research communications
κ2N,O)(nitrato-κO)(nitrato-κ2O,O′)terbium(III) nitrate
and Hirshfeld surface analysis of tris(acetohydrazide-aThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand, and bNuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkharak, Nakon Nayok, 26120, Thailand
*Correspondence e-mail: kc@tu.ac.th
In the title lanthanide(III) compound, [Tb(NO3)2(C2H6N2O)3]NO3, the asymmetric unit contains one Tb3+ ion, three acetohydrazide (C2H6N2O) ligands, two coordinated nitrate anions, and an isolated nitrate anion. The Tb3+ ion is in a ninefold coordinated distorted tricapped trigonal–prismatic geometry formed by three oxygen atoms and three nitrogen atoms from three different acetohydrazide ligands and three oxygen atoms from two nitrate anions. In the crystal, the complex molecules and the non-coordinated nitrate anions are assembled into a three-dimensional supramolecular architecture through extensive N—H⋯O hydrogen-bonding interactions between the amine NH groups of the acetohydrazide ligands and the nitrate oxygen atoms. Hirshfeld surface analysis was performed to aid in the visualization of intermolecular contacts.
Keywords: crystal structure; acetohydrazide; Hirshfeld surface analysis; lanthanide(III) ion; terbium(III).
CCDC reference: 2101422
1. Chemical context
Over the past two decades, there has been increasing interest in the construction of new lanthanide-based coordination compounds, not only because of their structural diversity but also because of their fascinating potential applications in luminescence, magnetism, adsorption, and similar areas (Roy et al., 2014; Cui et al., 2018; Kuwamura et al., 2021). It is well known that lanthanide(III) ions have a high affinity for and prefer binding to hard donor atoms. Thus, organic ligands with oxygen donor atoms such as aromatic polycarboxylic acids have been used extensively for the formation of these coordination materials (Janicki et al., 2017) whereas organohydrazide ligands have received far less attention. Accordingly, a ConQuest search of the Cambridge Structural Database (CSD, Version 5.42, September 2021 update; Bruno et al., 2002; Groom et al., 2016) reveals only 23 entries for hydrazide-containing lanthanide complexes. Among them, 15 lanthanide coordination complexes have recently been reported by our groups. Some of these complexes exhibited a high CO2 uptake ability at high pressure (Theppitak et al., 2021a), and have shown great potential as luminescent sensors for acetone and the Co2+ ion with good recyclability (Theppitak et al., 2021b). In this work, we present the molecular structure of a new terbium(III) complex, [Tb(C2H6N2O)3(NO3)2]NO3 (1), synthesized with acetohydrazide (C2H6N2O) as the organic ligand. In addition, a Hirshfeld surface analysis and two-dimensional fingerprint plots were used to quantify the intermolecular contacts in the crystal structure.
2. Structural commentary
The molecular structure of 1 is shown in Fig. 1. The contains one Tb3+ ion, three acetohydrazide ligands, two coordinated nitrate anions, and a non-coordinated nitrate counter-anion. The Tb3+ ion is ninefold coordinated (TbN3O6) by three nitrogen atoms and three oxygen atoms from three different acetohydrazide ligands, two oxygen atoms from one chelate nitrate anion, and one oxygen atom from another nitrate anion. As can be seen in Fig. 2, the of the Tb3+ ion is best described as having a distorted tricapped trigonal–prismatic geometry, wherein the N3, N5, O1, O3, O4, and O7 atoms form a trigonal prism, while the N1, O2, and O5 atoms act as caps. The Tb—O bond lengths of 2.353 (2)–2.496 (2) Å are slightly shorter than the Tb—N bond lengths [2.553 (2)–2.586 (2) Å]. The bond angles around the central Tb3+ ion fall into the range of 50.93 (7)–150.97 (7)°. These values are comparable to those reported for other ninefold-coordinated Tb3+ compounds containing oxygen/nitrogen-donor ligands such as [Tb(C17H13N3)(NO3)2(DMSO)]·CH3OH (VUKNEW, Chen et al., 2015) and [Tb(C13H22N3)(NO3)3]·MeCN (SEZTOJ, Long et al., 2018).
3. Supramolecular features
Extensive hydrogen-bonding interactions involving the three components of the hydrazide group of the acetohydrazide ligand and the coordinated and non-coordinated nitrate ions contribute to the stabilization of the supramolecular structure of 1 (Table 1; the N—H distances are all fixed with N—H = 0.86 ± 0.02 Å). A closer inspection of the structure reveals that the [Tb(C2H6N2O)3(NO3)2]+ complex molecules form centrosymmetric dimers via pairs of symmetry-related N3—H3B⋯O6 hydrogen bonds involving the amine NH group of the acetohydrazide ligand and the coordinated nitrate oxygen atom, Fig. 3. Notably, the amine NH donor and the coordinated nitrate oxygen acceptor is also involved in an intramolecular N1—H1A⋯O8 hydrogen bond. The dimers are further held together through an intermolecular N3—H3A⋯O9 hydrogen bond between the amine NH and the coordinated nitrate oxygen (O9), resulting in the formation of a two-dimensional supramolecular layer that propagates in the [100] direction, Fig. 4. Ultimately, adjacent layers are connected into a three-dimensional supramolecular architecture via the other two complementary N—H⋯O hydrogen-bonding interactions (i.e. N5—H5B⋯O3 and N6—H6⋯O7) occurring between the acetohydrazide ligands and the coordinated nitrate ions, Fig. 5. In addition, the non-coordinated nitrate anion is located in cavities along the b axis and serves as the acceptor site for six N—H⋯O hydrogen-bonding interactions (i.e. N1—H1B⋯O10, N2—H2⋯O12, N4—H4⋯O10, N4—H4⋯O11, N5—H5A⋯O10, and N5—H5A⋯O12) as shown in Fig. 6.
4. Hirshfeld surface analysis
The Hirshfeld surface analysis (McKinnon et al., 2007) and the associated two-dimensional fingerprint plot generation (Spackman & McKinnon, 2002) were carried out using CrystalExplorer17 (Turner et al., 2017) in order to quantify the nature of the intermolecular interactions present in the and the results are shown in Figs. 7 and 8. The most significant contributions to the dnorm surfaces are H⋯O/O⋯H contacts (i.e. N—H⋯O hydrogen bonds), contributing 62.8% to the overall crystal packing of the title compound. The H⋯H contacts (representing van der Waals interactions) with a 22.8% contribution play a minor role in the stabilization of the crystal packing. All other N⋯O/O⋯N, O⋯O and H⋯N/N⋯H contacts make only negligible contributions to the Hirshfeld surface.
5. Database survey
A ConQuest search of the Cambridge Structural Database (CSD, Version 5.42, September 2021 update; Bruno et al., 2002; Groom et al., 2016) for the structures of lanthanide complexes with acetohydrazide ligands gave ten hits, viz. Er [CECLEB (Pangani et al., 1983), CECLEB10 (Agre et al., 1984)], Dy [CECLIF (Pangani et al., 1983), CECLIF10 (Pangani, Agre et al., 1984)], Ho [CECLOL (Pangani et al., 1983), CECLOL10 (Pangani, Agre et al., 1984)], Pr (CUWFAB; Pangani, Machhoshvili et al., 1984), Gd (FOYGIM; Brandão et al., 2020), and Sm [ISNHSM (Zinner et al., 1979), QITBIH (Theppitak et al., 2018)]. In all of these complexes, the acetohydrazide ligand adopts a μ2-κ1:κ1 bidentate chelating coordination mode to bind the lanthanide(III) ion and the amine NH moiety of the acetohydrazide ligand can act as a donor site for intermolecular hydrogen-bonding interactions, similar to that of the title compound.
6. Synthesis and crystallization
A mixture of Tb(NO3)3·6H2O (45.3 mg, 0.1 mmol), acetohydrazide (14.8 mg, 0.2 mmol), and isopropyl alcohol (4 ml) was sealed in a 15 ml Teflon-lined steel autoclave and heated at 373 K for 24 h. The mixture was cooled to room temperature and colorless block-shaped crystals of the title compound (1) were obtained in 87% yield (39.3 mg, based on Tb3+ source). Analysis calculated (%) for C6H18N9O12Tb: C 12.71; H 3.20; N 22.23%. Found: C 12.44; H 3.96; N 21.89%.
7. Refinement
Crystal data, data collection and structure . All hydrogen atoms were located in difference-Fourier maps. All carbon-bound hydrogen atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). All nitrogen-bound hydrogen atoms were refined with a fixed distance N—H = 0.86 ± 0.02 Å.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2101422
https://doi.org/10.1107/S2056989022002298/yz2015sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989022002298/yz2015Isup3.cdx
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022002298/yz2015Isup4.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Tb(NO3)2(C2H6N2O)3]NO3 | F(000) = 1112 |
Mr = 567.21 | Dx = 2.096 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.9076 (3) Å | Cell parameters from 9937 reflections |
b = 9.7786 (3) Å | θ = 3.0–33.1° |
c = 16.8578 (5) Å | µ = 4.01 mm−1 |
β = 90.791 (1)° | T = 296 K |
V = 1797.90 (9) Å3 | Block, colourless |
Z = 4 | 0.28 × 0.21 × 0.2 mm |
Bruker D8 QUEST CMOS diffractometer | 6876 independent reflections |
Radiation source: sealed x-ray tube, Mo | 5752 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 7.39 pixels mm-1 | θmax = 33.2°, θmin = 2.8° |
ω and φ scans | h = −16→14 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −15→14 |
Tmin = 0.471, Tmax = 0.747 | l = −25→25 |
47511 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0127P)2 + 1.6017P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.044 | (Δ/σ)max = 0.003 |
S = 1.08 | Δρmax = 1.12 e Å−3 |
6876 reflections | Δρmin = −1.13 e Å−3 |
293 parameters | Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
9 restraints | Extinction coefficient: 0.00248 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Tb1 | 0.53793 (2) | 0.69267 (2) | 0.81234 (2) | 0.01794 (3) | |
O1 | 0.53302 (15) | 0.88900 (15) | 0.73061 (9) | 0.0316 (3) | |
O2 | 0.48569 (13) | 0.88947 (16) | 0.88653 (10) | 0.0310 (3) | |
O3 | 0.68110 (13) | 0.63211 (16) | 0.71532 (9) | 0.0275 (3) | |
O4 | 0.5610 (2) | 0.6421 (2) | 0.95580 (11) | 0.0535 (5) | |
O5 | 0.68865 (16) | 0.53978 (19) | 0.88111 (12) | 0.0425 (4) | |
O6 | 0.7062 (2) | 0.5199 (3) | 1.00927 (15) | 0.0780 (8) | |
O7 | 0.47104 (13) | 0.45766 (15) | 0.79809 (10) | 0.0297 (3) | |
O8 | 0.27693 (15) | 0.46317 (18) | 0.76534 (12) | 0.0430 (4) | |
O9 | 0.37120 (17) | 0.26983 (17) | 0.77663 (12) | 0.0431 (4) | |
O10 | 0.51235 (17) | 0.6218 (2) | 0.38477 (11) | 0.0446 (4) | |
O11 | 0.57284 (17) | 0.6504 (3) | 0.50502 (13) | 0.0598 (6) | |
O12 | 0.38755 (14) | 0.70400 (18) | 0.47151 (9) | 0.0337 (4) | |
N1 | 0.4200 (2) | 0.6697 (2) | 0.67879 (12) | 0.0302 (4) | |
H1A | 0.3464 (17) | 0.647 (3) | 0.6859 (16) | 0.040 (8)* | |
H1B | 0.454 (3) | 0.608 (3) | 0.6519 (16) | 0.050 (9)* | |
N2 | 0.42249 (18) | 0.7916 (2) | 0.63406 (11) | 0.0294 (4) | |
H2 | 0.401 (3) | 0.789 (3) | 0.5854 (11) | 0.048 (9)* | |
N3 | 0.31650 (17) | 0.7017 (2) | 0.86115 (13) | 0.0301 (4) | |
H3A | 0.265 (2) | 0.694 (3) | 0.8222 (13) | 0.038 (7)* | |
H3B | 0.302 (3) | 0.635 (2) | 0.8919 (16) | 0.051 (9)* | |
N4 | 0.29181 (17) | 0.8249 (2) | 0.90180 (12) | 0.0327 (4) | |
H4 | 0.2186 (19) | 0.842 (3) | 0.9187 (18) | 0.060 (10)* | |
N5 | 0.74028 (16) | 0.82302 (19) | 0.82323 (11) | 0.0243 (4) | |
H5A | 0.786 (2) | 0.809 (3) | 0.8643 (13) | 0.040 (8)* | |
H5B | 0.722 (2) | 0.9075 (18) | 0.8197 (16) | 0.040 (8)* | |
N6 | 0.81190 (16) | 0.79567 (19) | 0.75554 (12) | 0.0274 (4) | |
H6 | 0.8761 (18) | 0.842 (2) | 0.7489 (15) | 0.035 (7)* | |
N7 | 0.6533 (2) | 0.5651 (2) | 0.95054 (14) | 0.0433 (5) | |
N8 | 0.36977 (17) | 0.39549 (19) | 0.77997 (11) | 0.0290 (4) | |
N9 | 0.49126 (17) | 0.6579 (2) | 0.45403 (11) | 0.0286 (4) | |
C1 | 0.48401 (19) | 0.8957 (2) | 0.66389 (13) | 0.0258 (4) | |
C2 | 0.4922 (3) | 1.0227 (3) | 0.61533 (16) | 0.0426 (6) | |
H2A | 0.472625 | 1.100447 | 0.647550 | 0.064* | |
H2B | 0.435281 | 1.017233 | 0.571491 | 0.064* | |
H2C | 0.573927 | 1.032232 | 0.595665 | 0.064* | |
C3 | 0.38049 (19) | 0.9150 (2) | 0.90919 (12) | 0.0246 (4) | |
C4 | 0.3478 (2) | 1.0492 (3) | 0.94566 (15) | 0.0376 (5) | |
H4A | 0.401145 | 1.066733 | 0.990255 | 0.056* | |
H4B | 0.264351 | 1.046395 | 0.963032 | 0.056* | |
H4C | 0.356757 | 1.120640 | 0.907122 | 0.056* | |
C5 | 0.77501 (18) | 0.7031 (2) | 0.70400 (13) | 0.0246 (4) | |
C6 | 0.8488 (2) | 0.6862 (3) | 0.63059 (16) | 0.0421 (6) | |
H6A | 0.895336 | 0.603072 | 0.634062 | 0.063* | |
H6B | 0.903604 | 0.762411 | 0.625384 | 0.063* | |
H6C | 0.794817 | 0.682378 | 0.585182 | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.01473 (4) | 0.01950 (5) | 0.01956 (5) | 0.00037 (4) | −0.00101 (3) | −0.00128 (4) |
O1 | 0.0418 (9) | 0.0248 (8) | 0.0279 (8) | −0.0019 (7) | −0.0130 (7) | 0.0027 (6) |
O2 | 0.0230 (7) | 0.0316 (8) | 0.0386 (9) | −0.0015 (6) | 0.0073 (6) | −0.0121 (7) |
O3 | 0.0225 (7) | 0.0280 (8) | 0.0321 (8) | −0.0051 (6) | 0.0061 (6) | −0.0090 (6) |
O4 | 0.0599 (13) | 0.0684 (13) | 0.0320 (10) | 0.0158 (11) | −0.0029 (9) | 0.0067 (9) |
O5 | 0.0319 (9) | 0.0424 (10) | 0.0530 (12) | 0.0057 (8) | −0.0068 (8) | 0.0097 (9) |
O6 | 0.0641 (14) | 0.102 (2) | 0.0668 (15) | −0.0119 (14) | −0.0300 (12) | 0.0547 (14) |
O7 | 0.0236 (7) | 0.0240 (7) | 0.0414 (9) | −0.0037 (6) | −0.0017 (6) | −0.0023 (7) |
O8 | 0.0224 (8) | 0.0387 (10) | 0.0679 (13) | 0.0003 (7) | −0.0027 (8) | 0.0016 (9) |
O9 | 0.0467 (11) | 0.0227 (8) | 0.0598 (12) | −0.0082 (8) | −0.0065 (9) | 0.0001 (8) |
O10 | 0.0487 (11) | 0.0525 (11) | 0.0331 (9) | 0.0088 (9) | 0.0142 (8) | −0.0051 (8) |
O11 | 0.0280 (9) | 0.1001 (17) | 0.0510 (12) | 0.0141 (10) | −0.0115 (9) | −0.0132 (12) |
O12 | 0.0214 (7) | 0.0512 (10) | 0.0284 (8) | 0.0049 (7) | 0.0009 (6) | −0.0029 (7) |
N1 | 0.0331 (10) | 0.0294 (10) | 0.0278 (9) | −0.0056 (8) | −0.0048 (8) | −0.0015 (8) |
N2 | 0.0332 (10) | 0.0370 (11) | 0.0178 (8) | −0.0010 (8) | −0.0041 (7) | 0.0008 (8) |
N3 | 0.0217 (8) | 0.0310 (10) | 0.0377 (11) | −0.0035 (8) | 0.0021 (8) | −0.0029 (9) |
N4 | 0.0198 (8) | 0.0376 (11) | 0.0410 (11) | 0.0027 (8) | 0.0094 (8) | −0.0069 (9) |
N5 | 0.0234 (8) | 0.0233 (9) | 0.0261 (9) | −0.0011 (7) | −0.0032 (7) | −0.0024 (7) |
N6 | 0.0213 (8) | 0.0257 (9) | 0.0352 (10) | −0.0075 (7) | 0.0036 (7) | −0.0022 (8) |
N7 | 0.0389 (11) | 0.0437 (13) | 0.0470 (13) | −0.0100 (10) | −0.0171 (10) | 0.0220 (11) |
N8 | 0.0277 (9) | 0.0257 (9) | 0.0337 (10) | −0.0065 (8) | 0.0027 (8) | −0.0008 (8) |
N9 | 0.0237 (9) | 0.0321 (10) | 0.0300 (9) | −0.0011 (7) | 0.0041 (7) | 0.0022 (8) |
C1 | 0.0233 (10) | 0.0299 (11) | 0.0242 (9) | 0.0054 (8) | 0.0013 (8) | 0.0019 (8) |
C2 | 0.0429 (14) | 0.0443 (14) | 0.0404 (14) | −0.0028 (12) | −0.0072 (11) | 0.0157 (12) |
C3 | 0.0248 (9) | 0.0301 (10) | 0.0189 (9) | 0.0048 (9) | 0.0016 (7) | −0.0013 (8) |
C4 | 0.0361 (12) | 0.0364 (13) | 0.0403 (13) | 0.0112 (10) | 0.0027 (10) | −0.0104 (11) |
C5 | 0.0221 (9) | 0.0221 (9) | 0.0296 (10) | 0.0016 (8) | 0.0035 (8) | 0.0010 (8) |
C6 | 0.0414 (13) | 0.0411 (14) | 0.0445 (14) | −0.0059 (12) | 0.0206 (11) | −0.0097 (12) |
Tb1—O1 | 2.3632 (15) | N2—H2 | 0.849 (17) |
Tb1—O2 | 2.3690 (15) | N2—C1 | 1.316 (3) |
Tb1—O3 | 2.3525 (14) | N3—H3A | 0.865 (17) |
Tb1—O4 | 2.4779 (19) | N3—H3B | 0.850 (17) |
Tb1—O5 | 2.4959 (17) | N3—N4 | 1.414 (3) |
Tb1—O7 | 2.4220 (15) | N4—H4 | 0.867 (17) |
Tb1—N1 | 2.587 (2) | N4—C3 | 1.313 (3) |
Tb1—N3 | 2.5640 (19) | N5—H5A | 0.857 (17) |
Tb1—N5 | 2.5532 (18) | N5—H5B | 0.851 (17) |
O1—C1 | 1.240 (2) | N5—N6 | 1.417 (3) |
O2—C3 | 1.240 (2) | N6—H6 | 0.845 (17) |
O3—C5 | 1.254 (2) | N6—C5 | 1.314 (3) |
O4—N7 | 1.261 (3) | C1—C2 | 1.491 (3) |
O5—N7 | 1.262 (3) | C2—H2A | 0.9600 |
O6—N7 | 1.222 (3) | C2—H2B | 0.9600 |
O7—N8 | 1.294 (2) | C2—H2C | 0.9600 |
O8—N8 | 1.232 (2) | C3—C4 | 1.494 (3) |
O9—N8 | 1.230 (2) | C4—H4A | 0.9600 |
O10—N9 | 1.244 (2) | C4—H4B | 0.9600 |
O11—N9 | 1.231 (3) | C4—H4C | 0.9600 |
O12—N9 | 1.257 (2) | C5—C6 | 1.494 (3) |
N1—H1A | 0.844 (17) | C6—H6A | 0.9600 |
N1—H1B | 0.845 (17) | C6—H6B | 0.9600 |
N1—N2 | 1.411 (3) | C6—H6C | 0.9600 |
O1—Tb1—O2 | 69.15 (6) | H3A—N3—H3B | 106 (3) |
O1—Tb1—O4 | 137.09 (7) | N4—N3—Tb1 | 111.81 (13) |
O1—Tb1—O5 | 140.08 (6) | N4—N3—H3A | 108.2 (18) |
O1—Tb1—O7 | 135.12 (5) | N4—N3—H3B | 109 (2) |
O1—Tb1—N1 | 63.66 (6) | N3—N4—H4 | 120 (2) |
O1—Tb1—N3 | 98.35 (6) | C3—N4—N3 | 118.22 (18) |
O1—Tb1—N5 | 69.45 (6) | C3—N4—H4 | 121 (2) |
O2—Tb1—O4 | 70.66 (7) | Tb1—N5—H5A | 118.0 (19) |
O2—Tb1—O5 | 113.77 (6) | Tb1—N5—H5B | 106.4 (19) |
O2—Tb1—O7 | 138.48 (5) | H5A—N5—H5B | 110 (3) |
O2—Tb1—N1 | 114.19 (6) | N6—N5—Tb1 | 109.48 (12) |
O2—Tb1—N3 | 64.41 (6) | N6—N5—H5A | 107.6 (19) |
O2—Tb1—N5 | 76.73 (5) | N6—N5—H5B | 104.8 (19) |
O3—Tb1—O1 | 79.00 (6) | N5—N6—H6 | 118.1 (18) |
O3—Tb1—O2 | 137.59 (5) | C5—N6—N5 | 119.68 (17) |
O3—Tb1—O4 | 124.67 (6) | C5—N6—H6 | 122.1 (18) |
O3—Tb1—O5 | 74.51 (6) | O4—N7—O5 | 115.89 (19) |
O3—Tb1—O7 | 83.93 (5) | O6—N7—O4 | 121.8 (3) |
O3—Tb1—N1 | 72.54 (6) | O6—N7—O5 | 122.3 (3) |
O3—Tb1—N3 | 150.36 (6) | O8—N8—O7 | 119.45 (18) |
O3—Tb1—N5 | 66.06 (5) | O9—N8—O7 | 117.96 (19) |
O4—Tb1—O5 | 50.93 (7) | O9—N8—O8 | 122.57 (19) |
O4—Tb1—N1 | 150.97 (7) | O10—N9—O12 | 120.03 (19) |
O4—Tb1—N3 | 77.11 (7) | O11—N9—O10 | 119.8 (2) |
O4—Tb1—N5 | 87.34 (7) | O11—N9—O12 | 120.1 (2) |
O5—Tb1—N1 | 131.95 (7) | O1—C1—N2 | 121.1 (2) |
O5—Tb1—N3 | 119.27 (7) | O1—C1—C2 | 120.9 (2) |
O5—Tb1—N5 | 72.69 (6) | N2—C1—C2 | 118.0 (2) |
O7—Tb1—O4 | 86.19 (7) | C1—C2—H2A | 109.5 |
O7—Tb1—O5 | 70.93 (6) | C1—C2—H2B | 109.5 |
O7—Tb1—N1 | 71.68 (6) | C1—C2—H2C | 109.5 |
O7—Tb1—N3 | 77.33 (6) | H2A—C2—H2B | 109.5 |
O7—Tb1—N5 | 137.71 (5) | H2A—C2—H2C | 109.5 |
N3—Tb1—N1 | 79.81 (7) | H2B—C2—H2C | 109.5 |
N5—Tb1—N1 | 121.66 (6) | O2—C3—N4 | 121.3 (2) |
N5—Tb1—N3 | 140.98 (6) | O2—C3—C4 | 122.1 (2) |
C1—O1—Tb1 | 125.30 (14) | N4—C3—C4 | 116.64 (19) |
C3—O2—Tb1 | 123.84 (14) | C3—C4—H4A | 109.5 |
C5—O3—Tb1 | 121.19 (13) | C3—C4—H4B | 109.5 |
N7—O4—Tb1 | 96.95 (15) | C3—C4—H4C | 109.5 |
N7—O5—Tb1 | 96.06 (14) | H4A—C4—H4B | 109.5 |
N8—O7—Tb1 | 136.41 (13) | H4A—C4—H4C | 109.5 |
Tb1—N1—H1A | 111.2 (19) | H4B—C4—H4C | 109.5 |
Tb1—N1—H1B | 108 (2) | O3—C5—N6 | 121.60 (19) |
H1A—N1—H1B | 108 (3) | O3—C5—C6 | 121.0 (2) |
N2—N1—Tb1 | 112.25 (13) | N6—C5—C6 | 117.39 (19) |
N2—N1—H1A | 109.1 (19) | C5—C6—H6A | 109.5 |
N2—N1—H1B | 108 (2) | C5—C6—H6B | 109.5 |
N1—N2—H2 | 119 (2) | C5—C6—H6C | 109.5 |
C1—N2—N1 | 117.60 (18) | H6A—C6—H6B | 109.5 |
C1—N2—H2 | 122 (2) | H6A—C6—H6C | 109.5 |
Tb1—N3—H3A | 111.3 (19) | H6B—C6—H6C | 109.5 |
Tb1—N3—H3B | 110 (2) | ||
Tb1—O1—C1—N2 | 3.9 (3) | Tb1—O7—N8—O9 | 178.18 (15) |
Tb1—O1—C1—C2 | −176.58 (17) | Tb1—N1—N2—C1 | 1.4 (2) |
Tb1—O2—C3—N4 | 8.5 (3) | Tb1—N3—N4—C3 | 0.0 (3) |
Tb1—O2—C3—C4 | −171.10 (16) | Tb1—N5—N6—C5 | −6.9 (2) |
Tb1—O3—C5—N6 | 14.8 (3) | N1—N2—C1—O1 | −3.4 (3) |
Tb1—O3—C5—C6 | −164.56 (17) | N1—N2—C1—C2 | 177.1 (2) |
Tb1—O4—N7—O5 | −4.1 (2) | N3—N4—C3—O2 | −5.3 (3) |
Tb1—O4—N7—O6 | 174.7 (2) | N3—N4—C3—C4 | 174.4 (2) |
Tb1—O5—N7—O4 | 4.0 (2) | N5—N6—C5—O3 | −4.1 (3) |
Tb1—O5—N7—O6 | −174.7 (2) | N5—N6—C5—C6 | 175.3 (2) |
Tb1—O7—N8—O8 | −0.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O8 | 0.84 (2) | 2.37 (2) | 2.950 (3) | 126 (2) |
N1—H1B···O10i | 0.85 (2) | 2.36 (2) | 3.136 (3) | 153 (3) |
N2—H2···O11 | 0.85 (2) | 2.69 (3) | 3.070 (3) | 109 (2) |
N2—H2···O12 | 0.85 (2) | 2.09 (2) | 2.891 (2) | 156 (3) |
N3—H3A···O8 | 0.87 (2) | 2.46 (3) | 2.866 (3) | 110 (2) |
N3—H3A···O9ii | 0.87 (2) | 2.33 (2) | 3.146 (3) | 157 (2) |
N3—H3B···O6iii | 0.85 (2) | 2.25 (2) | 3.089 (3) | 168 (3) |
N4—H4···O10iv | 0.87 (2) | 2.34 (2) | 3.102 (3) | 147 (3) |
N4—H4···O11iv | 0.87 (2) | 2.17 (2) | 2.984 (3) | 156 (3) |
N5—H5A···O10v | 0.86 (2) | 2.58 (2) | 3.176 (3) | 128 (2) |
N5—H5A···O12v | 0.86 (2) | 2.11 (2) | 2.964 (2) | 173 (3) |
N5—H5B···O3vi | 0.85 (2) | 2.51 (2) | 3.211 (2) | 140 (2) |
N6—H6···O7vi | 0.85 (2) | 2.17 (2) | 2.999 (2) | 166 (2) |
N6—H6···O10v | 0.85 (2) | 2.74 (2) | 3.170 (3) | 114 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x+1, −y+1, −z+2; (iv) x−1/2, −y+3/2, z+1/2; (v) x+1/2, −y+3/2, z+1/2; (vi) −x+3/2, y+1/2, −z+3/2. |
Funding information
The authors gratefully acknowledge the financial support provided by the Thailand Institute of Nuclear Technology (Public Organization), through its program of TINT to University (grant to KC). This study was also partially supported by the Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa). CT would like to acknowledge a Graduate Development Scholarship 2020, National Research Council of Thailand (contract No. 15/2563).
References
Agre, V. M., Pangani, V. S. & Trunov, V. K. (1984). Koord. Khim. 10, 120–128 Google Scholar
Brandão, S. G., Ribeiro, M. A., Perrella, R. V., de Sousa Filho, P. C. & Luz, P. P. (2020). J. Rare Earths, 38, 642–648. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chen, P., Zhang, M., Sun, W., Li, H., Zhao, L. & Yan, P. (2015). CrystEngComm, 17, 5066–5073. Web of Science CSD CrossRef CAS Google Scholar
Cui, Y., Zhang, J., He, H. & Qian, G. (2018). Chem. Soc. Rev. 47, 5740–5785. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Janicki, R., Mondry, A. & Starynowicz, P. (2017). Coord. Chem. Rev. 340, 98–133. Web of Science CrossRef CAS Google Scholar
Kuwamura, N. & Konno, T. (2021). Inorg. Chem. Front. 8, 2634–649. Web of Science CrossRef CAS Google Scholar
Long, J., Lyubov, D. M., Mahrova, T. V., Cherkasov, A. V., Fukin, G. K., Guari, Y., Larionova, J. & Trifonov, A. A. (2018). Dalton Trans. 47, 5153–5156. Web of Science CSD CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Pangani, V. S., Agre, V. M. & Trunov, V. K. (1983). Zh. Neorg. Khim. 28, 2136–2137. CAS Google Scholar
Pangani, V. S., Agre, V. M., Trunov, V. K. & Machkhoshvili, R. I. (1984). Koord. Khim. 10, 1128–1131. CAS Google Scholar
Pangani, V. S., Machhoshvili, R. I., Agre, V. M., Trunov, V. K. & Shchelokov, R. N. (1984). Inorg. Chim. Acta, 94, 79. Web of Science CSD CrossRef Google Scholar
Roy, S., Chakraborty, A. & Maji, T. P. (2014). Coord. Chem. Rev. 273–274, 139–164. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Theppitak, C., Jiajaroen, S., Chongboriboon, N., Chanthee, S., Kielar, F., Dungkaew, W., Sukwattanasinitt, M. & Chainok, K. (2021b). Molecules, 26, 4428. Web of Science CrossRef PubMed Google Scholar
Theppitak, C., Kielar, F. & Chainok, K. (2018). Acta Cryst. E74, 1691–1694. Web of Science CSD CrossRef IUCr Journals Google Scholar
Theppitak, C., Kielar, F., Dungkaew, W., Sukwattanasinitt, M., Kangkaew, L., Sahasithiwat, S., Zenno, H., Hayami, S. & Chainok, K. (2021a). RSC Adv. 11, 24709–24721. Web of Science CSD CrossRef CAS Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Zinner, L. B., Crotty, D. E., Anderson, T. J. & Glick, M. D. (1979). Inorg. Chem. 18, 2045–2048. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.