0 g, 11 mmol) was added at r.t to a solution of 5-phenyl­isoxazole-3-carbo­nitrile (1.70 g, 10 mmol) in CF3CO2H (10 mL), and the resulting mixture was heated under reflux for 6 h. After cooling, the mixture was poured into water (150 mL) and basified with 25% aqueous ammonia to pH ∼8. The precipitate was filtered off, washed with warm H2O (3 × 30 mL) and dried under reduced pressure over P2O5. The obtained solid product was recrystallized from MeOH giving light-yellow cubic crystals, yield 2.37 g (97%), m.p. = 501–503 K. IR (KBr), ν (cm−1): 3413, 3278, 3147, 3125, 2927, 1615, 1592, 1575, 1508, 1450, 1436, 1417, 1323, 1220, 1140, 1068, 947, 931, 817, 763, 686, 661, 629, 575. 1H NMR (DMSO-d6, 500 MHz, 301 K): δ = 7.51–7.58 (m, 4H, 3HAr + 1H-isox), 7.80 (br.s, 2H, NH2), 7.92–7.98 (m, 2HAr). 13C NMR (DMSO-d6, 125 MHz, 301 K): δ = 98.53 (CH-isox), 126.45 (2CHAr), 129.89 (2CHAr), 131.47 (1CHAr), 126.90, 145.57, 157.67, 170.46, 170.76 (5C). Mass-spectrum, m/z (Irel, %): 267 [M+Na]+ (5), 245 [M+H]+ (100). Elemental analysis calculated for C11H8N4OS (%): C 54.09, H 3.30, N 22.94, S 13.12; found (%): C 54.21, H 3.11, N 22.99, S 13.18.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically (N—H = 0.88 Å, C—H = 0.95 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(N, C).

Table 4
Experimental details

Crystal data
Chemical formula C11H8N4OS
Mr 244.27
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 100
a, b, c (Å) 11.142 (2), 7.2555 (15), 27.333 (6)
V3) 2209.6 (8)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.24 × 0.18 × 0.02
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.924, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 37296, 6442, 4347
Rint 0.110
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.125, 1.03
No. of reflections 6442
No. of parameters 307
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.34
Absolute structure Flack x determined using 1699 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.44 (7)
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

5-(5-Phenyl-1,2-oxazol-3-yl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C11H8N4OSDx = 1.469 Mg m3
Mr = 244.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 5781 reflections
a = 11.142 (2) Åθ = 2.8–28.1°
b = 7.2555 (15) ŵ = 0.28 mm1
c = 27.333 (6) ÅT = 100 K
V = 2209.6 (8) Å3Plate, yellow
Z = 80.24 × 0.18 × 0.02 mm
F(000) = 1008
Data collection top
Bruker D8 QUEST PHOTON-III CCD
diffractometer
4347 reflections with I > 2σ(I)
φ and ω scansRint = 0.110
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.0°, θmin = 2.8°
Tmin = 0.924, Tmax = 0.985h = 1515
37296 measured reflectionsk = 1010
6442 independent reflectionsl = 3838
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + 1.1115P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6442 reflectionsΔρmax = 0.32 e Å3
307 parametersΔρmin = 0.34 e Å3
1 restraintAbsolute structure: Flack x determined using 1699 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: difference Fourier mapAbsolute structure parameter: 0.44 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55238 (9)0.15104 (17)0.56580 (4)0.0346 (3)
O10.4133 (3)0.6622 (5)0.63143 (14)0.0407 (8)
N10.5629 (3)0.1735 (6)0.51880 (17)0.0411 (11)
H1A0.53130.26680.50280.049*
H1B0.64080.17000.52410.049*
N20.4659 (3)0.5198 (6)0.60417 (16)0.0404 (10)
N30.3753 (3)0.0298 (6)0.52886 (16)0.0368 (10)
N40.3268 (3)0.1278 (6)0.54882 (15)0.0363 (9)
C10.4931 (4)0.0378 (7)0.53495 (18)0.0337 (11)
C20.4066 (3)0.2358 (7)0.56877 (18)0.0324 (10)
C30.3784 (4)0.4041 (7)0.59427 (18)0.0325 (10)
C40.2667 (4)0.4653 (7)0.61365 (18)0.0339 (10)
H40.19050.40770.61070.041*
C50.2934 (4)0.6234 (7)0.63716 (19)0.0353 (11)
C60.2228 (4)0.7554 (7)0.66463 (18)0.0381 (11)
C70.1161 (4)0.6999 (7)0.68654 (19)0.0400 (11)
H70.09170.57460.68470.048*
C80.0454 (5)0.8268 (9)0.7110 (2)0.0547 (16)
H80.02720.78830.72610.066*
C90.0801 (6)1.0089 (10)0.7136 (2)0.0622 (17)
H90.03051.09580.72990.075*
C100.1865 (6)1.0655 (9)0.6926 (2)0.0586 (16)
H100.21031.19100.69490.070*
C110.2591 (5)0.9399 (7)0.66806 (19)0.0435 (12)
H110.33250.97880.65380.052*
S20.25267 (9)0.34769 (16)0.43188 (5)0.0345 (3)
O120.3748 (3)0.1645 (5)0.36528 (14)0.0414 (8)
N120.2466 (3)0.6713 (6)0.47918 (16)0.0401 (10)
H12A0.28010.76310.49520.048*
H12B0.16860.67110.47400.048*
N130.3275 (3)0.0167 (6)0.39175 (17)0.0406 (10)
N140.4322 (3)0.5220 (6)0.46910 (15)0.0354 (9)
N150.4782 (3)0.3622 (5)0.44954 (15)0.0336 (9)
C120.3137 (4)0.5330 (7)0.46289 (18)0.0325 (11)
C130.3977 (3)0.2571 (7)0.42917 (19)0.0324 (10)
C140.4201 (4)0.0858 (7)0.40348 (19)0.0339 (11)
C150.5296 (4)0.0103 (7)0.38637 (18)0.0355 (11)
H150.60850.05760.39070.043*
C160.4959 (4)0.1445 (7)0.36254 (19)0.0348 (10)
C170.5587 (4)0.2878 (7)0.33530 (18)0.0354 (11)
C180.6693 (4)0.2494 (8)0.31302 (18)0.0403 (12)
H180.70240.12890.31450.048*
C190.7299 (5)0.3898 (8)0.2886 (2)0.0487 (14)
H190.80460.36460.27330.058*
C200.6826 (5)0.5652 (9)0.2866 (2)0.0519 (14)
H200.72520.66070.27040.062*
C210.5732 (5)0.6019 (8)0.3082 (2)0.0492 (14)
H210.54000.72230.30630.059*
C220.5121 (5)0.4653 (7)0.3324 (2)0.0422 (12)
H220.43720.49230.34740.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0126 (4)0.0464 (6)0.0447 (7)0.0005 (4)0.0026 (4)0.0051 (6)
O10.0207 (14)0.047 (2)0.055 (2)0.0023 (14)0.0010 (14)0.0061 (18)
N10.0154 (16)0.047 (3)0.061 (3)0.0009 (17)0.0043 (17)0.011 (2)
N20.0187 (18)0.049 (3)0.053 (3)0.0012 (17)0.0002 (17)0.006 (2)
N30.0159 (17)0.047 (2)0.048 (3)0.0013 (16)0.0018 (16)0.002 (2)
N40.0162 (17)0.050 (3)0.043 (2)0.0009 (17)0.0030 (15)0.0001 (19)
C10.0166 (19)0.047 (3)0.037 (3)0.0025 (18)0.0005 (18)0.000 (2)
C20.0130 (16)0.048 (3)0.036 (3)0.0006 (17)0.0018 (18)0.003 (2)
C30.0170 (19)0.044 (3)0.036 (3)0.0025 (18)0.0032 (17)0.003 (2)
C40.0175 (19)0.045 (3)0.039 (3)0.0010 (19)0.0010 (18)0.001 (2)
C50.0191 (19)0.050 (3)0.037 (3)0.0005 (18)0.0018 (19)0.006 (2)
C60.031 (2)0.049 (3)0.034 (3)0.006 (2)0.0073 (19)0.000 (2)
C70.028 (2)0.059 (3)0.033 (3)0.008 (2)0.005 (2)0.001 (2)
C80.038 (3)0.086 (5)0.040 (3)0.012 (3)0.002 (2)0.004 (3)
C90.062 (4)0.071 (4)0.053 (4)0.020 (3)0.003 (3)0.021 (3)
C100.064 (4)0.056 (4)0.056 (4)0.005 (3)0.002 (3)0.012 (3)
C110.044 (3)0.048 (3)0.039 (3)0.003 (2)0.003 (2)0.003 (2)
S20.0129 (4)0.0473 (6)0.0433 (6)0.0003 (5)0.0025 (4)0.0049 (6)
O120.0193 (15)0.049 (2)0.056 (2)0.0022 (14)0.0014 (15)0.0103 (18)
N120.0158 (17)0.051 (3)0.053 (3)0.0013 (17)0.0033 (16)0.013 (2)
N130.0206 (19)0.048 (3)0.054 (3)0.0026 (18)0.0004 (18)0.007 (2)
N140.0158 (17)0.047 (2)0.044 (2)0.0001 (15)0.0025 (15)0.0051 (19)
N150.0155 (16)0.044 (2)0.041 (2)0.0003 (15)0.0010 (14)0.0016 (18)
C120.0150 (19)0.043 (3)0.039 (3)0.0015 (18)0.0035 (17)0.000 (2)
C130.0147 (16)0.044 (3)0.039 (3)0.0014 (17)0.0005 (18)0.005 (2)
C140.0138 (18)0.046 (3)0.041 (3)0.0009 (18)0.0021 (17)0.004 (2)
C150.0135 (18)0.051 (3)0.042 (3)0.0038 (19)0.0004 (18)0.002 (2)
C160.0163 (19)0.051 (3)0.037 (2)0.0032 (19)0.0007 (17)0.005 (2)
C170.025 (2)0.048 (3)0.033 (3)0.003 (2)0.0036 (19)0.004 (2)
C180.021 (2)0.056 (3)0.044 (3)0.005 (2)0.0004 (18)0.004 (2)
C190.033 (3)0.070 (4)0.042 (3)0.014 (2)0.008 (2)0.009 (3)
C200.051 (3)0.061 (4)0.044 (3)0.018 (3)0.003 (3)0.002 (3)
C210.052 (4)0.050 (3)0.045 (3)0.002 (3)0.003 (3)0.000 (3)
C220.035 (3)0.052 (3)0.039 (3)0.001 (2)0.001 (2)0.000 (2)
Geometric parameters (Å, º) top
S1—C11.739 (5)S2—C121.729 (5)
S1—C21.739 (4)S2—C131.746 (4)
O1—C51.374 (5)O12—C161.359 (5)
O1—N21.402 (5)O12—N131.398 (5)
N1—C11.330 (6)N12—C121.328 (6)
N1—H1A0.8800N12—H12A0.8800
N1—H1B0.8800N12—H12B0.8800
N2—C31.315 (6)N13—C141.312 (6)
N3—C11.324 (5)N14—C121.334 (5)
N3—N41.377 (6)N14—N151.376 (5)
N4—C21.304 (6)N15—C131.302 (6)
C2—C31.441 (7)C13—C141.449 (7)
C3—C41.424 (6)C14—C151.417 (6)
C4—C51.348 (7)C15—C161.352 (7)
C4—H40.9500C15—H150.9500
C5—C61.449 (7)C16—C171.458 (7)
C6—C71.391 (7)C17—C221.391 (7)
C6—C111.402 (7)C17—C181.402 (7)
C7—C81.384 (7)C18—C191.393 (7)
C7—H70.9500C18—H180.9500
C8—C91.378 (9)C19—C201.379 (8)
C8—H80.9500C19—H190.9500
C9—C101.379 (9)C20—C211.380 (8)
C9—H90.9500C20—H200.9500
C10—C111.391 (8)C21—C221.373 (7)
C10—H100.9500C21—H210.9500
C11—H110.9500C22—H220.9500
C1—S1—C286.9 (2)C12—S2—C1387.1 (2)
C5—O1—N2108.4 (3)C16—O12—N13108.7 (4)
C1—N1—H1A120.0C12—N12—H12A120.0
C1—N1—H1B120.0C12—N12—H12B120.0
H1A—N1—H1B120.0H12A—N12—H12B120.0
C3—N2—O1105.7 (4)C14—N13—O12105.3 (4)
C1—N3—N4112.0 (4)C12—N14—N15111.7 (4)
C2—N4—N3113.4 (4)C13—N15—N14113.8 (4)
N3—C1—N1124.7 (4)N12—C12—N14124.0 (4)
N3—C1—S1113.8 (4)N12—C12—S2122.1 (3)
N1—C1—S1121.5 (3)N14—C12—S2113.9 (4)
N4—C2—C3124.3 (4)N15—C13—C14126.2 (4)
N4—C2—S1113.9 (4)N15—C13—S2113.5 (4)
C3—C2—S1121.7 (3)C14—C13—S2120.2 (3)
N2—C3—C4111.9 (4)N13—C14—C15112.2 (5)
N2—C3—C2118.6 (4)N13—C14—C13117.9 (4)
C4—C3—C2129.4 (4)C15—C14—C13129.8 (4)
C5—C4—C3104.4 (4)C16—C15—C14103.9 (4)
C5—C4—H4127.8C16—C15—H15128.0
C3—C4—H4127.8C14—C15—H15128.0
C4—C5—O1109.6 (4)C15—C16—O12109.8 (4)
C4—C5—C6133.6 (4)C15—C16—C17134.9 (4)
O1—C5—C6116.8 (4)O12—C16—C17115.4 (4)
C7—C6—C11119.6 (5)C22—C17—C18119.2 (5)
C7—C6—C5119.7 (5)C22—C17—C16120.6 (5)
C11—C6—C5120.6 (5)C18—C17—C16120.1 (5)
C8—C7—C6120.1 (5)C19—C18—C17119.2 (5)
C8—C7—H7119.9C19—C18—H18120.4
C6—C7—H7119.9C17—C18—H18120.4
C9—C8—C7120.2 (6)C20—C19—C18120.6 (5)
C9—C8—H8119.9C20—C19—H19119.7
C7—C8—H8119.9C18—C19—H19119.7
C8—C9—C10120.4 (6)C19—C20—C21119.9 (5)
C8—C9—H9119.8C19—C20—H20120.0
C10—C9—H9119.8C21—C20—H20120.0
C9—C10—C11120.3 (6)C22—C21—C20120.4 (6)
C9—C10—H10119.8C22—C21—H21119.8
C11—C10—H10119.8C20—C21—H21119.8
C10—C11—C6119.4 (5)C21—C22—C17120.7 (5)
C10—C11—H11120.3C21—C22—H22119.7
C6—C11—H11120.3C17—C22—H22119.7
C5—O1—N2—C30.5 (5)C16—O12—N13—C140.4 (5)
C1—N3—N4—C20.8 (6)C12—N14—N15—C130.3 (6)
N4—N3—C1—N1179.2 (5)N15—N14—C12—N12178.6 (5)
N4—N3—C1—S10.2 (5)N15—N14—C12—S20.7 (5)
C2—S1—C1—N30.2 (4)C13—S2—C12—N12178.6 (5)
C2—S1—C1—N1178.7 (5)C13—S2—C12—N140.7 (4)
N3—N4—C2—C3176.7 (5)N14—N15—C13—C14176.6 (5)
N3—N4—C2—S11.0 (6)N14—N15—C13—S20.3 (6)
C1—S1—C2—N40.7 (4)C12—S2—C13—N150.5 (4)
C1—S1—C2—C3176.5 (4)C12—S2—C13—C14177.1 (4)
O1—N2—C3—C40.7 (6)O12—N13—C14—C150.9 (6)
O1—N2—C3—C2176.3 (4)O12—N13—C14—C13176.6 (4)
N4—C2—C3—N2166.4 (5)N15—C13—C14—N13169.7 (5)
S1—C2—C3—N218.2 (7)S2—C13—C14—N1314.2 (7)
N4—C2—C3—C417.1 (9)N15—C13—C14—C1513.3 (9)
S1—C2—C3—C4158.3 (4)S2—C13—C14—C15162.9 (4)
N2—C3—C4—C51.7 (6)N13—C14—C15—C161.1 (6)
C2—C3—C4—C5174.9 (5)C13—C14—C15—C16176.1 (5)
C3—C4—C5—O12.0 (6)C14—C15—C16—O120.7 (6)
C3—C4—C5—C6180.0 (5)C14—C15—C16—C17178.6 (6)
N2—O1—C5—C41.7 (6)N13—O12—C16—C150.2 (6)
N2—O1—C5—C6179.9 (4)N13—O12—C16—C17179.2 (4)
C4—C5—C6—C724.7 (9)C15—C16—C17—C22152.5 (6)
O1—C5—C6—C7157.4 (4)O12—C16—C17—C2228.2 (7)
C4—C5—C6—C11153.3 (6)C15—C16—C17—C1825.4 (9)
O1—C5—C6—C1124.5 (7)O12—C16—C17—C18154.0 (5)
C11—C6—C7—C80.9 (8)C22—C17—C18—C190.2 (7)
C5—C6—C7—C8177.2 (5)C16—C17—C18—C19177.7 (5)
C6—C7—C8—C90.3 (8)C17—C18—C19—C200.4 (8)
C7—C8—C9—C101.2 (10)C18—C19—C20—C211.0 (9)
C8—C9—C10—C110.8 (10)C19—C20—C21—C221.1 (9)
C9—C10—C11—C60.4 (9)C20—C21—C22—C170.5 (9)
C7—C6—C11—C101.2 (8)C18—C17—C22—C210.1 (8)
C5—C6—C11—C10176.8 (5)C16—C17—C22—C21177.8 (5)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg6 are the centroids of the S2/N14/N15/C12/C13 and C17–C22 rings, respectively
D—H···AD—HH···AD···AD—H···A
N1—H1A···N14i0.882.102.974 (6)172
N1—H1B···N4ii0.882.203.071 (5)169
N12—H12A···N3iii0.882.062.933 (6)174
N12—H12B···N15iv0.882.243.108 (5)170
C4—H4···N2iv0.952.563.363 (6)142
C15—H15···N13ii0.952.463.323 (6)151
C8—H8···Cg6v0.952.983.774 (6)142
C22—H22···Cg4i0.952.953.648 (6)132
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y, z; (iii) x, y+1, z; (iv) x1/2, y+1, z; (v) x+1/2, y+1, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
S1···H12B3.101/2 + x, 1 - y, z
N2···H42.561/2 + x, 1 - y, z
N3···H12A2.06x, -1 + y, z
H1B···S23.091/2 + x, -y, z
H1B···N42.201/2 + x, -y, z
C2···N143.437x, y, z
C4···H103.05x, -1 + y, z
C7···H202.911 - x, -y, 1/2 + z
H10···H192.491 - x, 1 - y, 1/2 + z
H8···C182.871/2 - x, 1 + y, 1/2 + z
H9···H212.591/2 - x, 2 + y, 1/2 + z
N13···H152.46-1/2 + x, -y, z
H12B···N152.24-1/2 + x, 1 - y, z
C13···H222.91x, 1 + y, z
C19···H222.941/2 + x, -1 - y, z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
Contactmolecule Imolecule II
H···H26.625.3
N···H/H···N24.124.1
C···H/H···C19.321.0
S···C/C···S6.75.5
O···H/H···O6.05.5
S···H/H···S5.96.9
N···C/C···N4.55.3
O···C/C···O2.52.6
C···C1.30.9
O···N/N···O1.11.0
N···N1.00.9
S···N/N···S0.90.8
S···O/O···S0.10.1
 

Acknowledgements

The authors' contributions are as follows: Conceptualization, EVN, MA and SM; synthesis, EVN, EKP, SKP and EAA; X-ray analysis, STÇ, VNK and MA; writing (review and editing of the manuscript), EVN, STÇ, MA and SM; funding acquisition, EVN, SKP, EAA and SM; supervision, MA, SKP and SM.

Funding information

EVN is grateful to the Russian Foundation for Basic Research (RFBR) (award No. 19–53-04002, Bel_mol_a) and the Belarusian Republican Foundation for Fundamental Research (BRFFR) (award No. X20PM-056) for financial support of this research.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBhinge, S. D., Chature, V. & Sonawane, L. V. (2015). Pharm. Chem. J. 49, 367–372.  CrossRef CAS Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBumagin, N. A., Kletskov, A. V., Petkevich, S. K., Kolesnik, I. A., Lyakhov, A. S., Ivashkevich, L. S., Baranovsky, A. V., Kurman, P. V. & Potkin, V. I. (2018). Tetrahedron, 74, 3578–3588.  CrossRef CAS Google Scholar
First citationDas, S. & Chanda, K. (2021). RSC Adv. 11, 32680–32705.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKhalilullah, H., Khan, M. U., Mahmood, D., Akhtar, J. & Osman, G. (2014). Int. J. Pharm. Pharm. Sci. 6, 8–15.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKletskov, A. V., Bumagin, N. A., Zubkov, F. I., Grudinin, D. G. & Potkin, V. I. (2020). Synthesis, 52, 159–188.  CAS Google Scholar
First citationKudelko, A., Olesiejuk, M., Luczynski, M., Swiatkowski, M., Sieranski, T. & Kruszynski, R. (2020). Molecules, 25, 2822.  CrossRef Google Scholar
First citationKulchitsky, V. A., Potkin, V. I., Zubenko, Y. S., Chernov, A. N., Talabaev, M. V., Demidchik, Y. E., Petkevich, S. K., Kazbanov, V. V., Gurinovich, T. A., Roeva, M. O., Grigoriev, D. G., Kletskov, A. V. & Kalunov, V. N. (2012). Med. Chem. 8, 22–32.  CAS PubMed Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248.  Web of Science CSD CrossRef CAS Google Scholar
First citationNayak, A. S. & Madhav, N. V. (2014). Acta Chim. Pharm. Indica, 4, 63–67.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPetkevich, S. K., Zhukovskaya, N. A., Dikusar, E. A., Akishina, E. A., Kurman, P. V., Nikitina, E. V., Zaytsev, V. P. & Potkin, V. I. (2021). Chem. Heterocycl. Compd, 57, 594–598.  CrossRef CAS Google Scholar
First citationRayni, I., El Bakri, Y., Sebhaoui, J., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170315.  Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSakthivel, P., Ilangovan, A. & Kaushik, M. P. (2016). Eur. J. Med. Chem. 122, 302–318.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShivakumara, N. & Krishna, P. M. (2019). Curr. Chem. Lett. 8, 157–168.  CrossRef Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, X.-W., Hui, X.-P., Chu, C.-H. & Zhang, Z.-Y. (2001). Indian J. Chem. Sect. B, 40, 15–19.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationWang, J., Tang, X. & Yi, L. (2019). Pharmacology, 103, 273–281.  CrossRef CAS PubMed Google Scholar
First citationYadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.  Web of Science CrossRef CAS Google Scholar
First citationZubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds