research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of tris­­(acetohydrazide-κ2N,O)(nitrato-κO)(nitrato-κ2O,O′)terbium(III) nitrate

crossmark logo

aThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand, and bNuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkharak, Nakon Nayok, 26120, Thailand
*Correspondence e-mail: kc@tu.ac.th

Edited by C. Schulzke, Universität Greifswald, Germany (Received 29 December 2021; accepted 27 February 2022; online 8 March 2022)

In the title lanthanide(III) compound, [Tb(NO3)2(C2H6N2O)3]NO3, the asym­metric unit contains one Tb3+ ion, three acetohydrazide (C2H6N2O) ligands, two coordinated nitrate anions, and an isolated nitrate anion. The Tb3+ ion is in a ninefold coordinated distorted tricapped trigonal–prismatic geometry formed by three oxygen atoms and three nitro­gen atoms from three different acetohydrazide ligands and three oxygen atoms from two nitrate anions. In the crystal, the complex mol­ecules and the non-coordinated nitrate anions are assembled into a three-dimensional supra­molecular architecture through extensive N—H⋯O hydrogen-bonding inter­actions between the amine NH groups of the acetohydrazide ligands and the nitrate oxygen atoms. Hirshfeld surface analysis was performed to aid in the visualization of inter­mol­ecular contacts.

1. Chemical context

Over the past two decades, there has been increasing inter­est in the construction of new lanthanide-based coordination compounds, not only because of their structural diversity but also because of their fascinating potential applications in luminescence, magnetism, adsorption, and similar areas (Roy et al., 2014[Roy, S., Chakraborty, A. & Maji, T. P. (2014). Coord. Chem. Rev. 273-274, 139-164.]; Cui et al., 2018[Cui, Y., Zhang, J., He, H. & Qian, G. (2018). Chem. Soc. Rev. 47, 5740-5785.]; Kuwamura et al., 2021[Kuwamura, N. & Konno, T. (2021). Inorg. Chem. Front. 8, 2634-649.]). It is well known that lanthanide(III) ions have a high affinity for and prefer binding to hard donor atoms. Thus, organic ligands with oxygen donor atoms such as aromatic polycarb­oxy­lic acids have been used extensively for the formation of these coordination materials (Janicki et al., 2017[Janicki, R., Mondry, A. & Starynowicz, P. (2017). Coord. Chem. Rev. 340, 98-133.]) whereas organohydrazide ligands have received far less attention. Accordingly, a ConQuest search of the Cambridge Structural Database (CSD, Version 5.42, September 2021 update; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals only 23 entries for hydrazide-containing lanthanide complexes. Among them, 15 lanthanide coordination complexes have recently been reported by our groups. Some of these complexes exhibited a high CO2 uptake ability at high pressure (Theppitak et al., 2021a[Theppitak, C., Kielar, F., Dungkaew, W., Sukwattanasinitt, M., Kangkaew, L., Sahasithiwat, S., Zenno, H., Hayami, S. & Chainok, K. (2021a). RSC Adv. 11, 24709-24721.]), and have shown great potential as luminescent sensors for acetone and the Co2+ ion with good recyclability (Theppitak et al., 2021b[Theppitak, C., Jiajaroen, S., Chongboriboon, N., Chanthee, S., Kielar, F., Dungkaew, W., Sukwattanasinitt, M. & Chainok, K. (2021b). Molecules, 26, 4428.]). In this work, we present the mol­ecular structure of a new terbium(III) complex, [Tb(C2H6N2O)3(NO3)2]NO3 (1), synthesized with acetohydrazide (C2H6N2O) as the organic ligand. In addition, a Hirshfeld surface analysis and two-dimensional fingerprint plots were used to qu­antify the inter­molecular contacts in the crystal structure.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of 1 is shown in Fig. 1[link]. The asymmetric unit contains one Tb3+ ion, three acetohydrazide ligands, two coordinated nitrate anions, and a non-coordinated nitrate counter-anion. The Tb3+ ion is ninefold coordinated (TbN3O6) by three nitro­gen atoms and three oxygen atoms from three different acetohydrazide ligands, two oxygen atoms from one chelate nitrate anion, and one oxygen atom from another nitrate anion. As can be seen in Fig. 2[link], the coordination polyhedron of the Tb3+ ion is best described as having a distorted tricapped trigonal–prismatic geometry, wherein the N3, N5, O1, O3, O4, and O7 atoms form a trigonal prism, while the N1, O2, and O5 atoms act as caps. The Tb—O bond lengths of 2.353 (2)–2.496 (2) Å are slightly shorter than the Tb—N bond lengths [2.553 (2)–2.586 (2) Å]. The bond angles around the central Tb3+ ion fall into the range of 50.93 (7)–150.97 (7)°. These values are comparable to those reported for other ninefold-coordinated Tb3+ compounds containing oxygen/nitro­gen-donor ligands such as [Tb(C17H13N3)(NO3)2(DMSO)]·CH3OH (VUKNEW, Chen et al., 2015[Chen, P., Zhang, M., Sun, W., Li, H., Zhao, L. & Yan, P. (2015). CrystEngComm, 17, 5066-5073.]) and [Tb(C13H22N3)(NO3)3]·MeCN (SEZTOJ, Long et al., 2018[Long, J., Lyubov, D. M., Mahrova, T. V., Cherkasov, A. V., Fukin, G. K., Guari, Y., Larionova, J. & Trifonov, A. A. (2018). Dalton Trans. 47, 5153-5156.]).

[Figure 1]
Figure 1
Mol­ecular structure of 1, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
View of the distorted tricapped trigonal–prismatic coordination geometry of the central Tb3+ atom in 1.

3. Supra­molecular features

Extensive hydrogen-bonding inter­actions involving the three components of the hydrazide group of the acetohydrazide ligand and the coordinated and non-coordinated nitrate ions contribute to the stabilization of the supra­molecular structure of 1 (Table 1[link]; the N—H distances are all fixed with N—H = 0.86 ± 0.02 Å). A closer inspection of the structure reveals that the [Tb(C2H6N2O)3(NO3)2]+ complex mol­ecules form centrosymmetric dimers via pairs of symmetry-related N3—H3B⋯O6 hydrogen bonds involving the amine NH group of the acetohydrazide ligand and the coordinated nitrate oxygen atom, Fig. 3[link]. Notably, the amine NH donor and the coordinated nitrate oxygen acceptor is also involved in an intra­molecular N1—H1A⋯O8 hydrogen bond. The dimers are further held together through an inter­molecular N3—H3A⋯O9 hydrogen bond between the amine NH and the coordinated nitrate oxygen (O9), resulting in the formation of a two-dimensional supra­molecular layer that propagates in the [100] direction, Fig. 4[link]. Ultimately, adjacent layers are connected into a three-dimensional supra­molecular architecture via the other two complementary N—H⋯O hydrogen-bonding inter­actions (i.e. N5—H5B⋯O3 and N6—H6⋯O7) occurring between the acetohydrazide ligands and the coordinated nitrate ions, Fig. 5[link]. In addition, the non-coordinated nitrate anion is located in cavities along the b axis and serves as the acceptor site for six N—H⋯O hydrogen-bonding inter­actions (i.e. N1—H1B⋯O10, N2—H2⋯O12, N4—H4⋯O10, N4—H4⋯O11, N5—H5A⋯O10, and N5—H5A⋯O12) as shown in Fig. 6[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O8 0.84 (2) 2.37 (2) 2.950 (3) 126 (2)
N1—H1B⋯O10i 0.85 (2) 2.36 (2) 3.136 (3) 153 (3)
N2—H2⋯O11 0.85 (2) 2.69 (3) 3.070 (3) 109 (2)
N2—H2⋯O12 0.85 (2) 2.09 (2) 2.891 (2) 156 (3)
N3—H3A⋯O8 0.87 (2) 2.46 (3) 2.866 (3) 110 (2)
N3—H3A⋯O9ii 0.87 (2) 2.33 (2) 3.146 (3) 157 (2)
N3—H3B⋯O6iii 0.85 (2) 2.25 (2) 3.089 (3) 168 (3)
N4—H4⋯O10iv 0.87 (2) 2.34 (2) 3.102 (3) 147 (3)
N4—H4⋯O11iv 0.87 (2) 2.17 (2) 2.984 (3) 156 (3)
N5—H5A⋯O10v 0.86 (2) 2.58 (2) 3.176 (3) 128 (2)
N5—H5A⋯O12v 0.86 (2) 2.11 (2) 2.964 (2) 173 (3)
N5—H5B⋯O3vi 0.85 (2) 2.51 (2) 3.211 (2) 140 (2)
N6—H6⋯O7vi 0.85 (2) 2.17 (2) 2.999 (2) 166 (2)
N6—H6⋯O10v 0.85 (2) 2.74 (2) 3.170 (3) 114 (2)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, -y+1, -z+2]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
Dimer formation through N—H⋯O hydrogen bonds (dashed lines) in 1 (hydrogen atoms, except those forming hydrogen bonds, are omitted for clarity).
[Figure 4]
Figure 4
The two-dimensional hydrogen bonded layer in 1 (hydrogen atoms, except those forming hydrogen bonds, are omitted for clarity).
[Figure 5]
Figure 5
The three-dimensional hydrogen-bonded network in 1 (hydrogen atoms, except those forming hydrogen bonds, are omitted for clarity).
[Figure 6]
Figure 6
View of 1 approximately along the b-axis direction, showing the N—H⋯O hydrogen-bonding inter­actions involving the non-coordinated nitrate ion and the complex mol­ecules (hydrogen atoms, except those forming hydrogen bonds, are omitted for clarity).

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) and the associated two-dimensional fingerprint plot generation (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were carried out using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) in order to qu­antify the nature of the inter­molecular inter­actions present in the crystal structure, and the results are shown in Figs. 7[link] and 8[link]. The most significant contributions to the dnorm surfaces are H⋯O/O⋯H contacts (i.e. N—H⋯O hydrogen bonds), contributing 62.8% to the overall crystal packing of the title compound. The H⋯H contacts (representing van der Waals inter­actions) with a 22.8% contribution play a minor role in the stabilization of the crystal packing. All other N⋯O/O⋯N, O⋯O and H⋯N/N⋯H contacts make only negligible contributions to the Hirshfeld surface.

[Figure 7]
Figure 7
Two-dimensional fingerprint plots of 1, showing (a) all inter­actions, and those delineated into (b) H⋯O/O⋯H, (c) H⋯H, (d) N⋯O/O⋯N, (e) O⋯O, and (f) H⋯N/N⋯H contacts [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].
[Figure 8]
Figure 8
Qu­anti­tative results of different inter­molecular contacts contributing to the Hirshfeld surface of 1.

5. Database survey

A ConQuest search of the Cambridge Structural Database (CSD, Version 5.42, September 2021 update; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the structures of lanthanide complexes with acetohydrazide ligands gave ten hits, viz. Er [CECLEB (Pangani et al., 1983[Pangani, V. S., Agre, V. M. & Trunov, V. K. (1983). Zh. Neorg. Khim. 28, 2136-2137.]), CECLEB10 (Agre et al., 1984[Agre, V. M., Pangani, V. S. & Trunov, V. K. (1984). Koord. Khim. 10, 120-128])], Dy [CECLIF (Pangani et al., 1983[Pangani, V. S., Agre, V. M. & Trunov, V. K. (1983). Zh. Neorg. Khim. 28, 2136-2137.]), CECLIF10 (Pangani, Agre et al., 1984[Pangani, V. S., Agre, V. M., Trunov, V. K. & Machkhoshvili, R. I. (1984). Koord. Khim. 10, 1128-1131.])], Ho [CECLOL (Pangani et al., 1983[Pangani, V. S., Agre, V. M. & Trunov, V. K. (1983). Zh. Neorg. Khim. 28, 2136-2137.]), CECLOL10 (Pangani, Agre et al., 1984[Pangani, V. S., Agre, V. M., Trunov, V. K. & Machkhoshvili, R. I. (1984). Koord. Khim. 10, 1128-1131.])], Pr (CUWFAB; Pangani, Machhoshvili et al., 1984[Pangani, V. S., Machhoshvili, R. I., Agre, V. M., Trunov, V. K. & Shchelokov, R. N. (1984). Inorg. Chim. Acta, 94, 79.]), Gd (FOYGIM; Brandão et al., 2020[Brandão, S. G., Ribeiro, M. A., Perrella, R. V., de Sousa Filho, P. C. & Luz, P. P. (2020). J. Rare Earths, 38, 642-648.]), and Sm [ISNHSM (Zinner et al., 1979[Zinner, L. B., Crotty, D. E., Anderson, T. J. & Glick, M. D. (1979). Inorg. Chem. 18, 2045-2048.]), QITBIH (Theppitak et al., 2018[Theppitak, C., Kielar, F. & Chainok, K. (2018). Acta Cryst. E74, 1691-1694.])]. In all of these complexes, the acetohydrazide ligand adopts a μ2-κ1:κ1 bidentate chelating coordination mode to bind the lanthanide(III) ion and the amine NH moiety of the acetohydrazide ligand can act as a donor site for inter­molecular hydrogen-bonding inter­actions, similar to that of the title compound.

6. Synthesis and crystallization

A mixture of Tb(NO3)3·6H2O (45.3 mg, 0.1 mmol), acetohydrazide (14.8 mg, 0.2 mmol), and isopropyl alcohol (4 ml) was sealed in a 15 ml Teflon-lined steel autoclave and heated at 373 K for 24 h. The mixture was cooled to room temperature and colorless block-shaped crystals of the title compound (1) were obtained in 87% yield (39.3 mg, based on Tb3+ source). Analysis calculated (%) for C6H18N9O12Tb: C 12.71; H 3.20; N 22.23%. Found: C 12.44; H 3.96; N 21.89%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located in difference-Fourier maps. All carbon-bound hydrogen atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). All nitro­gen-bound hydrogen atoms were refined with a fixed distance N—H = 0.86 ± 0.02 Å.

Table 2
Experimental details

Crystal data
Chemical formula [Tb(NO3)2(C2H6N2O)3]NO3
Mr 567.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.9076 (3), 9.7786 (3), 16.8578 (5)
β (°) 90.791 (1)
V3) 1797.90 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.02
Crystal size (mm) 0.28 × 0.21 × 0.2
 
Data collection
Diffractometer Bruker D8 QUEST CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.471, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 47511, 6876, 5752
Rint 0.034
(sin θ/λ)max−1) 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.044, 1.08
No. of reflections 6876
No. of parameters 293
No. of restraints 9
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.12, −1.13
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tris(acetohydrazide-κ2N,O)(nitrato-κO)(nitrato-κ2O,O')terbium(III) nitrate] top
Crystal data top
[Tb(NO3)2(C2H6N2O)3]NO3F(000) = 1112
Mr = 567.21Dx = 2.096 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.9076 (3) ÅCell parameters from 9937 reflections
b = 9.7786 (3) Åθ = 3.0–33.1°
c = 16.8578 (5) ŵ = 4.01 mm1
β = 90.791 (1)°T = 296 K
V = 1797.90 (9) Å3Block, colourless
Z = 40.28 × 0.21 × 0.2 mm
Data collection top
Bruker D8 QUEST CMOS
diffractometer
6876 independent reflections
Radiation source: sealed x-ray tube, Mo5752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 7.39 pixels mm-1θmax = 33.2°, θmin = 2.8°
ω and φ scansh = 1614
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1514
Tmin = 0.471, Tmax = 0.747l = 2525
47511 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0127P)2 + 1.6017P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.044(Δ/σ)max = 0.003
S = 1.08Δρmax = 1.12 e Å3
6876 reflectionsΔρmin = 1.13 e Å3
293 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
9 restraintsExtinction coefficient: 0.00248 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.53793 (2)0.69267 (2)0.81234 (2)0.01794 (3)
O10.53302 (15)0.88900 (15)0.73061 (9)0.0316 (3)
O20.48569 (13)0.88947 (16)0.88653 (10)0.0310 (3)
O30.68110 (13)0.63211 (16)0.71532 (9)0.0275 (3)
O40.5610 (2)0.6421 (2)0.95580 (11)0.0535 (5)
O50.68865 (16)0.53978 (19)0.88111 (12)0.0425 (4)
O60.7062 (2)0.5199 (3)1.00927 (15)0.0780 (8)
O70.47104 (13)0.45766 (15)0.79809 (10)0.0297 (3)
O80.27693 (15)0.46317 (18)0.76534 (12)0.0430 (4)
O90.37120 (17)0.26983 (17)0.77663 (12)0.0431 (4)
O100.51235 (17)0.6218 (2)0.38477 (11)0.0446 (4)
O110.57284 (17)0.6504 (3)0.50502 (13)0.0598 (6)
O120.38755 (14)0.70400 (18)0.47151 (9)0.0337 (4)
N10.4200 (2)0.6697 (2)0.67879 (12)0.0302 (4)
H1A0.3464 (17)0.647 (3)0.6859 (16)0.040 (8)*
H1B0.454 (3)0.608 (3)0.6519 (16)0.050 (9)*
N20.42249 (18)0.7916 (2)0.63406 (11)0.0294 (4)
H20.401 (3)0.789 (3)0.5854 (11)0.048 (9)*
N30.31650 (17)0.7017 (2)0.86115 (13)0.0301 (4)
H3A0.265 (2)0.694 (3)0.8222 (13)0.038 (7)*
H3B0.302 (3)0.635 (2)0.8919 (16)0.051 (9)*
N40.29181 (17)0.8249 (2)0.90180 (12)0.0327 (4)
H40.2186 (19)0.842 (3)0.9187 (18)0.060 (10)*
N50.74028 (16)0.82302 (19)0.82323 (11)0.0243 (4)
H5A0.786 (2)0.809 (3)0.8643 (13)0.040 (8)*
H5B0.722 (2)0.9075 (18)0.8197 (16)0.040 (8)*
N60.81190 (16)0.79567 (19)0.75554 (12)0.0274 (4)
H60.8761 (18)0.842 (2)0.7489 (15)0.035 (7)*
N70.6533 (2)0.5651 (2)0.95054 (14)0.0433 (5)
N80.36977 (17)0.39549 (19)0.77997 (11)0.0290 (4)
N90.49126 (17)0.6579 (2)0.45403 (11)0.0286 (4)
C10.48401 (19)0.8957 (2)0.66389 (13)0.0258 (4)
C20.4922 (3)1.0227 (3)0.61533 (16)0.0426 (6)
H2A0.4726251.1004470.6475500.064*
H2B0.4352811.0172330.5714910.064*
H2C0.5739271.0322320.5956650.064*
C30.38049 (19)0.9150 (2)0.90919 (12)0.0246 (4)
C40.3478 (2)1.0492 (3)0.94566 (15)0.0376 (5)
H4A0.4011451.0667330.9902550.056*
H4B0.2643511.0463950.9630320.056*
H4C0.3567571.1206400.9071220.056*
C50.77501 (18)0.7031 (2)0.70400 (13)0.0246 (4)
C60.8488 (2)0.6862 (3)0.63059 (16)0.0421 (6)
H6A0.8953360.6030720.6340620.063*
H6B0.9036040.7624110.6253840.063*
H6C0.7948170.6823780.5851820.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.01473 (4)0.01950 (5)0.01956 (5)0.00037 (4)0.00101 (3)0.00128 (4)
O10.0418 (9)0.0248 (8)0.0279 (8)0.0019 (7)0.0130 (7)0.0027 (6)
O20.0230 (7)0.0316 (8)0.0386 (9)0.0015 (6)0.0073 (6)0.0121 (7)
O30.0225 (7)0.0280 (8)0.0321 (8)0.0051 (6)0.0061 (6)0.0090 (6)
O40.0599 (13)0.0684 (13)0.0320 (10)0.0158 (11)0.0029 (9)0.0067 (9)
O50.0319 (9)0.0424 (10)0.0530 (12)0.0057 (8)0.0068 (8)0.0097 (9)
O60.0641 (14)0.102 (2)0.0668 (15)0.0119 (14)0.0300 (12)0.0547 (14)
O70.0236 (7)0.0240 (7)0.0414 (9)0.0037 (6)0.0017 (6)0.0023 (7)
O80.0224 (8)0.0387 (10)0.0679 (13)0.0003 (7)0.0027 (8)0.0016 (9)
O90.0467 (11)0.0227 (8)0.0598 (12)0.0082 (8)0.0065 (9)0.0001 (8)
O100.0487 (11)0.0525 (11)0.0331 (9)0.0088 (9)0.0142 (8)0.0051 (8)
O110.0280 (9)0.1001 (17)0.0510 (12)0.0141 (10)0.0115 (9)0.0132 (12)
O120.0214 (7)0.0512 (10)0.0284 (8)0.0049 (7)0.0009 (6)0.0029 (7)
N10.0331 (10)0.0294 (10)0.0278 (9)0.0056 (8)0.0048 (8)0.0015 (8)
N20.0332 (10)0.0370 (11)0.0178 (8)0.0010 (8)0.0041 (7)0.0008 (8)
N30.0217 (8)0.0310 (10)0.0377 (11)0.0035 (8)0.0021 (8)0.0029 (9)
N40.0198 (8)0.0376 (11)0.0410 (11)0.0027 (8)0.0094 (8)0.0069 (9)
N50.0234 (8)0.0233 (9)0.0261 (9)0.0011 (7)0.0032 (7)0.0024 (7)
N60.0213 (8)0.0257 (9)0.0352 (10)0.0075 (7)0.0036 (7)0.0022 (8)
N70.0389 (11)0.0437 (13)0.0470 (13)0.0100 (10)0.0171 (10)0.0220 (11)
N80.0277 (9)0.0257 (9)0.0337 (10)0.0065 (8)0.0027 (8)0.0008 (8)
N90.0237 (9)0.0321 (10)0.0300 (9)0.0011 (7)0.0041 (7)0.0022 (8)
C10.0233 (10)0.0299 (11)0.0242 (9)0.0054 (8)0.0013 (8)0.0019 (8)
C20.0429 (14)0.0443 (14)0.0404 (14)0.0028 (12)0.0072 (11)0.0157 (12)
C30.0248 (9)0.0301 (10)0.0189 (9)0.0048 (9)0.0016 (7)0.0013 (8)
C40.0361 (12)0.0364 (13)0.0403 (13)0.0112 (10)0.0027 (10)0.0104 (11)
C50.0221 (9)0.0221 (9)0.0296 (10)0.0016 (8)0.0035 (8)0.0010 (8)
C60.0414 (13)0.0411 (14)0.0445 (14)0.0059 (12)0.0206 (11)0.0097 (12)
Geometric parameters (Å, º) top
Tb1—O12.3632 (15)N2—H20.849 (17)
Tb1—O22.3690 (15)N2—C11.316 (3)
Tb1—O32.3525 (14)N3—H3A0.865 (17)
Tb1—O42.4779 (19)N3—H3B0.850 (17)
Tb1—O52.4959 (17)N3—N41.414 (3)
Tb1—O72.4220 (15)N4—H40.867 (17)
Tb1—N12.587 (2)N4—C31.313 (3)
Tb1—N32.5640 (19)N5—H5A0.857 (17)
Tb1—N52.5532 (18)N5—H5B0.851 (17)
O1—C11.240 (2)N5—N61.417 (3)
O2—C31.240 (2)N6—H60.845 (17)
O3—C51.254 (2)N6—C51.314 (3)
O4—N71.261 (3)C1—C21.491 (3)
O5—N71.262 (3)C2—H2A0.9600
O6—N71.222 (3)C2—H2B0.9600
O7—N81.294 (2)C2—H2C0.9600
O8—N81.232 (2)C3—C41.494 (3)
O9—N81.230 (2)C4—H4A0.9600
O10—N91.244 (2)C4—H4B0.9600
O11—N91.231 (3)C4—H4C0.9600
O12—N91.257 (2)C5—C61.494 (3)
N1—H1A0.844 (17)C6—H6A0.9600
N1—H1B0.845 (17)C6—H6B0.9600
N1—N21.411 (3)C6—H6C0.9600
O1—Tb1—O269.15 (6)H3A—N3—H3B106 (3)
O1—Tb1—O4137.09 (7)N4—N3—Tb1111.81 (13)
O1—Tb1—O5140.08 (6)N4—N3—H3A108.2 (18)
O1—Tb1—O7135.12 (5)N4—N3—H3B109 (2)
O1—Tb1—N163.66 (6)N3—N4—H4120 (2)
O1—Tb1—N398.35 (6)C3—N4—N3118.22 (18)
O1—Tb1—N569.45 (6)C3—N4—H4121 (2)
O2—Tb1—O470.66 (7)Tb1—N5—H5A118.0 (19)
O2—Tb1—O5113.77 (6)Tb1—N5—H5B106.4 (19)
O2—Tb1—O7138.48 (5)H5A—N5—H5B110 (3)
O2—Tb1—N1114.19 (6)N6—N5—Tb1109.48 (12)
O2—Tb1—N364.41 (6)N6—N5—H5A107.6 (19)
O2—Tb1—N576.73 (5)N6—N5—H5B104.8 (19)
O3—Tb1—O179.00 (6)N5—N6—H6118.1 (18)
O3—Tb1—O2137.59 (5)C5—N6—N5119.68 (17)
O3—Tb1—O4124.67 (6)C5—N6—H6122.1 (18)
O3—Tb1—O574.51 (6)O4—N7—O5115.89 (19)
O3—Tb1—O783.93 (5)O6—N7—O4121.8 (3)
O3—Tb1—N172.54 (6)O6—N7—O5122.3 (3)
O3—Tb1—N3150.36 (6)O8—N8—O7119.45 (18)
O3—Tb1—N566.06 (5)O9—N8—O7117.96 (19)
O4—Tb1—O550.93 (7)O9—N8—O8122.57 (19)
O4—Tb1—N1150.97 (7)O10—N9—O12120.03 (19)
O4—Tb1—N377.11 (7)O11—N9—O10119.8 (2)
O4—Tb1—N587.34 (7)O11—N9—O12120.1 (2)
O5—Tb1—N1131.95 (7)O1—C1—N2121.1 (2)
O5—Tb1—N3119.27 (7)O1—C1—C2120.9 (2)
O5—Tb1—N572.69 (6)N2—C1—C2118.0 (2)
O7—Tb1—O486.19 (7)C1—C2—H2A109.5
O7—Tb1—O570.93 (6)C1—C2—H2B109.5
O7—Tb1—N171.68 (6)C1—C2—H2C109.5
O7—Tb1—N377.33 (6)H2A—C2—H2B109.5
O7—Tb1—N5137.71 (5)H2A—C2—H2C109.5
N3—Tb1—N179.81 (7)H2B—C2—H2C109.5
N5—Tb1—N1121.66 (6)O2—C3—N4121.3 (2)
N5—Tb1—N3140.98 (6)O2—C3—C4122.1 (2)
C1—O1—Tb1125.30 (14)N4—C3—C4116.64 (19)
C3—O2—Tb1123.84 (14)C3—C4—H4A109.5
C5—O3—Tb1121.19 (13)C3—C4—H4B109.5
N7—O4—Tb196.95 (15)C3—C4—H4C109.5
N7—O5—Tb196.06 (14)H4A—C4—H4B109.5
N8—O7—Tb1136.41 (13)H4A—C4—H4C109.5
Tb1—N1—H1A111.2 (19)H4B—C4—H4C109.5
Tb1—N1—H1B108 (2)O3—C5—N6121.60 (19)
H1A—N1—H1B108 (3)O3—C5—C6121.0 (2)
N2—N1—Tb1112.25 (13)N6—C5—C6117.39 (19)
N2—N1—H1A109.1 (19)C5—C6—H6A109.5
N2—N1—H1B108 (2)C5—C6—H6B109.5
N1—N2—H2119 (2)C5—C6—H6C109.5
C1—N2—N1117.60 (18)H6A—C6—H6B109.5
C1—N2—H2122 (2)H6A—C6—H6C109.5
Tb1—N3—H3A111.3 (19)H6B—C6—H6C109.5
Tb1—N3—H3B110 (2)
Tb1—O1—C1—N23.9 (3)Tb1—O7—N8—O9178.18 (15)
Tb1—O1—C1—C2176.58 (17)Tb1—N1—N2—C11.4 (2)
Tb1—O2—C3—N48.5 (3)Tb1—N3—N4—C30.0 (3)
Tb1—O2—C3—C4171.10 (16)Tb1—N5—N6—C56.9 (2)
Tb1—O3—C5—N614.8 (3)N1—N2—C1—O13.4 (3)
Tb1—O3—C5—C6164.56 (17)N1—N2—C1—C2177.1 (2)
Tb1—O4—N7—O54.1 (2)N3—N4—C3—O25.3 (3)
Tb1—O4—N7—O6174.7 (2)N3—N4—C3—C4174.4 (2)
Tb1—O5—N7—O44.0 (2)N5—N6—C5—O34.1 (3)
Tb1—O5—N7—O6174.7 (2)N5—N6—C5—C6175.3 (2)
Tb1—O7—N8—O80.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O80.84 (2)2.37 (2)2.950 (3)126 (2)
N1—H1B···O10i0.85 (2)2.36 (2)3.136 (3)153 (3)
N2—H2···O110.85 (2)2.69 (3)3.070 (3)109 (2)
N2—H2···O120.85 (2)2.09 (2)2.891 (2)156 (3)
N3—H3A···O80.87 (2)2.46 (3)2.866 (3)110 (2)
N3—H3A···O9ii0.87 (2)2.33 (2)3.146 (3)157 (2)
N3—H3B···O6iii0.85 (2)2.25 (2)3.089 (3)168 (3)
N4—H4···O10iv0.87 (2)2.34 (2)3.102 (3)147 (3)
N4—H4···O11iv0.87 (2)2.17 (2)2.984 (3)156 (3)
N5—H5A···O10v0.86 (2)2.58 (2)3.176 (3)128 (2)
N5—H5A···O12v0.86 (2)2.11 (2)2.964 (2)173 (3)
N5—H5B···O3vi0.85 (2)2.51 (2)3.211 (2)140 (2)
N6—H6···O7vi0.85 (2)2.17 (2)2.999 (2)166 (2)
N6—H6···O10v0.85 (2)2.74 (2)3.170 (3)114 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x1/2, y+3/2, z+1/2; (v) x+1/2, y+3/2, z+1/2; (vi) x+3/2, y+1/2, z+3/2.
 

Funding information

The authors gratefully acknowledge the financial support provided by the Thailand Institute of Nuclear Technology (Public Organization), through its program of TINT to University (grant to KC). This study was also partially supported by the Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa). CT would like to acknowledge a Graduate Development Scholarship 2020, National Research Council of Thailand (contract No. 15/2563).

References

First citationAgre, V. M., Pangani, V. S. & Trunov, V. K. (1984). Koord. Khim. 10, 120–128  Google Scholar
First citationBrandão, S. G., Ribeiro, M. A., Perrella, R. V., de Sousa Filho, P. C. & Luz, P. P. (2020). J. Rare Earths, 38, 642–648.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, P., Zhang, M., Sun, W., Li, H., Zhao, L. & Yan, P. (2015). CrystEngComm, 17, 5066–5073.  Web of Science CSD CrossRef CAS Google Scholar
First citationCui, Y., Zhang, J., He, H. & Qian, G. (2018). Chem. Soc. Rev. 47, 5740–5785.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJanicki, R., Mondry, A. & Starynowicz, P. (2017). Coord. Chem. Rev. 340, 98–133.  Web of Science CrossRef CAS Google Scholar
First citationKuwamura, N. & Konno, T. (2021). Inorg. Chem. Front. 8, 2634–649.  Web of Science CrossRef CAS Google Scholar
First citationLong, J., Lyubov, D. M., Mahrova, T. V., Cherkasov, A. V., Fukin, G. K., Guari, Y., Larionova, J. & Trifonov, A. A. (2018). Dalton Trans. 47, 5153–5156.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPangani, V. S., Agre, V. M. & Trunov, V. K. (1983). Zh. Neorg. Khim. 28, 2136–2137.  CAS Google Scholar
First citationPangani, V. S., Agre, V. M., Trunov, V. K. & Machkhoshvili, R. I. (1984). Koord. Khim. 10, 1128–1131.  CAS Google Scholar
First citationPangani, V. S., Machhoshvili, R. I., Agre, V. M., Trunov, V. K. & Shchelokov, R. N. (1984). Inorg. Chim. Acta, 94, 79.  Web of Science CSD CrossRef Google Scholar
First citationRoy, S., Chakraborty, A. & Maji, T. P. (2014). Coord. Chem. Rev. 273–274, 139–164.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationTheppitak, C., Jiajaroen, S., Chongboriboon, N., Chanthee, S., Kielar, F., Dungkaew, W., Sukwattanasinitt, M. & Chainok, K. (2021b). Molecules, 26, 4428.  Web of Science CrossRef PubMed Google Scholar
First citationTheppitak, C., Kielar, F. & Chainok, K. (2018). Acta Cryst. E74, 1691–1694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTheppitak, C., Kielar, F., Dungkaew, W., Sukwattanasinitt, M., Kangkaew, L., Sahasithiwat, S., Zenno, H., Hayami, S. & Chainok, K. (2021a). RSC Adv. 11, 24709–24721.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationZinner, L. B., Crotty, D. E., Anderson, T. J. & Glick, M. D. (1979). Inorg. Chem. 18, 2045–2048.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds