research communications
and Hirshfeld surface analysis of 5-(5-phenyl-1,2-oxazol-3-yl)-1,3,4-thiadiazol-2-amine
aDepartment of Organic Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cLaboratory of the Chemistry of Heterocyclic Compounds, Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13, Surganova Str., 220072, Minsk, Belarus, dN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Av., Moscow, Russian Federation, and eUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz
The title compound, C11H8N4OS, crystallizes with two independent molecules in the In the crystal, the N—H⋯N and C—H⋯N hydrogen bonds connect the molecules, generating double layers parallel to the (001) plane. The layers are joined by C—H⋯π interactions to form a three-dimensional supramolecular structure.
Keywords: crystal structure; hydrogen bonds; C—H⋯π interactions; π–π stacking interactions; Hirshfeld surface analysis.
CCDC reference: 2162503
1. Chemical context
Compounds with the five-membered isoxazole, isothiazole and 1,3,4-thiadiazole heterocycles possess high potential for biological activity and are privileged scaffolds for the development of pharmaceutical agents (Das & Chanda, 2021; Kletskov et al., 2020; Khalilullah et al., 2014; Yadigarov et al., 2009; Safavora et al., 2019; Zubkov et al., 2014). In particular, isoxazoles are able to enhance the action of `first-line' antitumor substances, which makes it possible to reduce their therapeutic doses and thus reduce toxic side effects (Khalilov et al., 2021; Kulchitsky et al., 2012; Naghiyev et al., 2020). The combination of the pharmacophore fragments of isoxazole and thiadiazole in one molecule increases the variability of its binding to the key sites of enzymes regulating the biological action. The presence of an amino group additionally increases the biopotential of the molecule, and the introduction of an aromatic fragment makes it possible to implement binding with a biotarget by π-stacking (Shixaliyev et al., 2014, 2018; Mahmudov et al., 2011, 2013; Gurbanov et al., 2017, 2018a,b). To assess the biological potential of a molecule in silico and the molecular docking procedure, which is widely used for the development of new pharmaceuticals, information about the structures of promising molecules is needed. All this initiated our research on the synthesis of 5-(5-phenylisoxazol-3-yl)-1,3,4-thiadiazol-2-amine (1) and the further determination of the accurate structure of its molecule. The synthesis and structure of the compound has not published before. There are many approaches for building a thiadiazole heterocycle based on the use of carboxylic acids (Bhinge et al., 2015; Nayak et al., 2014), carbonyl chlorides (Sun et al., 2001; Kudelko et al., 2020), (Shivakumara et al., 2019; Wang et al., 2019), etc. We chose here a method based on the transformation of carbonitriles (as shown in the scheme) as the shortest and most convenient way to achieve this purpose (Sakthivel et al., 2016; et al.; Abdelhamid et al., 2011). Its efficacy has recently been demonstrated by one of us (Petkevich et al., 2021). The synthetic procedure involves the interaction of 5-phenylisoxazole-3-carbonitrile with thiosemicarbazide. The starting 5-phenylisoxazole-3-carbonitrile was obtained according to the previously described method (Kulchitsky et al., 2012; Bumagin et al., 2018).
2. Structural commentary
The title compound 1 crystallizes in the orthorhombic Pca21, with two independent molecules (I with S1 and II with S2) in the (Fig. 1). The oxazole (O1/N2/C3/C4/C5 and O12/N13/C14/C15/C16) and thiadiazole (S1/N3/N4/C1/C2 and S2/N14/N15/C12/C13) rings are essentially planar and inclined to one another by 18.8 (3) and 14.6 (3)° in molecules I and II, respectively. The phenyl rings (C6–C11 and C17–C22) make dihedral angles of 24.6 (3) and 26.8 (3)° with the oxazole rings in molecules I and II, respectively. Fig. 2 shows the overlay of molecules I and II in the with an r.m.s. deviation of 0.087 Å. The C—N bond distances to the amino N atom of 1.330 (6) and 1.328 (6) Å, respectively, in molecules I and II indicate strong conjugation of the amino groups with the thiadiazole π-systems.
3. Supramolecular features
In the crystal, molecules are linked by N—H⋯N and C—H⋯N hydrogen bonds (Table 1, Figs. 3 and 4), forming double layers of cross-linked molecules parallel to the (001) plane. The molecules within a layer are further linked by π–π stacking interactions between the thiadiazole rings [Cg1⋯Cg4(x, y, z) = 3.636 (3) Å, slippage = 1.283 Å, where Cg1 and Cg4 are the centroids of the rings S1/N3/N4/C1/C2 and S2/N14/N15/C12/C13, respectively]. The layers are linked by van der Waals interactions (Table 2), forming a three-dimensional supramolecular structure (Fig. 5).
|
4. Hirshfeld surface analysis
Crystal Explorer 17 (Turner et al., 2017) was used to construct Hirshfeld surfaces for both independent molecules in the of the title compound. The dnorm mappings for molecule I were performed in the range of −0.5418 to 1.2328 a.u., and for molecule II in the range of −0.5446 to 1.1988 a.u. On the dnorm surfaces, bold red circles show the locations of N—H⋯N interactions. Smaller red spots are caused by C—H⋯N interactions (Fig. 6a,b for molecule I and Fig. 6c,d for molecule II).
Fingerprint plots (Fig. 7) reveal that while H⋯H (26.6% for molecule I and 25.3% for molecule II) interactions make the largest contributions to the surface contacts (Table 2), N⋯H/H⋯N (24.1% for I and 24.1% for II) and C⋯H/H⋯C (19.3% for I and 21.0% for II) contacts are also significant. The contributions of other, less noteworthy contacts are listed in Table 3. The environments of molecules I and II are quite similar, as indicated in Table 3.
|
5. Database survey
The only hit related to the title compound found in a search of the Cambridge Structural Database (CSD, Version 5.42; May 2021; Groom et al., 2016) was 1-{[3-(thiophen-2-yl)-4,5-dihydro-1,2-oxazol-5-yl]methyl}-1H-indole-2,3-dione (NAQQOO: Rayni et al., 2017). In the structure of NAQQOO, the indole ring system is almost planar as expected. The dihedral angle between this plane and that of the thiophene ring is 2.01 (2)°. The mean plane of the isoxazole ring is inclined by 19.78 (14) and 20.83 (12)° to the thiophene and indoline mean planes, respectively. In the crystal, the combination of C—H⋯O hydrogen bonds forms stepped layers two molecules thick, or slabs, which are oriented parallel to (03). These layers are associated through offset π-stacking interactions, involving inversion-related indole rings in adjacent layers [interplanar distance of 3.479 (1) Å], forming a supramolecular three-dimensional structure.
6. Synthesis and crystallization
5-(5-Phenylisoxazol-3-yl)-1,3,4-thiadiazol-2-amine:
Thiosemicarbazide (1.0 g, 11 mmol) was added at r.t to a solution of 5-phenylisoxazole-3-carbonitrile (1.70 g, 10 mmol) in CF3CO2H (10 mL), and the resulting mixture was heated under reflux for 6 h. After cooling, the mixture was poured into water (150 mL) and basified with 25% aqueous ammonia to pH ∼8. The precipitate was filtered off, washed with warm H2O (3 × 30 mL) and dried under reduced pressure over P2O5. The obtained solid product was recrystallized from MeOH giving light-yellow cubic crystals, yield 2.37 g (97%), m.p. = 501–503 K. IR (KBr), ν (cm−1): 3413, 3278, 3147, 3125, 2927, 1615, 1592, 1575, 1508, 1450, 1436, 1417, 1323, 1220, 1140, 1068, 947, 931, 817, 763, 686, 661, 629, 575. 1H NMR (DMSO-d6, 500 MHz, 301 K): δ = 7.51–7.58 (m, 4H, 3HAr + 1H-isox), 7.80 (br.s, 2H, NH2), 7.92–7.98 (m, 2HAr). 13C NMR (DMSO-d6, 125 MHz, 301 K): δ = 98.53 (CH-isox), 126.45 (2CHAr), 129.89 (2CHAr), 131.47 (1CHAr), 126.90, 145.57, 157.67, 170.46, 170.76 (5C). Mass-spectrum, m/z (Irel, %): 267 [M+Na]+ (5), 245 [M+H]+ (100). Elemental analysis calculated for C11H8N4OS (%): C 54.09, H 3.30, N 22.94, S 13.12; found (%): C 54.21, H 3.11, N 22.99, S 13.18.
7. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically (N—H = 0.88 Å, C—H = 0.95 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(N, C).
details are summarized in Table 4
|
Supporting information
CCDC reference: 2162503
https://doi.org/10.1107/S2056989022003450/yk2168sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022003450/yk2168Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022003450/yk2168Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C11H8N4OS | Dx = 1.469 Mg m−3 |
Mr = 244.27 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 5781 reflections |
a = 11.142 (2) Å | θ = 2.8–28.1° |
b = 7.2555 (15) Å | µ = 0.28 mm−1 |
c = 27.333 (6) Å | T = 100 K |
V = 2209.6 (8) Å3 | Plate, yellow |
Z = 8 | 0.24 × 0.18 × 0.02 mm |
F(000) = 1008 |
Bruker D8 QUEST PHOTON-III CCD diffractometer | 4347 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.110 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 30.0°, θmin = 2.8° |
Tmin = 0.924, Tmax = 0.985 | h = −15→15 |
37296 measured reflections | k = −10→10 |
6442 independent reflections | l = −38→38 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + 1.1115P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
6442 reflections | Δρmax = 0.32 e Å−3 |
307 parameters | Δρmin = −0.34 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1699 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: difference Fourier map | Absolute structure parameter: 0.44 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.55238 (9) | 0.15104 (17) | 0.56580 (4) | 0.0346 (3) | |
O1 | 0.4133 (3) | 0.6622 (5) | 0.63143 (14) | 0.0407 (8) | |
N1 | 0.5629 (3) | −0.1735 (6) | 0.51880 (17) | 0.0411 (11) | |
H1A | 0.5313 | −0.2668 | 0.5028 | 0.049* | |
H1B | 0.6408 | −0.1700 | 0.5241 | 0.049* | |
N2 | 0.4659 (3) | 0.5198 (6) | 0.60417 (16) | 0.0404 (10) | |
N3 | 0.3753 (3) | −0.0298 (6) | 0.52886 (16) | 0.0368 (10) | |
N4 | 0.3268 (3) | 0.1278 (6) | 0.54882 (15) | 0.0363 (9) | |
C1 | 0.4931 (4) | −0.0378 (7) | 0.53495 (18) | 0.0337 (11) | |
C2 | 0.4066 (3) | 0.2358 (7) | 0.56877 (18) | 0.0324 (10) | |
C3 | 0.3784 (4) | 0.4041 (7) | 0.59427 (18) | 0.0325 (10) | |
C4 | 0.2667 (4) | 0.4653 (7) | 0.61365 (18) | 0.0339 (10) | |
H4 | 0.1905 | 0.4077 | 0.6107 | 0.041* | |
C5 | 0.2934 (4) | 0.6234 (7) | 0.63716 (19) | 0.0353 (11) | |
C6 | 0.2228 (4) | 0.7554 (7) | 0.66463 (18) | 0.0381 (11) | |
C7 | 0.1161 (4) | 0.6999 (7) | 0.68654 (19) | 0.0400 (11) | |
H7 | 0.0917 | 0.5746 | 0.6847 | 0.048* | |
C8 | 0.0454 (5) | 0.8268 (9) | 0.7110 (2) | 0.0547 (16) | |
H8 | −0.0272 | 0.7883 | 0.7261 | 0.066* | |
C9 | 0.0801 (6) | 1.0089 (10) | 0.7136 (2) | 0.0622 (17) | |
H9 | 0.0305 | 1.0958 | 0.7299 | 0.075* | |
C10 | 0.1865 (6) | 1.0655 (9) | 0.6926 (2) | 0.0586 (16) | |
H10 | 0.2103 | 1.1910 | 0.6949 | 0.070* | |
C11 | 0.2591 (5) | 0.9399 (7) | 0.66806 (19) | 0.0435 (12) | |
H11 | 0.3325 | 0.9788 | 0.6538 | 0.052* | |
S2 | 0.25267 (9) | 0.34769 (16) | 0.43188 (5) | 0.0345 (3) | |
O12 | 0.3748 (3) | −0.1645 (5) | 0.36528 (14) | 0.0414 (8) | |
N12 | 0.2466 (3) | 0.6713 (6) | 0.47918 (16) | 0.0401 (10) | |
H12A | 0.2801 | 0.7631 | 0.4952 | 0.048* | |
H12B | 0.1686 | 0.6711 | 0.4740 | 0.048* | |
N13 | 0.3275 (3) | −0.0167 (6) | 0.39175 (17) | 0.0406 (10) | |
N14 | 0.4322 (3) | 0.5220 (6) | 0.46910 (15) | 0.0354 (9) | |
N15 | 0.4782 (3) | 0.3622 (5) | 0.44954 (15) | 0.0336 (9) | |
C12 | 0.3137 (4) | 0.5330 (7) | 0.46289 (18) | 0.0325 (11) | |
C13 | 0.3977 (3) | 0.2571 (7) | 0.42917 (19) | 0.0324 (10) | |
C14 | 0.4201 (4) | 0.0858 (7) | 0.40348 (19) | 0.0339 (11) | |
C15 | 0.5296 (4) | 0.0103 (7) | 0.38637 (18) | 0.0355 (11) | |
H15 | 0.6085 | 0.0576 | 0.3907 | 0.043* | |
C16 | 0.4959 (4) | −0.1445 (7) | 0.36254 (19) | 0.0348 (10) | |
C17 | 0.5587 (4) | −0.2878 (7) | 0.33530 (18) | 0.0354 (11) | |
C18 | 0.6693 (4) | −0.2494 (8) | 0.31302 (18) | 0.0403 (12) | |
H18 | 0.7024 | −0.1289 | 0.3145 | 0.048* | |
C19 | 0.7299 (5) | −0.3898 (8) | 0.2886 (2) | 0.0487 (14) | |
H19 | 0.8046 | −0.3646 | 0.2733 | 0.058* | |
C20 | 0.6826 (5) | −0.5652 (9) | 0.2866 (2) | 0.0519 (14) | |
H20 | 0.7252 | −0.6607 | 0.2704 | 0.062* | |
C21 | 0.5732 (5) | −0.6019 (8) | 0.3082 (2) | 0.0492 (14) | |
H21 | 0.5400 | −0.7223 | 0.3063 | 0.059* | |
C22 | 0.5121 (5) | −0.4653 (7) | 0.3324 (2) | 0.0422 (12) | |
H22 | 0.4372 | −0.4923 | 0.3474 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0126 (4) | 0.0464 (6) | 0.0447 (7) | −0.0005 (4) | −0.0026 (4) | −0.0051 (6) |
O1 | 0.0207 (14) | 0.047 (2) | 0.055 (2) | −0.0023 (14) | 0.0010 (14) | −0.0061 (18) |
N1 | 0.0154 (16) | 0.047 (3) | 0.061 (3) | 0.0009 (17) | −0.0043 (17) | −0.011 (2) |
N2 | 0.0187 (18) | 0.049 (3) | 0.053 (3) | −0.0012 (17) | 0.0002 (17) | −0.006 (2) |
N3 | 0.0159 (17) | 0.047 (2) | 0.048 (3) | −0.0013 (16) | −0.0018 (16) | −0.002 (2) |
N4 | 0.0162 (17) | 0.050 (3) | 0.043 (2) | 0.0009 (17) | −0.0030 (15) | 0.0001 (19) |
C1 | 0.0166 (19) | 0.047 (3) | 0.037 (3) | −0.0025 (18) | 0.0005 (18) | 0.000 (2) |
C2 | 0.0130 (16) | 0.048 (3) | 0.036 (3) | 0.0006 (17) | −0.0018 (18) | 0.003 (2) |
C3 | 0.0170 (19) | 0.044 (3) | 0.036 (3) | −0.0025 (18) | −0.0032 (17) | 0.003 (2) |
C4 | 0.0175 (19) | 0.045 (3) | 0.039 (3) | −0.0010 (19) | −0.0010 (18) | 0.001 (2) |
C5 | 0.0191 (19) | 0.050 (3) | 0.037 (3) | −0.0005 (18) | −0.0018 (19) | 0.006 (2) |
C6 | 0.031 (2) | 0.049 (3) | 0.034 (3) | 0.006 (2) | −0.0073 (19) | 0.000 (2) |
C7 | 0.028 (2) | 0.059 (3) | 0.033 (3) | 0.008 (2) | −0.005 (2) | −0.001 (2) |
C8 | 0.038 (3) | 0.086 (5) | 0.040 (3) | 0.012 (3) | 0.002 (2) | −0.004 (3) |
C9 | 0.062 (4) | 0.071 (4) | 0.053 (4) | 0.020 (3) | 0.003 (3) | −0.021 (3) |
C10 | 0.064 (4) | 0.056 (4) | 0.056 (4) | 0.005 (3) | −0.002 (3) | −0.012 (3) |
C11 | 0.044 (3) | 0.048 (3) | 0.039 (3) | 0.003 (2) | −0.003 (2) | −0.003 (2) |
S2 | 0.0129 (4) | 0.0473 (6) | 0.0433 (6) | −0.0003 (5) | −0.0025 (4) | −0.0049 (6) |
O12 | 0.0193 (15) | 0.049 (2) | 0.056 (2) | −0.0022 (14) | −0.0014 (15) | −0.0103 (18) |
N12 | 0.0158 (17) | 0.051 (3) | 0.053 (3) | 0.0013 (17) | −0.0033 (16) | −0.013 (2) |
N13 | 0.0206 (19) | 0.048 (3) | 0.054 (3) | 0.0026 (18) | −0.0004 (18) | −0.007 (2) |
N14 | 0.0158 (17) | 0.047 (2) | 0.044 (2) | −0.0001 (15) | −0.0025 (15) | −0.0051 (19) |
N15 | 0.0155 (16) | 0.044 (2) | 0.041 (2) | −0.0003 (15) | −0.0010 (14) | −0.0016 (18) |
C12 | 0.0150 (19) | 0.043 (3) | 0.039 (3) | −0.0015 (18) | −0.0035 (17) | 0.000 (2) |
C13 | 0.0147 (16) | 0.044 (3) | 0.039 (3) | −0.0014 (17) | −0.0005 (18) | 0.005 (2) |
C14 | 0.0138 (18) | 0.046 (3) | 0.041 (3) | 0.0009 (18) | −0.0021 (17) | 0.004 (2) |
C15 | 0.0135 (18) | 0.051 (3) | 0.042 (3) | 0.0038 (19) | −0.0004 (18) | 0.002 (2) |
C16 | 0.0163 (19) | 0.051 (3) | 0.037 (2) | 0.0032 (19) | −0.0007 (17) | 0.005 (2) |
C17 | 0.025 (2) | 0.048 (3) | 0.033 (3) | 0.003 (2) | −0.0036 (19) | 0.004 (2) |
C18 | 0.021 (2) | 0.056 (3) | 0.044 (3) | 0.005 (2) | −0.0004 (18) | 0.004 (2) |
C19 | 0.033 (3) | 0.070 (4) | 0.042 (3) | 0.014 (2) | 0.008 (2) | 0.009 (3) |
C20 | 0.051 (3) | 0.061 (4) | 0.044 (3) | 0.018 (3) | 0.003 (3) | −0.002 (3) |
C21 | 0.052 (4) | 0.050 (3) | 0.045 (3) | 0.002 (3) | 0.003 (3) | 0.000 (3) |
C22 | 0.035 (3) | 0.052 (3) | 0.039 (3) | 0.001 (2) | −0.001 (2) | 0.000 (2) |
S1—C1 | 1.739 (5) | S2—C12 | 1.729 (5) |
S1—C2 | 1.739 (4) | S2—C13 | 1.746 (4) |
O1—C5 | 1.374 (5) | O12—C16 | 1.359 (5) |
O1—N2 | 1.402 (5) | O12—N13 | 1.398 (5) |
N1—C1 | 1.330 (6) | N12—C12 | 1.328 (6) |
N1—H1A | 0.8800 | N12—H12A | 0.8800 |
N1—H1B | 0.8800 | N12—H12B | 0.8800 |
N2—C3 | 1.315 (6) | N13—C14 | 1.312 (6) |
N3—C1 | 1.324 (5) | N14—C12 | 1.334 (5) |
N3—N4 | 1.377 (6) | N14—N15 | 1.376 (5) |
N4—C2 | 1.304 (6) | N15—C13 | 1.302 (6) |
C2—C3 | 1.441 (7) | C13—C14 | 1.449 (7) |
C3—C4 | 1.424 (6) | C14—C15 | 1.417 (6) |
C4—C5 | 1.348 (7) | C15—C16 | 1.352 (7) |
C4—H4 | 0.9500 | C15—H15 | 0.9500 |
C5—C6 | 1.449 (7) | C16—C17 | 1.458 (7) |
C6—C7 | 1.391 (7) | C17—C22 | 1.391 (7) |
C6—C11 | 1.402 (7) | C17—C18 | 1.402 (7) |
C7—C8 | 1.384 (7) | C18—C19 | 1.393 (7) |
C7—H7 | 0.9500 | C18—H18 | 0.9500 |
C8—C9 | 1.378 (9) | C19—C20 | 1.379 (8) |
C8—H8 | 0.9500 | C19—H19 | 0.9500 |
C9—C10 | 1.379 (9) | C20—C21 | 1.380 (8) |
C9—H9 | 0.9500 | C20—H20 | 0.9500 |
C10—C11 | 1.391 (8) | C21—C22 | 1.373 (7) |
C10—H10 | 0.9500 | C21—H21 | 0.9500 |
C11—H11 | 0.9500 | C22—H22 | 0.9500 |
C1—S1—C2 | 86.9 (2) | C12—S2—C13 | 87.1 (2) |
C5—O1—N2 | 108.4 (3) | C16—O12—N13 | 108.7 (4) |
C1—N1—H1A | 120.0 | C12—N12—H12A | 120.0 |
C1—N1—H1B | 120.0 | C12—N12—H12B | 120.0 |
H1A—N1—H1B | 120.0 | H12A—N12—H12B | 120.0 |
C3—N2—O1 | 105.7 (4) | C14—N13—O12 | 105.3 (4) |
C1—N3—N4 | 112.0 (4) | C12—N14—N15 | 111.7 (4) |
C2—N4—N3 | 113.4 (4) | C13—N15—N14 | 113.8 (4) |
N3—C1—N1 | 124.7 (4) | N12—C12—N14 | 124.0 (4) |
N3—C1—S1 | 113.8 (4) | N12—C12—S2 | 122.1 (3) |
N1—C1—S1 | 121.5 (3) | N14—C12—S2 | 113.9 (4) |
N4—C2—C3 | 124.3 (4) | N15—C13—C14 | 126.2 (4) |
N4—C2—S1 | 113.9 (4) | N15—C13—S2 | 113.5 (4) |
C3—C2—S1 | 121.7 (3) | C14—C13—S2 | 120.2 (3) |
N2—C3—C4 | 111.9 (4) | N13—C14—C15 | 112.2 (5) |
N2—C3—C2 | 118.6 (4) | N13—C14—C13 | 117.9 (4) |
C4—C3—C2 | 129.4 (4) | C15—C14—C13 | 129.8 (4) |
C5—C4—C3 | 104.4 (4) | C16—C15—C14 | 103.9 (4) |
C5—C4—H4 | 127.8 | C16—C15—H15 | 128.0 |
C3—C4—H4 | 127.8 | C14—C15—H15 | 128.0 |
C4—C5—O1 | 109.6 (4) | C15—C16—O12 | 109.8 (4) |
C4—C5—C6 | 133.6 (4) | C15—C16—C17 | 134.9 (4) |
O1—C5—C6 | 116.8 (4) | O12—C16—C17 | 115.4 (4) |
C7—C6—C11 | 119.6 (5) | C22—C17—C18 | 119.2 (5) |
C7—C6—C5 | 119.7 (5) | C22—C17—C16 | 120.6 (5) |
C11—C6—C5 | 120.6 (5) | C18—C17—C16 | 120.1 (5) |
C8—C7—C6 | 120.1 (5) | C19—C18—C17 | 119.2 (5) |
C8—C7—H7 | 119.9 | C19—C18—H18 | 120.4 |
C6—C7—H7 | 119.9 | C17—C18—H18 | 120.4 |
C9—C8—C7 | 120.2 (6) | C20—C19—C18 | 120.6 (5) |
C9—C8—H8 | 119.9 | C20—C19—H19 | 119.7 |
C7—C8—H8 | 119.9 | C18—C19—H19 | 119.7 |
C8—C9—C10 | 120.4 (6) | C19—C20—C21 | 119.9 (5) |
C8—C9—H9 | 119.8 | C19—C20—H20 | 120.0 |
C10—C9—H9 | 119.8 | C21—C20—H20 | 120.0 |
C9—C10—C11 | 120.3 (6) | C22—C21—C20 | 120.4 (6) |
C9—C10—H10 | 119.8 | C22—C21—H21 | 119.8 |
C11—C10—H10 | 119.8 | C20—C21—H21 | 119.8 |
C10—C11—C6 | 119.4 (5) | C21—C22—C17 | 120.7 (5) |
C10—C11—H11 | 120.3 | C21—C22—H22 | 119.7 |
C6—C11—H11 | 120.3 | C17—C22—H22 | 119.7 |
C5—O1—N2—C3 | 0.5 (5) | C16—O12—N13—C14 | 0.4 (5) |
C1—N3—N4—C2 | 0.8 (6) | C12—N14—N15—C13 | 0.3 (6) |
N4—N3—C1—N1 | −179.2 (5) | N15—N14—C12—N12 | 178.6 (5) |
N4—N3—C1—S1 | −0.2 (5) | N15—N14—C12—S2 | −0.7 (5) |
C2—S1—C1—N3 | −0.2 (4) | C13—S2—C12—N12 | −178.6 (5) |
C2—S1—C1—N1 | 178.7 (5) | C13—S2—C12—N14 | 0.7 (4) |
N3—N4—C2—C3 | −176.7 (5) | N14—N15—C13—C14 | 176.6 (5) |
N3—N4—C2—S1 | −1.0 (6) | N14—N15—C13—S2 | 0.3 (6) |
C1—S1—C2—N4 | 0.7 (4) | C12—S2—C13—N15 | −0.5 (4) |
C1—S1—C2—C3 | 176.5 (4) | C12—S2—C13—C14 | −177.1 (4) |
O1—N2—C3—C4 | 0.7 (6) | O12—N13—C14—C15 | −0.9 (6) |
O1—N2—C3—C2 | −176.3 (4) | O12—N13—C14—C13 | 176.6 (4) |
N4—C2—C3—N2 | −166.4 (5) | N15—C13—C14—N13 | 169.7 (5) |
S1—C2—C3—N2 | 18.2 (7) | S2—C13—C14—N13 | −14.2 (7) |
N4—C2—C3—C4 | 17.1 (9) | N15—C13—C14—C15 | −13.3 (9) |
S1—C2—C3—C4 | −158.3 (4) | S2—C13—C14—C15 | 162.9 (4) |
N2—C3—C4—C5 | −1.7 (6) | N13—C14—C15—C16 | 1.1 (6) |
C2—C3—C4—C5 | 174.9 (5) | C13—C14—C15—C16 | −176.1 (5) |
C3—C4—C5—O1 | 2.0 (6) | C14—C15—C16—O12 | −0.7 (6) |
C3—C4—C5—C6 | −180.0 (5) | C14—C15—C16—C17 | 178.6 (6) |
N2—O1—C5—C4 | −1.7 (6) | N13—O12—C16—C15 | 0.2 (6) |
N2—O1—C5—C6 | 179.9 (4) | N13—O12—C16—C17 | −179.2 (4) |
C4—C5—C6—C7 | 24.7 (9) | C15—C16—C17—C22 | 152.5 (6) |
O1—C5—C6—C7 | −157.4 (4) | O12—C16—C17—C22 | −28.2 (7) |
C4—C5—C6—C11 | −153.3 (6) | C15—C16—C17—C18 | −25.4 (9) |
O1—C5—C6—C11 | 24.5 (7) | O12—C16—C17—C18 | 154.0 (5) |
C11—C6—C7—C8 | 0.9 (8) | C22—C17—C18—C19 | −0.2 (7) |
C5—C6—C7—C8 | −177.2 (5) | C16—C17—C18—C19 | 177.7 (5) |
C6—C7—C8—C9 | 0.3 (8) | C17—C18—C19—C20 | −0.4 (8) |
C7—C8—C9—C10 | −1.2 (10) | C18—C19—C20—C21 | 1.0 (9) |
C8—C9—C10—C11 | 0.8 (10) | C19—C20—C21—C22 | −1.1 (9) |
C9—C10—C11—C6 | 0.4 (9) | C20—C21—C22—C17 | 0.5 (9) |
C7—C6—C11—C10 | −1.2 (8) | C18—C17—C22—C21 | 0.1 (8) |
C5—C6—C11—C10 | 176.8 (5) | C16—C17—C22—C21 | −177.8 (5) |
Cg4 and Cg6 are the centroids of the S2/N14/N15/C12/C13 and C17–C22 rings, respectively |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N14i | 0.88 | 2.10 | 2.974 (6) | 172 |
N1—H1B···N4ii | 0.88 | 2.20 | 3.071 (5) | 169 |
N12—H12A···N3iii | 0.88 | 2.06 | 2.933 (6) | 174 |
N12—H12B···N15iv | 0.88 | 2.24 | 3.108 (5) | 170 |
C4—H4···N2iv | 0.95 | 2.56 | 3.363 (6) | 142 |
C15—H15···N13ii | 0.95 | 2.46 | 3.323 (6) | 151 |
C8—H8···Cg6v | 0.95 | 2.98 | 3.774 (6) | 142 |
C22—H22···Cg4i | 0.95 | 2.95 | 3.648 (6) | 132 |
Symmetry codes: (i) x, y−1, z; (ii) x+1/2, −y, z; (iii) x, y+1, z; (iv) x−1/2, −y+1, z; (v) −x+1/2, y+1, z+1/2. |
Contact | Distance | Symmetry operation |
S1···H12B | 3.10 | 1/2 + x, 1 - y, z |
N2···H4 | 2.56 | 1/2 + x, 1 - y, z |
N3···H12A | 2.06 | x, -1 + y, z |
H1B···S2 | 3.09 | 1/2 + x, -y, z |
H1B···N4 | 2.20 | 1/2 + x, -y, z |
C2···N14 | 3.437 | x, y, z |
C4···H10 | 3.05 | x, -1 + y, z |
C7···H20 | 2.91 | 1 - x, -y, 1/2 + z |
H10···H19 | 2.49 | 1 - x, 1 - y, 1/2 + z |
H8···C18 | 2.87 | 1/2 - x, 1 + y, 1/2 + z |
H9···H21 | 2.59 | 1/2 - x, 2 + y, 1/2 + z |
N13···H15 | 2.46 | -1/2 + x, -y, z |
H12B···N15 | 2.24 | -1/2 + x, 1 - y, z |
C13···H22 | 2.91 | x, 1 + y, z |
C19···H22 | 2.94 | 1/2 + x, -1 - y, z |
Contact | molecule I | molecule II |
H···H | 26.6 | 25.3 |
N···H/H···N | 24.1 | 24.1 |
C···H/H···C | 19.3 | 21.0 |
S···C/C···S | 6.7 | 5.5 |
O···H/H···O | 6.0 | 5.5 |
S···H/H···S | 5.9 | 6.9 |
N···C/C···N | 4.5 | 5.3 |
O···C/C···O | 2.5 | 2.6 |
C···C | 1.3 | 0.9 |
O···N/N···O | 1.1 | 1.0 |
N···N | 1.0 | 0.9 |
S···N/N···S | 0.9 | 0.8 |
S···O/O···S | 0.1 | 0.1 |
Acknowledgements
The authors' contributions are as follows: Conceptualization, EVN, MA and SM; synthesis, EVN, EKP, SKP and EAA; X-ray analysis, STÇ, VNK and MA; writing (review and editing of the manuscript), EVN, STÇ, MA and SM; funding acquisition, EVN, SKP, EAA and SM; supervision, MA, SKP and SM.
Funding information
EVN is grateful to the Russian Foundation for Basic Research (RFBR) (award No. 19–53-04002, Bel_mol_a) and the Belarusian Republican Foundation for Fundamental Research (BRFFR) (award No. X20PM-056) for financial support of this research.
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bhinge, S. D., Chature, V. & Sonawane, L. V. (2015). Pharm. Chem. J. 49, 367–372. CrossRef CAS Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bumagin, N. A., Kletskov, A. V., Petkevich, S. K., Kolesnik, I. A., Lyakhov, A. S., Ivashkevich, L. S., Baranovsky, A. V., Kurman, P. V. & Potkin, V. I. (2018). Tetrahedron, 74, 3578–3588. CrossRef CAS Google Scholar
Das, S. & Chanda, K. (2021). RSC Adv. 11, 32680–32705. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27. Web of Science CSD CrossRef CAS Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Khalilullah, H., Khan, M. U., Mahmood, D., Akhtar, J. & Osman, G. (2014). Int. J. Pharm. Pharm. Sci. 6, 8–15. CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kletskov, A. V., Bumagin, N. A., Zubkov, F. I., Grudinin, D. G. & Potkin, V. I. (2020). Synthesis, 52, 159–188. CAS Google Scholar
Kudelko, A., Olesiejuk, M., Luczynski, M., Swiatkowski, M., Sieranski, T. & Kruszynski, R. (2020). Molecules, 25, 2822. CrossRef Google Scholar
Kulchitsky, V. A., Potkin, V. I., Zubenko, Y. S., Chernov, A. N., Talabaev, M. V., Demidchik, Y. E., Petkevich, S. K., Kazbanov, V. V., Gurinovich, T. A., Roeva, M. O., Grigoriev, D. G., Kletskov, A. V. & Kalunov, V. N. (2012). Med. Chem. 8, 22–32. CAS PubMed Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165. Web of Science CSD CrossRef CAS Google Scholar
Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. Web of Science CSD CrossRef CAS Google Scholar
Nayak, A. S. & Madhav, N. V. (2014). Acta Chim. Pharm. Indica, 4, 63–67. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Petkevich, S. K., Zhukovskaya, N. A., Dikusar, E. A., Akishina, E. A., Kurman, P. V., Nikitina, E. V., Zaytsev, V. P. & Potkin, V. I. (2021). Chem. Heterocycl. Compd, 57, 594–598. CrossRef CAS Google Scholar
Rayni, I., El Bakri, Y., Sebhaoui, J., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170315. Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185. Web of Science CSD CrossRef CAS Google Scholar
Sakthivel, P., Ilangovan, A. & Kaushik, M. P. (2016). Eur. J. Med. Chem. 122, 302–318. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shivakumara, N. & Krishna, P. M. (2019). Curr. Chem. Lett. 8, 157–168. CrossRef Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sun, X.-W., Hui, X.-P., Chu, C.-H. & Zhang, Z.-Y. (2001). Indian J. Chem. Sect. B, 40, 15–19. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Wang, J., Tang, X. & Yi, L. (2019). Pharmacology, 103, 273–281. CrossRef CAS PubMed Google Scholar
Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858. Web of Science CrossRef CAS Google Scholar
Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.