research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Organic–inorganic hybrid mixed-halide ZnII and CdII tetra­halometallates with the 2-methyl­imidazo[1,5-a]pyridinium cation

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bSchool of Molecular Sciences, University of Western Australia (M310), Perth, WA 6009, Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 31 December 2021; accepted 2 March 2022; online 8 March 2022)

Three isomorphous 0-D hybrid salts, namely, 2-methyl­imidazo[1,5-a]pyridinium tri­chlorido­iodido­zincate(II), (C8H9N2)2[ZnCl3.19I0.81] or [L]2[ZnCl3.19I0.81], (I), 2-methyl­imidazo[1,5-a]pyridinium di­bromido­dichlorido­cadmate(II), (C8H9N2)2[CdBr2.42Cl1.58] or [L]2[CdBr2.42Cl1.58], (II), and 2-methyl­imidazo[1,5-a]pyridinium tri­chlorido­iodido­cadmate(II), (C8H9N2)2[CdCl3.90I0.10] or [L]2[CdCl3.90I0.10], (III), are assembled from discrete 2-methyl­imidazo[1,5-a]pyridinium cations, L+, and mixed-halide tetra­halometallate anions. In the three structures, there are two crystallographically non-equivalent cations that were modelled as being rotationally disordered by 180°. In the lattices of the three compounds, a disordered state exists involving partial substitution of Cl by I for sites 2–4 in (I), Br by Cl for all four sites in (II) and Cl by I for site 2 in (III). In the solid state, the organic and inorganic sheets alternate parallel to the bc plane in a pseudo-layered arrangement. In the organic layer, pairs of centrosymmetic­ally related trans-oriented cations form π-bonded chains. The adjacent tetra­halometallate anions in the inorganic layer show no connectivity with the shortest MM separations being greater than 7 Å. A variety of C—H⋯XM (X = Cl, Br, I) contacts between the organic and inorganic counterparts provide additional structural stabilization. The title structures are isomorphous with the previously reported structures of the chloride analogues, [L]2[ZnCl4] and [L]2[CdCl4].

1. Chemical context

Hybrid organic–inorganic halide salts have proven to be promising materials for optoelectronic applications spanning light-emitting diodes (LED), lasers, photodetectors and solar cells (Manser et al., 2016[Manser, J. S., Christians, J. A. & Kamat, P. V. (2016). Chem. Rev. 116, 12956-13008.]; Dou et al., 2014[Dou, L., Yang, Y., You, J., Hong, Z., Chang, W.-H., Li, G. & Yang, Y. (2014). Nat. Commun. 5, 1-6.]; Stranks et al., 2015[Stranks, S. D. & Snaith, H. J. (2015). Nature Nanotech, 10, 391-402.]). The versatile photophysical properties of these materials are combined with low-temperature solution processability and the tunability of their electronic and crystal structures via chemical composition modification. This research field has been mostly dominated by Pb- and Sn-based hybrid halide perovskites due to their prominent semiconducting properties and large optical absorption. However, water permeability in air and the low thermal stability of these perovskite systems limit their industrial manufacturing (Leijtens et al., 2015[Leijtens, T., Eperon, G. E., Noel, N. K., Habisreutinger, S. N., Petrozza, A. & Snaith, H. J. (2015). Adv. Energy Mater. 5, 1500963.]). The instability issues have been largely related to the volatility of small organic cations. The introduction of larger organic cations that also lower the dimensionality of a 3-D MX6 (X = halide ion) octa­hedral halometallate network is expected to improve the air, moisture and thermal stability of the hybrid metal halides (Leblanc et al., 2019[Leblanc, A., Mercier, N., Allain, M., Dittmer, J., Pauporté, T., Fernandez, V., Boucher, F., Kepenekian, M. & Katan, C. (2019). Appl. Mater. Interfaces, 11, 20743-20751.]).

The selective combination of organic and inorganic components to incorporate other metal polyhedra and connectivity directly impacts the properties exhibited by the organic–inorganic halide materials. Hybrid halometallates containing group 12 (IIB) elements have been of increasing research inter­est in this respect (Yangui et al., 2019[Yangui, A., Roccanova, R., McWhorter, T. M., Wu, Y., Du, M. H. & Saparov, B. (2019). Chem. Mater. 31, 2983-2991.]). Based on the combined experimental and computational results, (CH3NH3)2CdX4 (X = Cl, Br, I) and related compounds were found to be potential candidates for broadband white-light emitting phosphors and self-activated scintillators (Roccanova et al., 2017[Roccanova, R., Ming, W., Whiteside, V. R., McGuire, M. A., Sellers, I. R., Du, M. H. & Saparov, B. (2017). Inorg. Chem. 56, 13878-13888.]). Engineering hybrid halometallate salts through mixing halogen elements is a recent new strategy that allows fine-tuning of the electronic structure and optoelectronic properties depending on the anionic speciation and ratio (Askar et al., 2018[Askar, A. M., Karmakar, A., Bernard, G. M., Ha, M., Terskikh, V. V., Wiltshire, B. D., Patel, S., Fleet, J., Shankar, K. & Michaelis, V. K. (2018). J. Phys. Chem. Lett. 9, 2671-2677.]; Rogers et al., 2019[Rogers, R. D., Gurau, G., Kelley, S. P., Kore, R. & Shamshina, J. L. (2019). University of Alabama (UA), US Patent 10, 357, 762.]).

Recently, we have developed a successful synthetic procedure towards organic–inorganic hybrid halometallates with imidazo[1,5-a]pyridinium-based counter-ions (Buvaylo et al., 2015[Buvaylo, E. A., Kokozay, V. N., Linnik, R. P., Vassilyeva, O. Y. & Skelton, B. W. (2015). Dalton Trans. 44, 13735-13744.]; Vassylyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.]). The latter represent an important class of fused nitro­gen-containing bicyclic systems owing to their biological activity and potential applications in materials chemistry. They show strong fluorescence intensity and high quantum yield (Yagishita et al., 2018[Yagishita, F., Nii, C., Tezuka, Y., Tabata, A., Nagamune, H., Uemura, N., Yoshida, Y., Mino, T., Sakamoto, M. & Kawamura, Y. (2018). Asia. J. Org. Chem. 7, 1614-1619.]). The 2-meth­yl­imidazo[1,5-a] pyridinium cation, L+, has been synthesized from the oxidative cyclo­condensation of equimolar amounts of formaldehyde, methyl­amine hydro­chloride and 2-pyrid­ine­carbaldehyde in an aqueous solution. The incorporation of L+ in the metal chloride structure reduced the dimensionality of the PbCl2 3-D perovskite framework to a 1-D stepwise chloro­plumbate(II) wire arrangement in [L]n[PbCl3]n and produced [L]2[MCl4] (M = Zn, Cd) hybrid salts with tetra­hedral anions (Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.], 2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.]). The three compounds exhibited intense sky blue-light photoluminescence in the solid state.

[Scheme 1]

In this work, we have explored the possibility of preparing the Br and I analogues of [L]2[MCl4] hybrids in an attempt to induce changes of the dimensionality in the resulting structures. In the synthesis, a combination of ZnO and NH4I was used instead of ZnCl2, while cadmium chloride was replaced with the corresponding bromide or iodide. This approach appeared to be only partially successful because of the competing Cl anions from the dissociation of the HCl adduct of methyl­amine. Herein, we report the preparations, crystal structures and spectroscopic characterization of three isomorphous 0-D hybrid salts [L]2[ZnCl3.19I0.81], (I)[link], [L]2[CdBr2.42Cl1.58], (II)[link], and [L]2[CdCl3.90I0.10], (III)[link].

2. Structural commentary

The organic—inorganic hybrids (I)–(III) crystallize in the triclinic space group P[\overline{1}] and are assembled from discrete 2-methyl­imidazo[1,5-a]pyridinium cations and mixed-halide tetra­halometallate anions. Fig. 1[link] shows the mol­ecular structure and labelling of (I)[link] taken as a representative example. In the three structures, there are two crystallographically non-equivalent cations (L1+ and L2+) with similar structural configurations, which do not differ significantly from those of the isomorphous sister compounds [L]2[ZnCl4] (GOTHAB; Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.]) and [L]2[CdCl4] (GOTJAD; Vassilyeva et al., 2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.]). The C—N/C bond distances in the imidazolium entities of the fused cores of the cations vary in the range 1.332 (3)–1.408 (4) Å; bond lengths in the pyridinium rings are as expected; the nitro­gen atoms are planar with the sums of the three angles being equal to 360°. The almost coplanar five- and six-membered rings in the cations show dihedral angles between them of about 2° [(I): 0.57 (13), 2.11 (12)°; (II)[link]: 0.73 (14), 1.55 (15)°; (III)[link]: 0.55 (16), 1.66 (17)°]. The tetra­hedral ZnX42– and CdX42– (X = Cl, Br, I) anions in the hybrid salts are slightly distorted with the MX distances falling in the ranges 2.2689 (10)–2.5969 (4), 2.380 (4)–2.6029 (11) and 2.4481 (8)–2.747 (4) Å for (I)[link], (II)[link] and (III)[link], respectively (Tables 1[link]–3[link][link]). The XMX angles vary from 104.9 (5) to 117.3 (5)°. In the lattices of the three hybrid salts, a disordered state exists involving partial substitution of Cl by I for sites 2–4 in (I)[link], Br by Cl for all four sites in (II)[link] and Cl by I for site 2 in (III)[link]. Such a disorder occurs frequently in compounds containing two different halide ions resulting from the competition between them during the crystals formation (Yang et al., 2010[Yang, C., Wang, M. S., Cai, L. Z., Jiang, X. M., Wu, M. F., Guo, G. C. & Huang, J. S. (2010). Inorg. Chem. Commun. 13, 1021-1024.]). The Zn—Cl and Cd—Cl bond lengths in (I)–(III) are similar to those of GOTHAB [2.2682 (4)–2.2920 (4) Å] and GOTJAD [2.4477 (5)–2.4719 (5) Å].

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Zn1—Cl3 2.2689 (10) Zn1—I3 2.542 (4)
Zn1—Cl4 2.2780 (11) Zn1—I4 2.568 (3)
Zn1—Cl1 2.2884 (6) Zn1—I2 2.5969 (4)
Zn1—Cl2 2.346 (3)    
       
Cl3—Zn1—Cl4 112.60 (5) Cl3—Zn1—I4 107.23 (14)
Cl3—Zn1—Cl1 108.40 (4) Cl1—Zn1—I4 109.51 (13)
Cl4—Zn1—Cl1 107.71 (4) Cl2—Zn1—I4 110.37 (19)
Cl3—Zn1—Cl2 110.84 (13) I3—Zn1—I4 110.4 (2)
Cl4—Zn1—Cl2 106.83 (14) Cl3—Zn1—I2 109.83 (4)
Cl1—Zn1—Cl2 110.41 (12) Cl4—Zn1—I2 106.78 (4)
Cl4—Zn1—I3 115.8 (2) Cl1—Zn1—I2 111.54 (2)
Cl1—Zn1—I3 106.36 (19) I3—Zn1—I2 108.8 (2)
Cl2—Zn1—I3 109.7 (2) I4—Zn1—I2 110.22 (13)

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Cd1—Cl3 2.380 (4) Cd1—Br3 2.5353 (12)
Cd1—Cl2 2.460 (5) Cd1—Br1 2.5834 (17)
Cd1—Cl1 2.467 (3) Cd1—Br2 2.5950 (5)
Cd1—Cl4 2.497 (4) Cd1—Br4 2.6029 (11)
       
Cl3—Cd1—Cl2 107.3 (10) Br3—Cd1—Br1 106.2 (3)
Cl3—Cd1—Cl1 106.1 (7) Cl3—Cd1—Br2 108.3 (5)
Cl2—Cd1—Cl1 114.9 (9) Cl1—Cd1—Br2 112.8 (5)
Cl3—Cd1—Cl4 112.7 (5) Cl4—Cd1—Br2 110.6 (2)
Cl2—Cd1—Cl4 109.6 (9) Br3—Cd1—Br2 109.34 (14)
Cl1—Cd1—Cl4 106.3 (6) Br1—Cd1—Br2 111.3 (3)
Cl2—Cd1—Br3 108.4 (9) Cl3—Cd1—Br4 117.3 (5)
Cl1—Cd1—Br3 105.3 (5) Cl2—Cd1—Br4 106.6 (9)
Cl4—Cd1—Br3 112.4 (2) Cl1—Cd1—Br4 104.9 (5)
Cl3—Cd1—Br1 107.0 (5) Br3—Cd1—Br4 117.00 (15)
Cl2—Cd1—Br1 113.4 (8) Br1—Cd1—Br4 105.4 (3)
Cl4—Cd1—Br1 106.9 (4) Br2—Cd1—Br4 107.57 (8)

Table 3
Selected geometric parameters (Å, °) for (III)[link]

Cd1—Cl3 2.4481 (8) Cd1—Cl1 2.4710 (7)
Cd1—Cl2 2.4654 (16) Cd1—I2 2.747 (4)
Cd1—Cl4 2.4655 (7)    
       
Cl3—Cd1—Cl2 109.94 (9) Cl4—Cd1—Cl1 105.20 (3)
Cl3—Cd1—Cl4 116.91 (3) Cl3—Cd1—I2 109.2 (2)
Cl2—Cd1—Cl4 106.67 (9) Cl4—Cd1—I2 106.7 (2)
Cl3—Cd1—Cl1 105.93 (3) Cl1—Cd1—I2 113.0 (2)
Cl2—Cd1—Cl1 112.21 (9)    
[Figure 1]
Figure 1
Mol­ecular structure of [L]2[ZnCl3.19I0.81], (I)[link], with 50% probability displacement ellipsoids showing the general geometry and atom labelling of the three hybrid salts.

3. Supra­molecular features

In the crystals of (I)–(III), the organic and inorganic sheets alternate parallel to the bc plane in a pseudo-layered arrangement. Fig. 2[link] illustrates the crystal packing common for the three compounds. The consecutive inorganic planes are separated by a distance corresponding to the a-axis length [9.4588 (6), 9.5172 (5) and 9.4304 (3) Å for (I)–(III), respectively]. In the organic layer, pairs of centrosymmetically related trans-oriented L1+ and L2+ cations form π-bonded chains with the centroid–centroid distances between the pairs being 3.543 (2) Å in (I)[link], 3.569 (2) Å in (II)[link] and 3.559 (2) Å in (III)[link] (Fig. 3[link]). The pairs of equivalent cations in the chains demonstrate stronger and weaker 10πe–10πe stacking with the centroid–centroid distances for (I)[link], (II)[link] and (III)[link] of 3.448 (2), 4.099 (2) Å; 3.496 (2), 4.105 (2) Å and 3.485 (2), 4.017 (2) Å, respectively. The adjacent tetra­halometallate anions in the inorganic layer show no connectivity with the shortest MM separations being about 7.287 in (I)[link], 7.158 in (II)[link] and 7.046 Å in (III)[link]. In the hybrid salts, classical hydrogen bonds are absent. A variety of C—H⋯XM contacts (see supporting information) between the organic and inorganic counterparts with the H⋯X distances below the van der Waals contact limits of 2.85 (Cl), 2.93 (Br) and 3.08 Å (iodine) (Mantina et al., 2009[Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806-5812.]) provide an additional structure-stabilizing effect.

[Figure 2]
Figure 2
Fragment of the crystal packing of (II)[link] viewed along the c axis with the non-equivalent L1+ and L2+ cations shown in blue and green, respectively, and [CdBr2.42Cl1.58]2– anions presented in polyhedral form.
[Figure 3]
Figure 3
Fragment of the π-bonded chain built of pairs of the non-equivalent L1+ and L2+ cations of [L]2[CdCl3.90I0.10] (III)[link].

4. Database survey

More than 300 crystal structures of mol­ecules featuring the imidazo[1,5-a]pyridine core are found in the CSD (Version 5.42, update of February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Those comprise neutral organic compounds, organic salts and metal complexes with the imidazo[1,5-a]pyridine core having various substituents in the rings. Apart from [L]2[CdCl4] (GOTJAD; Vassilyeva et al., 2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.]), [L]2[ZnCl4] (GOTHAB; Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.]) and [L]n[PbCl3]n (TURJUO; Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.]) published by our research group, there are no structures containing the L+ cation in the Database. The reported compounds with cations similar to L+ of the title hybrid salts are, for example, 2-(2,4,6-tri­methyl­phen­yl)-2H-imidazo[1,5-a]pyridin-4-ium bromide (PARBOA; Burstein et al., 2005[Burstein, C., Lehmann, C. W. & Glorius, F. (2005). Tetrahedron, 61, 6207-6217.]) and 2-(4-chloro­phen­yl)imidazo[1,5-a]pyridinium perchlorate (ETOXEQ; Chattopadhyay et al., 2004[Chattopadhyay, S. K., Mitra, K., Biswas, S., Naskar, S., Mishra, D., Adhikary, B., Harrison, R. G. & Cannon, J. F. (2004). Transition Met. Chem. 29, 1-6.]) having tri­methyl­phenyl and chloro­phenyl substituents, respectively, instead of the methyl group in L+. Such organic cations are precursors for N-heterocyclic carbenes, which are able to bind metal ions as in e.g. bis­(2-t-butyl­imidazo[1,5-a]pyridin-3-yl­idene)(η4-1,5- cyclo­octa­diene)rhodium(I) hexa­fluoro­phosphate (FOJYAF; Alcarazo et al., 2005[Alcarazo, M., Roseblade, S. J., Cowley, A. R., Fernández, R., Brown, J. M. & Lassaletta, J. M. (2005). J. Am. Chem. Soc. 127, 3290-3291.]) or bis­[2-(2-pyrid­yl)imidazo[1,5-a]pyridin-3(2H)-yl­idene]mercury bis­(hexa­fluoro­phosphate) (IVOWEW; Samanta et al., 2011[Samanta, T., Rana, B. K., Roymahapatra, G., Giri, S., Mitra, P., Pallepogu, R., Chattaraj, P. K. & Dinda, J. (2011). Inorg. Chim. Acta, 375, 271-279.]). The neutral derivatives of the L+ cation lacking the methyl group but possessing other substituents with donor atoms (N, O, S) often act as ligands that coordinate various metal ions: chloro-bis­[3-(pyridin-2-yl)imidazo[1,5-a]pyridine]­copper(II) chloride ethanol solvate (ELILOD; Carson et al., 2021[Carson, J. J. K., Miron, C. E., Luo, J., Mergny, J. L., van Staalduinen, L., Jia, Z. & Petitjean, A. (2021). Inorg. Chim. Acta, 518, 120236.]) or bis­[2-(1-phenyl­imidazo[1,5-a]pyridin-3-yl)phenolato]cobalt(II) 1,2-di­chloro­ethane solvate (KESQUX; Ardizzoia et al., 2018[Ardizzoia, G. A., Ghiotti, D., Therrien, B. & Brenna, S. (2018). Inorg. Chim. Acta, 471, 384-390.]).

5. FTIR and 1NMR spectroscopy

The very similar IR spectra of hybrid salts (I)–(III) show a distinctive pattern we consider characteristic of the L+ cation (Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.]) (Fig. 4[link]). The spectra are distinguished by the very sharp intense peaks in the aromatic ν(C—H) stretching region (3130–3012 cm−1) and the lack of absorbance from 1656 to 1568 cm−1. They include weak bands below 3000 cm−1 due to alkyl C—H stretching, sharp bands of medium intensity at 1654/1654/1656, 1542/1542/1546, 1450/1452/1456 and 1328/1326/1332 cm−1 associated with heterocyclic rings stretching, a very strong band at 1150/1146/1152 cm−1 ascribed to ν(N–CCH3) vibration and a noticeable set of three very intense absorptions in the out-of-plane C—H bending region 800–600 cm−1 (peaks at 789/800/780, 738/740/734 and 616/624/618 cm−1) for (I)/(II)/(III), respectively.

[Figure 4]
Figure 4
IR spectrum of [L]2[CdBr2.42Cl1.58], (II)[link].

The room-temperature 1H NMR spectra of the hybrids in DMSO-d6 are similar, demonstrating the expected sets of signals and correct aromatic/alkyl proton ratios of the L+ cation (Fig. 5[link]). Two CH protons in the imidazolium rings appear as singlets at δ 9.88/9.75/9.81 [HC13] and 8.25/8.21/8.22 ppm [HC11] for (I)/(II)/(III), respectively. The pyridine protons give two doublet and two triplet resonances between 8.67/8.64/8.68 and 7.11/7.15/7.14 ppm. Protons of the CH3 group are observed as singlets at 4.26/4.24/4.25 ppm. The close resemblance of the measured 1H NMR spectra with those of other L+-containing halometallates (Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.], 2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.]) implies that the L+ cation is conformationally stable in solutions of both hybrid salts, which are thus dissociated in DMSO.

[Figure 5]
Figure 5
The room-temperature 1H NMR spectrum of (III)[link] in DMSO-d6 in the 10–4 ppm range.

6. Synthesis and crystallization

Synthesis of [L]2[ZnCl3.19I0.81] (I)

Solid CH3NH2·HCl (0.27 g, 4 mmol) was added to the warm formaldehyde solution prepared by dissolving paraform (0.13 g, 4.5 mmol) in boiling deionized water (10 ml) in a 50 ml conical flask. The solution was stirred vigorously for 1 h at room temperature, filtered, and 2-pyridine­carbaldehyde (0.19 ml, 2 mmol) was added to the flask, which was then left open overnight. On the following day, ZnO (0.08 g, 1 mmol) and NH4I (0.29 g, 2 mmol) were introduced into the flask and the mixture was magnetically stirred at 323 K for 1.5 h. After that, the turbid orange solution was filtered and allowed to evaporate. Very light brownish prisms of (I)[link] suitable for X-ray crystallography formed within two weeks in the brown solution. The crystals were filtered off, washed with diethyl ether and dried in air. Yield: 83% (based on Zn). FT–IR (ν, cm−1): 3436br, 3114s, 3094vs, 3068, 3038vs, 3006, 2972, 2934, 1654, 1562, 1542, 1450, 1376, 1346, 1322, 1262, 1216, 1150vs, 1128, 1036, 986, 918, 789vs, 762, 738, 616vs, 500, 466, 424. 1H NMR (400MHz, DMSO-d6): δ (ppm) 9.88 (s, 1H, HC13), 8.67 (d, 1H, J = 6.9 Hz, HC14), 8.25 (s, 1H, HC11), 7.80 (d, 1H, J = 9.2 Hz, HC17), 7.21 (t, 1H, J = 8.1 Hz, HC15), 7.11 (t, 1H, J = 6.7 Hz, HC16), 4.26 (s, 3H, CH3). Analysis calculated for C16H18N4ZnCl3I (564.99): C 34.01; H 3.21; N 9.92%. Found: C 35.40; H 2.83; N 9.74%.

Synthesis of [L]2[CdBr2.42Cl1.58] (II)

The compound was prepared by a similar procedure except that CdBr2·4H2O (0.34 g, 1 mmol) dissolved in water was used instead of ZnO and NH4I. Yield: 72% (based on cadmium). FT–IR (ν, cm−1): 3428br, 3116s, 3092s, 3050s, 3012, 2952, 2910, 1654, 1564, 1542, 1452, 1372, 1350, 1326, 1256, 1220, 1146vs, 1036, 984, 920, 800vs, 762, 740, 624vs, 498, 466, 434, 406. 1H NMR (400 MHz, DMSO-d6): δ (ppm) 9.81 (s, 1H, HC13), 8.68 (d, 1H, J = 6.8 Hz, HC14), 8.22 (s, 1H, HC11), 7.83 (d, 1H, J = 9.3 Hz, HC17), 7.24 (t, 1H, J = 8.1 Hz, HC15), 7.14 (t, 1H, J = 6.8 Hz, HC16), 4.25 (s, 3H, CH3). Analysis calculated for C16H18N4CdBr3Cl (653.92): C 29.39; H 2.77; N 8.57%. Found: C 28.91; H 2.84; N 8.68%.

Synthesis of [L]2[CdCl3.90I0.10] (III)

The compound was synthesized in a similar way by employing CdI2 (0.36 g, 1 mmol) dissolved in water in place of ZnO and NH4I. Yield: 89% (based on cadmium). FT–IR (ν, cm−1): 3420br, 3130s, 3098s, 3072, 3054, 2990, 2944, 2914, 1656, 1568, 1546, 1456, 1376, 1356, 1332, 1256, 1218, 1152s, 1040, 982, 920, 780vs, 734, 618s, 504, 464, 432, 418. 1H NMR (400 MHz, DMSO-d6): δ (ppm) 9.75 (s, 1H, HC13), 8.64 (d, 1H, J = 7.3 Hz, HC14), 8.21 (s, 1H, HC11), 7.83 (d, 1H, J = 9.3 Hz, HC17), 7.25 (t, 1H, J = 7.8 Hz, HC15), 7.15 (t, 1H, J = 7.1 Hz, HC16), 4.24 (s, 3H, CH3). Analysis calculated for C16H18N4ZnClI3 (794.92): C, 25.69; H 2.43; N 7.49%. Found: C 22.74; H 1.79; N 6.42%. The iodine content in the bulk sample appeared significantly larger than in the single crystal of (III)[link] used for data collection.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. In all three structures, the cations were modelled as being rotationally disordered by 180°. The site occupancies refined to 0.855 (17) and its complement for both cations in (I)[link], 0.73 (2) and its complement for cation 1 and 0.75 (2) and its complement for cation 2 in (II)[link], and 0.72 (3) and its complement for cation 1 and 0.81 (3) and its complement for cation 2 in (III)[link]. In compound (I)[link], the halide atom sites 2, 3 and 4 were modelled as being part Cl and part I, with Cl site occupancies refined to 0.3034 (15), 0.9489 (12) and 0.9343 (12), respectively, with the I site occupancies being the complements. The halide atom sites in compound (II)[link] were modelled as being part Br and part Cl with the Br occupancy for sites 1–4 refined to 0.417 (2), 0.857 (2), 0.558 (2) and 0.590 (2) with the Cl occupancies being the complements. Cd—X bond lengths of the disordered atoms were restrained to ideal values. The halide atom site 2 in (III)[link] was modelled as being part Cl and part I, with Cl site occupancies refined to 0.9008 (15) with the I site occupancies being its complement. Cd–X bond lengths of the disordered atoms were restrained to ideal values. The coordinates of the halogens were refined to be independent for all three structures. All hydrogen atoms were included in calculated positions and refined using a riding model with isotropic displacement parameters based on those of the parent atom (C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C) for CH, C—H = 0.98 Å, Uiso(H) = 1.5Ueq(C) for CH3). Anisotropic displacement parameters were employed for the non-hydrogen atoms.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula (C8H9N2)2[ZnCl3.19I0.81] (C8H9N2)2[CdBr2.42Cl1.58] (C8H9N2)2[CdCl3.90I0.10]
Mr 547.59 628.14 529.69
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100 100
a, b, c (Å) 9.4588 (6), 10.8892 (8), 10.8343 (9) 9.5172 (5), 10.8293 (6), 10.9697 (6) 9.4304 (3), 10.7968 (3), 10.7565 (3)
α, β, γ (°) 100.305 (7), 110.910 (7), 90.955 (6) 99.620 (5), 110.413 (5), 90.827 (5) 99.209 (3), 110.746 (3), 90.837 (2)
V3) 1021.67 (14) 1041.45 (10) 1007.97 (5)
Z 2 2 2
Radiation type Mo Kα Mo Kα Cu Kα
μ (mm−1) 2.85 5.90 14.69
Crystal size (mm) 0.68 × 0.48 × 0.20 0.36 × 0.28 × 0.11 0.25 × 0.08 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer Oxford Diffraction Gemini diffractometer Oxford Diffraction Gemini diffractometer
Absorption correction Analytical CrysAlis PRO (Rigaku OD, 2016[Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]) Analytical CrysAlis PRO (Rigaku OD, 2016[Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]) Analytical CrysAlis PRO (Rigaku OD, 2016[Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.284, 0.592 0.206, 0.53 0.052, 0.522
No. of measured, independent and observed [I > 2σ(I)] reflections 21436, 10105, 8082 15893, 6879, 5371 18506, 3581, 3309
Rint 0.028 0.036 0.041
(sin θ/λ)max−1) 0.852 0.760 0.598
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 1.03 0.036, 0.068, 1.04 0.027, 0.068, 1.06
No. of reflections 10105 6879 3581
No. of parameters 241 246 234
No. of restraints 6 8 2
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.67, −1.13 0.89, −0.77 0.79, −0.46
Computer programs: CrysAlis PRO (Rigaku OD, 2016[Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2016); cell refinement: CrysAlis PRO (Rigaku OD, 2016); data reduction: CrysAlis PRO (Rigaku OD, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis(2-methylimidazo[1,5-a]pyridinium) trichloridoiodidozincate(II), (I) top
Crystal data top
(C8H9N2)2[ZnCl3.19I0.81]Z = 2
Mr = 547.59F(000) = 538
Triclinic, P1Dx = 1.780 Mg m3
a = 9.4588 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8892 (8) ÅCell parameters from 6804 reflections
c = 10.8343 (9) Åθ = 2.1–36.7°
α = 100.305 (7)°µ = 2.85 mm1
β = 110.910 (7)°T = 100 K
γ = 90.955 (6)°Prism, colourless
V = 1021.67 (14) Å30.68 × 0.48 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
10105 independent reflections
Graphite monochromator8082 reflections with I > 2σ(I)
Detector resolution: 16.0009 pixels mm-1Rint = 0.028
ω scansθmax = 37.3°, θmin = 1.9°
Absorption correction: analytical
CrysAlis Pro (Rigaku OD, 2016)
h = 1516
Tmin = 0.284, Tmax = 0.592k = 1818
21436 measured reflectionsl = 1617
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0358P)2 + 1.1052P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
10105 reflectionsΔρmax = 1.67 e Å3
241 parametersΔρmin = 1.13 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The halogen sites 2,3,4 were modelled as being part Cl and part I, with Cl site occupancies refined to 0.3034 (15), 0.9489 (12) and 0.9343 (12) respectively with the I site occupancies being the complements. The cations were modelled as being rotationally disordered by 180 degrees. The site occupancies refined to 0.855 (17) and its complement for both cations after independent refinement showed insignificant differences in the values for the two cations.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.6600 (2)0.6614 (2)0.1111 (2)0.0248 (4)
H110.6464260.7110070.0446070.030*
N120.7941 (2)0.62397 (18)0.1886 (2)0.0252 (4)
C120.9412 (3)0.6546 (3)0.1804 (3)0.0357 (5)
H12A0.9462810.6059480.0969990.053*
H12B1.0226880.6342820.2580220.053*
H12C0.9531860.7442780.1806830.053*
C130.7715 (2)0.5545 (2)0.2710 (2)0.0263 (4)
H130.8470380.5171020.3339810.032*
N13A0.6223 (2)0.54728 (18)0.2485 (2)0.0233 (4)0.855 (17)
C13A0.6223 (2)0.54728 (18)0.2485 (2)0.0233 (4)0.145 (17)
C140.5420 (3)0.4899 (2)0.3113 (3)0.0303 (5)
H140.5922270.4442460.3791710.036*
C150.3917 (3)0.5003 (2)0.2739 (3)0.0334 (5)
H150.3358400.4634710.3175130.040*
C160.3147 (3)0.5662 (2)0.1692 (3)0.0324 (5)
H160.2081740.5711720.1434780.039*
C170.3906 (2)0.6215 (2)0.1063 (3)0.0273 (4)
H170.3384770.6641320.0361580.033*
C17A0.5491 (2)0.61438 (19)0.1470 (2)0.0222 (4)0.855 (17)
N17A0.5491 (2)0.61438 (19)0.1470 (2)0.0222 (4)0.145 (17)
C210.2953 (3)0.9033 (2)0.3100 (3)0.0312 (5)
H210.1976800.9028350.3163800.037*
N220.3346 (2)0.9439 (2)0.2132 (2)0.0312 (4)
C220.2337 (4)0.9986 (3)0.1032 (3)0.0476 (8)
H22A0.2012461.0768570.1408030.071*
H22B0.1444210.9396000.0499350.071*
H22C0.2880281.0158420.0454260.071*
C230.4809 (3)0.9309 (2)0.2357 (2)0.0286 (4)
H230.5350490.9523750.1826010.034*
N23A0.5377 (2)0.88212 (18)0.34650 (19)0.0228 (4)0.855 (17)
C23A0.5377 (2)0.88212 (18)0.34650 (19)0.0228 (4)0.145 (17)
C240.6857 (3)0.8517 (2)0.4121 (3)0.0324 (5)
H240.7636600.8646740.3785300.039*
C250.7145 (4)0.8036 (3)0.5241 (3)0.0417 (7)
H250.8139620.7815570.5690030.050*
C260.6008 (4)0.7853 (3)0.5760 (3)0.0435 (7)
H260.6255420.7521760.6557780.052*
C270.4577 (4)0.8137 (2)0.5151 (3)0.0377 (6)
H270.3817850.8008640.5509970.045*
C27A0.4226 (3)0.8635 (2)0.3958 (2)0.0254 (4)0.855 (17)
N27A0.4226 (3)0.8635 (2)0.3958 (2)0.0254 (4)0.145 (17)
Zn10.83992 (3)0.19500 (3)0.25185 (3)0.02399 (7)
Cl10.58526 (6)0.19206 (6)0.13225 (6)0.02775 (11)
Cl20.9808 (5)0.2984 (5)0.1553 (5)0.02266 (7)0.3034 (15)
I21.00082 (4)0.30678 (4)0.14728 (5)0.02266 (7)0.6966 (15)
Cl30.90002 (15)0.00570 (10)0.25354 (14)0.03234 (17)0.9489 (12)
I30.8998 (9)0.0326 (4)0.2395 (9)0.03234 (17)0.0511 (12)
Cl40.88891 (13)0.30928 (11)0.46268 (11)0.03401 (18)0.9343 (12)
I40.8998 (6)0.3042 (5)0.4976 (3)0.03401 (18)0.0657 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0214 (9)0.0258 (10)0.0284 (10)0.0043 (7)0.0106 (8)0.0048 (8)
N120.0192 (8)0.0252 (8)0.0332 (10)0.0036 (6)0.0124 (7)0.0046 (7)
C120.0237 (10)0.0383 (13)0.0512 (16)0.0028 (9)0.0209 (11)0.0092 (11)
C130.0195 (9)0.0253 (10)0.0338 (11)0.0055 (7)0.0091 (8)0.0063 (8)
N13A0.0191 (8)0.0209 (8)0.0302 (9)0.0031 (6)0.0102 (7)0.0030 (7)
C13A0.0191 (8)0.0209 (8)0.0302 (9)0.0031 (6)0.0102 (7)0.0030 (7)
C140.0308 (11)0.0270 (11)0.0370 (12)0.0038 (8)0.0162 (10)0.0077 (9)
C150.0304 (12)0.0281 (11)0.0472 (15)0.0001 (9)0.0224 (11)0.0042 (10)
C160.0203 (9)0.0283 (11)0.0483 (14)0.0022 (8)0.0161 (10)0.0006 (10)
C170.0186 (9)0.0262 (10)0.0330 (11)0.0045 (7)0.0076 (8)0.0008 (8)
C17A0.0193 (8)0.0194 (8)0.0263 (9)0.0037 (6)0.0085 (7)0.0003 (7)
N17A0.0193 (8)0.0194 (8)0.0263 (9)0.0037 (6)0.0085 (7)0.0003 (7)
C210.0229 (10)0.0273 (11)0.0381 (13)0.0006 (8)0.0120 (9)0.0079 (9)
N220.0312 (10)0.0267 (9)0.0270 (9)0.0090 (8)0.0039 (8)0.0032 (7)
C220.0502 (17)0.0425 (16)0.0310 (13)0.0197 (13)0.0042 (12)0.0023 (11)
C230.0346 (12)0.0255 (10)0.0258 (10)0.0061 (8)0.0135 (9)0.0002 (8)
N23A0.0224 (8)0.0213 (8)0.0246 (8)0.0021 (6)0.0109 (7)0.0006 (6)
C23A0.0224 (8)0.0213 (8)0.0246 (8)0.0021 (6)0.0109 (7)0.0006 (6)
C240.0242 (10)0.0300 (11)0.0367 (12)0.0039 (8)0.0096 (9)0.0058 (9)
C250.0422 (15)0.0280 (12)0.0367 (14)0.0103 (10)0.0029 (11)0.0034 (10)
C260.067 (2)0.0246 (12)0.0316 (13)0.0007 (12)0.0102 (13)0.0041 (10)
C270.0556 (17)0.0241 (11)0.0363 (13)0.0096 (10)0.0244 (13)0.0013 (9)
C27A0.0263 (10)0.0216 (9)0.0283 (10)0.0020 (7)0.0135 (8)0.0026 (7)
N27A0.0263 (10)0.0216 (9)0.0283 (10)0.0020 (7)0.0135 (8)0.0026 (7)
Zn10.01984 (12)0.02715 (13)0.02316 (13)0.00151 (9)0.00564 (9)0.00513 (9)
Cl10.0206 (2)0.0329 (3)0.0284 (2)0.00323 (18)0.00568 (19)0.0096 (2)
Cl20.01846 (15)0.02384 (12)0.03012 (12)0.00196 (10)0.01175 (9)0.01045 (8)
I20.01846 (15)0.02384 (12)0.03012 (12)0.00196 (10)0.01175 (9)0.01045 (8)
Cl30.0298 (3)0.0181 (4)0.0504 (5)0.0077 (4)0.0154 (3)0.0078 (4)
I30.0298 (3)0.0181 (4)0.0504 (5)0.0077 (4)0.0154 (3)0.0078 (4)
Cl40.0276 (3)0.0452 (4)0.0222 (4)0.0028 (2)0.0058 (4)0.0034 (4)
I40.0276 (3)0.0452 (4)0.0222 (4)0.0028 (2)0.0058 (4)0.0034 (4)
Geometric parameters (Å, º) top
C11—N17A1.363 (3)N22—C231.332 (3)
C11—C17A1.363 (3)N22—C221.465 (3)
C11—N121.364 (3)C22—H22A0.9800
C11—H110.9500C22—H22B0.9800
N12—C131.338 (3)C22—H22C0.9800
N12—C121.462 (3)C23—C23A1.338 (3)
C12—H12A0.9800C23—N23A1.338 (3)
C12—H12B0.9800C23—H230.9500
C12—H12C0.9800N23A—C27A1.400 (3)
C13—C13A1.341 (3)N23A—C241.401 (3)
C13—N13A1.341 (3)C23A—N27A1.400 (3)
C13—H130.9500C23A—C241.401 (3)
N13A—C141.392 (3)C24—C251.348 (4)
N13A—C17A1.408 (3)C24—H240.9500
C13A—C141.392 (3)C25—C261.406 (5)
C13A—N17A1.408 (3)C25—H250.9500
C14—C151.345 (4)C26—C271.347 (5)
C14—H140.9500C26—H260.9500
C15—C161.432 (4)C27—N27A1.422 (4)
C15—H150.9500C27—C27A1.422 (4)
C16—C171.350 (4)C27—H270.9500
C16—H160.9500Zn1—Cl32.2689 (10)
C17—N17A1.411 (3)Zn1—Cl42.2780 (11)
C17—C17A1.411 (3)Zn1—Cl12.2884 (6)
C17—H170.9500Zn1—Cl22.346 (3)
C21—N27A1.365 (4)Zn1—I32.542 (4)
C21—C27A1.365 (4)Zn1—I42.568 (3)
C21—N221.368 (4)Zn1—I22.5969 (4)
C21—H210.9500
N17A—C11—N12107.2 (2)H22A—C22—H22C109.5
C17A—C11—N12107.2 (2)H22B—C22—H22C109.5
C17A—C11—H11126.4N22—C23—C23A107.6 (2)
N12—C11—H11126.4N22—C23—N23A107.6 (2)
C13—N12—C11110.52 (19)N22—C23—H23126.2
C13—N12—C12125.2 (2)N23A—C23—H23126.2
C11—N12—C12124.3 (2)C23—N23A—C27A109.2 (2)
N12—C12—H12A109.5C23—N23A—C24129.8 (2)
N12—C12—H12B109.5C27A—N23A—C24121.1 (2)
H12A—C12—H12B109.5C23—C23A—N27A109.2 (2)
N12—C12—H12C109.5C23—C23A—C24129.8 (2)
H12A—C12—H12C109.5N27A—C23A—C24121.1 (2)
H12B—C12—H12C109.5C25—C24—N23A118.2 (3)
N12—C13—C13A107.4 (2)C25—C24—C23A118.2 (3)
N12—C13—N13A107.4 (2)C25—C24—H24120.9
N12—C13—H13126.3N23A—C24—H24120.9
N13A—C13—H13126.3C24—C25—C26121.6 (3)
C13—N13A—C14129.9 (2)C24—C25—H25119.2
C13—N13A—C17A108.77 (19)C26—C25—H25119.2
C14—N13A—C17A121.32 (19)C27—C26—C25121.4 (3)
C13—C13A—C14129.9 (2)C27—C26—H26119.3
C13—C13A—N17A108.77 (19)C25—C26—H26119.3
C14—C13A—N17A121.32 (19)C26—C27—N27A118.6 (3)
C15—C14—N13A118.6 (2)C26—C27—C27A118.6 (3)
C15—C14—C13A118.6 (2)C26—C27—H27120.7
C15—C14—H14120.7C27A—C27—H27120.7
N13A—C14—H14120.7C21—C27A—N23A105.9 (2)
C14—C15—C16120.9 (2)C21—C27A—C27135.0 (2)
C14—C15—H15119.5N23A—C27A—C27119.1 (2)
C16—C15—H15119.5C21—N27A—C23A105.9 (2)
C17—C16—C15121.3 (2)C21—N27A—C27135.0 (2)
C17—C16—H16119.4C23A—N27A—C27119.1 (2)
C15—C16—H16119.4Cl3—Zn1—Cl4112.60 (5)
C16—C17—N17A118.5 (2)Cl3—Zn1—Cl1108.40 (4)
C16—C17—C17A118.5 (2)Cl4—Zn1—Cl1107.71 (4)
C16—C17—H17120.7Cl3—Zn1—Cl2110.84 (13)
C17A—C17—H17120.7Cl4—Zn1—Cl2106.83 (14)
C11—C17A—N13A106.19 (18)Cl1—Zn1—Cl2110.41 (12)
C11—C17A—C17134.5 (2)Cl3—Zn1—I33.2 (2)
N13A—C17A—C17119.4 (2)Cl4—Zn1—I3115.8 (2)
C11—N17A—C13A106.19 (18)Cl1—Zn1—I3106.36 (19)
C11—N17A—C17134.5 (2)Cl2—Zn1—I3109.7 (2)
C13A—N17A—C17119.4 (2)Cl3—Zn1—I4107.23 (14)
N27A—C21—N22107.2 (2)Cl4—Zn1—I45.44 (15)
C27A—C21—N22107.2 (2)Cl1—Zn1—I4109.51 (13)
C27A—C21—H21126.4Cl2—Zn1—I4110.37 (19)
N22—C21—H21126.4I3—Zn1—I4110.4 (2)
C23—N22—C21110.1 (2)Cl3—Zn1—I2109.83 (4)
C23—N22—C22124.1 (3)Cl4—Zn1—I2106.78 (4)
C21—N22—C22125.7 (3)Cl1—Zn1—I2111.54 (2)
N22—C22—H22A109.5Cl2—Zn1—I21.24 (13)
N22—C22—H22B109.5I3—Zn1—I2108.8 (2)
H22A—C22—H22B109.5I4—Zn1—I2110.22 (13)
N22—C22—H22C109.5
N17A—C11—N12—C130.4 (3)N27A—C21—N22—C230.0 (3)
C17A—C11—N12—C130.4 (3)C27A—C21—N22—C230.0 (3)
N17A—C11—N12—C12179.7 (2)N27A—C21—N22—C22177.8 (2)
C17A—C11—N12—C12179.7 (2)C27A—C21—N22—C22177.8 (2)
C11—N12—C13—C13A0.6 (3)C21—N22—C23—C23A0.0 (3)
C12—N12—C13—C13A179.8 (2)C22—N22—C23—C23A177.8 (2)
C11—N12—C13—N13A0.6 (3)C21—N22—C23—N23A0.0 (3)
C12—N12—C13—N13A179.8 (2)C22—N22—C23—N23A177.8 (2)
N12—C13—N13A—C14177.5 (2)N22—C23—N23A—C27A0.1 (3)
N12—C13—N13A—C17A0.4 (3)N22—C23—N23A—C24179.5 (2)
N12—C13—C13A—C14177.5 (2)N22—C23—C23A—N27A0.1 (3)
N12—C13—C13A—N17A0.4 (3)N22—C23—C23A—C24179.5 (2)
C13—N13A—C14—C15177.2 (2)C23—N23A—C24—C25179.6 (2)
C17A—N13A—C14—C150.5 (3)C27A—N23A—C24—C250.2 (3)
C13—C13A—C14—C15177.2 (2)C23—C23A—C24—C25179.6 (2)
N17A—C13A—C14—C150.5 (3)N27A—C23A—C24—C250.2 (3)
N13A—C14—C15—C161.6 (4)N23A—C24—C25—C260.8 (4)
C13A—C14—C15—C161.6 (4)C23A—C24—C25—C260.8 (4)
C14—C15—C16—C171.0 (4)C24—C25—C26—C270.8 (4)
C15—C16—C17—N17A0.8 (4)C25—C26—C27—N27A0.1 (4)
C15—C16—C17—C17A0.8 (4)C25—C26—C27—C27A0.1 (4)
N12—C11—C17A—N13A0.1 (2)N22—C21—C27A—N23A0.1 (2)
N12—C11—C17A—C17178.9 (2)N22—C21—C27A—C27178.8 (3)
C13—N13A—C17A—C110.2 (2)C23—N23A—C27A—C210.1 (2)
C14—N13A—C17A—C11177.9 (2)C24—N23A—C27A—C21179.5 (2)
C13—N13A—C17A—C17179.4 (2)C23—N23A—C27A—C27179.1 (2)
C14—N13A—C17A—C171.3 (3)C24—N23A—C27A—C270.5 (3)
C16—C17—C17A—C11177.1 (2)C26—C27—C27A—C21179.1 (3)
C16—C17—C17A—N13A1.9 (3)C26—C27—C27A—N23A0.5 (3)
N12—C11—N17A—C13A0.1 (2)N22—C21—N27A—C23A0.1 (2)
N12—C11—N17A—C17178.9 (2)N22—C21—N27A—C27178.8 (3)
C13—C13A—N17A—C110.2 (2)C23—C23A—N27A—C210.1 (2)
C14—C13A—N17A—C11177.9 (2)C24—C23A—N27A—C21179.5 (2)
C13—C13A—N17A—C17179.4 (2)C23—C23A—N27A—C27179.1 (2)
C14—C13A—N17A—C171.3 (3)C24—C23A—N27A—C270.5 (3)
C16—C17—N17A—C11177.1 (2)C26—C27—N27A—C21179.1 (3)
C16—C17—N17A—C13A1.9 (3)C26—C27—N27A—C23A0.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···I4i0.952.883.349 (5)112
C12—H12B···Cl4i0.982.783.562 (3)137
C12—H12C···Cl3ii0.982.803.698 (3)153
C11—H11···Cl1iii0.952.723.484 (2)138
C22—H22B···I2iii0.983.063.946 (3)151
C22—H22C···I3iii0.983.003.562 (9)117
C23—H23···Cl1ii0.952.833.486 (3)127
C24—H24···Cl3ii0.952.713.579 (3)152
C27—H27···Cl4iv0.952.753.624 (3)153
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1.
Bis(2-methylimidazo[1,5-a]pyridinium) dibromidodichloridozincate(II) (II) top
Crystal data top
(C8H9N2)2[CdBr2.42Cl1.58]Z = 2
Mr = 628.14F(000) = 603
Triclinic, P1Dx = 2.003 Mg m3
a = 9.5172 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8293 (6) ÅCell parameters from 6082 reflections
c = 10.9697 (6) Åθ = 2.5–31.9°
α = 99.620 (5)°µ = 5.90 mm1
β = 110.413 (5)°T = 100 K
γ = 90.827 (5)°Plate, colourless
V = 1041.45 (10) Å30.36 × 0.28 × 0.11 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
6879 independent reflections
Graphite monochromator5371 reflections with I > 2σ(I)
Detector resolution: 10.4738 pixels mm-1Rint = 0.036
ω scansθmax = 32.7°, θmin = 2.0°
Absorption correction: analytical
CrysAlis Pro (Rigaku OD, 2016)
h = 1314
Tmin = 0.206, Tmax = 0.53k = 1616
15893 measured reflectionsl = 1516
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.019P)2 + 0.3916P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6879 reflectionsΔρmax = 0.89 e Å3
246 parametersΔρmin = 0.77 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The halide atom sites were modelled as being part Br and part Cl with site occupancies refined to 0.417 (2), 0.857 (2), 0.558 (2) and 0.590 (2) for the Br occupancy for sites 1-4 with the Cl occupancies being the complements. Cd-X bond lengths of the disordered atoms were restrained to ideal values. The cations were modelled as being rotationally disordered by 180 degrees. The site occupancies refined to 0.73 (2) and its complement for cation 1 and 0.75 (2) and its complement for cation 2.

Three reflections with very poor agreement were omitted from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.6551 (3)0.6498 (2)0.1036 (3)0.0215 (6)
H110.6430600.6984310.0366990.026*
N120.7851 (3)0.6065 (2)0.1763 (2)0.0203 (5)
C120.9297 (3)0.6271 (3)0.1610 (3)0.0269 (7)
H12A0.9889550.6979440.2285310.040*
H12B0.9127310.6459880.0728880.040*
H12C0.9845060.5513600.1714510.040*
C130.7613 (3)0.5408 (2)0.2620 (3)0.0208 (6)
H130.8346230.5009850.3231750.025*
N13A0.6145 (3)0.5421 (2)0.2452 (3)0.0199 (6)0.73 (2)
C13A0.6145 (3)0.5421 (2)0.2452 (3)0.0199 (6)0.27 (2)
C140.5319 (4)0.4908 (3)0.3114 (3)0.0274 (7)
H140.5790790.4443860.3789320.033*
C150.3853 (4)0.5089 (3)0.2773 (4)0.0329 (8)
H150.3284580.4764880.3226390.039*
C160.3130 (4)0.5764 (3)0.1734 (4)0.0313 (7)
H160.2085090.5864800.1502730.038*
C170.3887 (3)0.6259 (2)0.1076 (3)0.0243 (6)
H170.3391290.6698340.0384310.029*
C17A0.5446 (3)0.6103 (2)0.1446 (3)0.0197 (6)0.73 (2)
N17A0.5446 (3)0.6103 (2)0.1446 (3)0.0197 (6)0.27 (2)
C210.3022 (3)0.8993 (2)0.3242 (3)0.0221 (6)
H210.2070380.9014560.3341750.027*
N220.3367 (3)0.9351 (2)0.2233 (2)0.0219 (5)
C220.2316 (4)0.9859 (3)0.1121 (3)0.0309 (7)
H22A0.2852141.0086310.0562120.046*
H22B0.1907711.0606940.1467020.046*
H22C0.1491900.9222040.0594300.046*
C230.4808 (4)0.9189 (2)0.2403 (3)0.0225 (6)
H230.5314950.9365070.1835240.027*
N23A0.5413 (3)0.8728 (2)0.3535 (2)0.0181 (5)0.75 (2)
C23A0.5413 (3)0.8728 (2)0.3535 (2)0.0181 (5)0.25 (2)
C240.6873 (3)0.8389 (3)0.4152 (3)0.0250 (6)
H240.7626330.8476360.3781490.030*
C250.7187 (4)0.7935 (3)0.5287 (3)0.0285 (7)
H250.8166350.7684290.5701700.034*
C260.6081 (4)0.7824 (3)0.5877 (3)0.0285 (7)
H260.6341140.7520550.6685150.034*
C270.4670 (4)0.8146 (2)0.5297 (3)0.0252 (7)
H270.3936030.8072940.5691200.030*
C27A0.4298 (3)0.8598 (2)0.4078 (3)0.0211 (6)0.75 (2)
N27A0.4298 (3)0.8598 (2)0.4078 (3)0.0211 (6)0.25 (2)
Cd10.84620 (2)0.18609 (2)0.25086 (2)0.01928 (6)
Br10.5610 (3)0.1881 (11)0.1247 (10)0.0222 (4)0.417 (2)
Cl10.5727 (5)0.1844 (19)0.1340 (18)0.0222 (4)0.583 (2)
Br21.0021 (2)0.2985 (2)0.1431 (2)0.02319 (16)0.857 (2)
Cl21.003 (3)0.291 (3)0.155 (3)0.02319 (16)0.143 (2)
Br30.9014 (7)0.04313 (18)0.2368 (6)0.0262 (2)0.558 (2)
Cl30.902 (2)0.0282 (6)0.2367 (19)0.0262 (2)0.442 (2)
Br40.8962 (4)0.31677 (16)0.48575 (14)0.0245 (3)0.590 (2)
Cl40.8977 (14)0.2952 (7)0.4831 (5)0.0245 (3)0.410 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0217 (16)0.0175 (13)0.0258 (15)0.0023 (10)0.0095 (13)0.0031 (11)
N120.0165 (12)0.0187 (11)0.0269 (13)0.0025 (9)0.0101 (11)0.0026 (9)
C120.0190 (16)0.0296 (16)0.0397 (18)0.0051 (12)0.0179 (14)0.0103 (13)
C130.0176 (15)0.0177 (13)0.0269 (15)0.0012 (10)0.0082 (12)0.0030 (10)
N13A0.0163 (13)0.0165 (12)0.0273 (14)0.0012 (9)0.0098 (11)0.0011 (9)
C13A0.0163 (13)0.0165 (12)0.0273 (14)0.0012 (9)0.0098 (11)0.0011 (9)
C140.0330 (19)0.0191 (14)0.0350 (17)0.0005 (12)0.0183 (15)0.0048 (12)
C150.035 (2)0.0243 (15)0.048 (2)0.0025 (13)0.0285 (18)0.0015 (14)
C160.0151 (15)0.0263 (15)0.050 (2)0.0026 (11)0.0148 (15)0.0063 (14)
C170.0172 (15)0.0210 (14)0.0313 (16)0.0025 (11)0.0077 (13)0.0027 (11)
C17A0.0176 (14)0.0143 (12)0.0251 (14)0.0008 (9)0.0075 (12)0.0020 (10)
N17A0.0176 (14)0.0143 (12)0.0251 (14)0.0008 (9)0.0075 (12)0.0020 (10)
C210.0206 (15)0.0199 (13)0.0246 (15)0.0023 (11)0.0090 (13)0.0012 (11)
N220.0241 (14)0.0179 (11)0.0205 (12)0.0026 (9)0.0054 (11)0.0007 (9)
C220.0335 (19)0.0267 (16)0.0252 (16)0.0060 (13)0.0020 (15)0.0037 (12)
C230.0291 (17)0.0176 (13)0.0218 (14)0.0028 (11)0.0114 (13)0.0013 (10)
N23A0.0214 (14)0.0159 (11)0.0189 (12)0.0026 (9)0.0104 (11)0.0012 (9)
C23A0.0214 (14)0.0159 (11)0.0189 (12)0.0026 (9)0.0104 (11)0.0012 (9)
C240.0182 (15)0.0247 (15)0.0331 (17)0.0007 (11)0.0139 (14)0.0027 (12)
C250.0250 (17)0.0191 (14)0.0332 (17)0.0028 (11)0.0023 (14)0.0000 (12)
C260.038 (2)0.0200 (14)0.0233 (15)0.0037 (13)0.0059 (14)0.0050 (11)
C270.0344 (19)0.0206 (14)0.0241 (15)0.0060 (12)0.0171 (14)0.0004 (11)
C27A0.0240 (15)0.0159 (13)0.0251 (14)0.0011 (10)0.0137 (12)0.0025 (10)
N27A0.0240 (15)0.0159 (13)0.0251 (14)0.0011 (10)0.0137 (12)0.0025 (10)
Cd10.01779 (11)0.02089 (11)0.01967 (10)0.00058 (7)0.00668 (8)0.00518 (7)
Br10.0163 (4)0.0287 (6)0.0213 (13)0.0048 (8)0.0034 (6)0.0104 (7)
Cl10.0163 (4)0.0287 (6)0.0213 (13)0.0048 (8)0.0034 (6)0.0104 (7)
Br20.02510 (19)0.0221 (4)0.0273 (5)0.00083 (18)0.0134 (3)0.0089 (2)
Cl20.02510 (19)0.0221 (4)0.0273 (5)0.00083 (18)0.0134 (3)0.0089 (2)
Br30.0274 (3)0.0170 (6)0.0415 (3)0.0068 (8)0.0173 (2)0.0138 (8)
Cl30.0274 (3)0.0170 (6)0.0415 (3)0.0068 (8)0.0173 (2)0.0138 (8)
Br40.0239 (2)0.0248 (8)0.0214 (2)0.0037 (6)0.00643 (18)0.0006 (3)
Cl40.0239 (2)0.0248 (8)0.0214 (2)0.0037 (6)0.00643 (18)0.0006 (3)
Geometric parameters (Å, º) top
C11—N121.356 (4)N22—C231.337 (4)
C11—N17A1.368 (4)N22—C221.477 (4)
C11—C17A1.368 (4)C22—H22A0.9800
C11—H110.9500C22—H22B0.9800
N12—C131.345 (4)C22—H22C0.9800
N12—C121.462 (3)C23—C23A1.357 (4)
C12—H12A0.9800C23—N23A1.357 (4)
C12—H12B0.9800C23—H230.9500
C12—H12C0.9800N23A—C241.402 (4)
C13—C13A1.345 (4)N23A—C27A1.402 (3)
C13—N13A1.345 (4)C23A—C241.402 (4)
C13—H130.9500C23A—N27A1.402 (3)
N13A—C141.404 (4)C24—C251.353 (4)
N13A—C17A1.408 (4)C24—H240.9500
C13A—C141.404 (4)C25—C261.427 (4)
C13A—N17A1.408 (4)C25—H250.9500
C14—C151.339 (4)C26—C271.350 (4)
C14—H140.9500C26—H260.9500
C15—C161.433 (5)C27—N27A1.431 (4)
C15—H150.9500C27—C27A1.431 (4)
C16—C171.344 (4)C27—H270.9500
C16—H160.9500Cd1—Cl32.380 (4)
C17—N17A1.415 (4)Cd1—Cl22.460 (5)
C17—C17A1.415 (4)Cd1—Cl12.467 (3)
C17—H170.9500Cd1—Cl42.497 (4)
C21—N27A1.366 (4)Cd1—Br32.5353 (12)
C21—C27A1.366 (4)Cd1—Br12.5834 (17)
C21—N221.369 (4)Cd1—Br22.5950 (5)
C21—H210.9500Cd1—Br42.6029 (11)
N12—C11—N17A107.3 (2)N22—C23—N23A107.3 (2)
N12—C11—C17A107.3 (2)N22—C23—H23126.3
N12—C11—H11126.3N23A—C23—H23126.3
C17A—C11—H11126.3C23—N23A—C24130.4 (3)
C13—N12—C11110.5 (2)C23—N23A—C27A108.7 (3)
C13—N12—C12125.2 (3)C24—N23A—C27A120.9 (2)
C11—N12—C12124.3 (2)C23—C23A—C24130.4 (3)
N12—C12—H12A109.5C23—C23A—N27A108.7 (3)
N12—C12—H12B109.5C24—C23A—N27A120.9 (2)
H12A—C12—H12B109.5C25—C24—N23A118.6 (3)
N12—C12—H12C109.5C25—C24—C23A118.6 (3)
H12A—C12—H12C109.5C25—C24—H24120.7
H12B—C12—H12C109.5N23A—C24—H24120.7
C13A—C13—N12107.4 (3)C24—C25—C26121.6 (3)
N13A—C13—N12107.4 (3)C24—C25—H25119.2
N13A—C13—H13126.3C26—C25—H25119.2
N12—C13—H13126.3C27—C26—C25120.6 (3)
C13—N13A—C14130.7 (3)C27—C26—H26119.7
C13—N13A—C17A108.6 (2)C25—C26—H26119.7
C14—N13A—C17A120.8 (2)C26—C27—N27A118.9 (3)
C13—C13A—C14130.7 (3)C26—C27—C27A118.9 (3)
C13—C13A—N17A108.6 (2)C26—C27—H27120.5
C14—C13A—N17A120.8 (2)C27A—C27—H27120.5
C15—C14—N13A118.6 (3)C21—C27A—N23A106.2 (2)
C15—C14—C13A118.6 (3)C21—C27A—C27134.4 (3)
C15—C14—H14120.7N23A—C27A—C27119.4 (3)
N13A—C14—H14120.7C21—N27A—C23A106.2 (2)
C14—C15—C16120.8 (3)C21—N27A—C27134.4 (3)
C14—C15—H15119.6C23A—N27A—C27119.4 (3)
C16—C15—H15119.6Cl3—Cd1—Cl2107.3 (10)
C17—C16—C15122.0 (3)Cl3—Cd1—Cl1106.1 (7)
C17—C16—H16119.0Cl2—Cd1—Cl1114.9 (9)
C15—C16—H16119.0Cl3—Cd1—Cl4112.7 (5)
C16—C17—N17A117.9 (3)Cl2—Cd1—Cl4109.6 (9)
C16—C17—C17A117.9 (3)Cl1—Cd1—Cl4106.3 (6)
C16—C17—H17121.1Cl3—Cd1—Br31.0 (6)
C17A—C17—H17121.1Cl2—Cd1—Br3108.4 (9)
C11—C17A—N13A106.3 (2)Cl1—Cd1—Br3105.3 (5)
C11—C17A—C17133.9 (3)Cl4—Cd1—Br3112.4 (2)
N13A—C17A—C17119.9 (2)Cl3—Cd1—Br1107.0 (5)
C11—N17A—C13A106.3 (2)Cl2—Cd1—Br1113.4 (8)
C11—N17A—C17133.9 (3)Cl1—Cd1—Br11.5 (7)
C13A—N17A—C17119.9 (2)Cl4—Cd1—Br1106.9 (4)
N27A—C21—N22107.5 (3)Br3—Cd1—Br1106.2 (3)
C27A—C21—N22107.5 (3)Cl3—Cd1—Br2108.3 (5)
C27A—C21—H21126.2Cl2—Cd1—Br22.1 (8)
N22—C21—H21126.2Cl1—Cd1—Br2112.8 (5)
C23—N22—C21110.2 (2)Cl4—Cd1—Br2110.6 (2)
C23—N22—C22124.3 (3)Br3—Cd1—Br2109.34 (14)
C21—N22—C22125.5 (3)Br1—Cd1—Br2111.3 (3)
N22—C22—H22A109.5Cl3—Cd1—Br4117.3 (5)
N22—C22—H22B109.5Cl2—Cd1—Br4106.6 (9)
H22A—C22—H22B109.5Cl1—Cd1—Br4104.9 (5)
N22—C22—H22C109.5Cl4—Cd1—Br44.6 (2)
H22A—C22—H22C109.5Br3—Cd1—Br4117.00 (15)
H22B—C22—H22C109.5Br1—Cd1—Br4105.4 (3)
N22—C23—C23A107.3 (2)Br2—Cd1—Br4107.57 (8)
N17A—C11—N12—C130.0 (3)N27A—C21—N22—C230.3 (3)
C17A—C11—N12—C130.0 (3)C27A—C21—N22—C230.3 (3)
N17A—C11—N12—C12179.1 (2)N27A—C21—N22—C22179.0 (2)
C17A—C11—N12—C12179.1 (2)C27A—C21—N22—C22179.0 (2)
C11—N12—C13—C13A0.3 (3)C21—N22—C23—C23A0.3 (3)
C12—N12—C13—C13A179.3 (2)C22—N22—C23—C23A179.0 (2)
C11—N12—C13—N13A0.3 (3)C21—N22—C23—N23A0.3 (3)
C12—N12—C13—N13A179.3 (2)C22—N22—C23—N23A179.0 (2)
N12—C13—N13A—C14178.2 (3)N22—C23—N23A—C24179.5 (2)
N12—C13—N13A—C17A0.4 (3)N22—C23—N23A—C27A0.2 (3)
N12—C13—C13A—C14178.2 (3)N22—C23—C23A—C24179.5 (2)
N12—C13—C13A—N17A0.4 (3)N22—C23—C23A—N27A0.2 (3)
C13—N13A—C14—C15178.1 (3)C23—N23A—C24—C25179.4 (3)
C17A—N13A—C14—C150.4 (4)C27A—N23A—C24—C250.1 (4)
C13—C13A—C14—C15178.1 (3)C23—C23A—C24—C25179.4 (3)
N17A—C13A—C14—C150.4 (4)N27A—C23A—C24—C250.1 (4)
N13A—C14—C15—C161.5 (4)N23A—C24—C25—C261.5 (4)
C13A—C14—C15—C161.5 (4)C23A—C24—C25—C261.5 (4)
C14—C15—C16—C171.1 (5)C24—C25—C26—C271.5 (4)
C15—C16—C17—N17A0.5 (4)C25—C26—C27—N27A0.1 (4)
C15—C16—C17—C17A0.5 (4)C25—C26—C27—C27A0.1 (4)
N12—C11—C17A—N13A0.2 (3)N22—C21—C27A—N23A0.2 (3)
N12—C11—C17A—C17179.7 (3)N22—C21—C27A—C27178.5 (3)
C13—N13A—C17A—C110.4 (3)C23—N23A—C27A—C210.0 (3)
C14—N13A—C17A—C11178.3 (2)C24—N23A—C27A—C21179.4 (2)
C13—N13A—C17A—C17179.9 (2)C23—N23A—C27A—C27178.9 (2)
C14—N13A—C17A—C171.2 (4)C24—N23A—C27A—C271.7 (4)
C16—C17—C17A—C11177.8 (3)C26—C27—C27A—C21179.8 (3)
C16—C17—C17A—N13A1.6 (4)C26—C27—C27A—N23A1.7 (4)
N12—C11—N17A—C13A0.2 (3)N22—C21—N27A—C23A0.2 (3)
N12—C11—N17A—C17179.7 (3)N22—C21—N27A—C27178.5 (3)
C13—C13A—N17A—C110.4 (3)C23—C23A—N27A—C210.0 (3)
C14—C13A—N17A—C11178.3 (2)C24—C23A—N27A—C21179.4 (2)
C13—C13A—N17A—C17179.9 (2)C23—C23A—N27A—C27178.9 (2)
C14—C13A—N17A—C171.2 (4)C24—C23A—N27A—C271.7 (4)
C16—C17—N17A—C11177.8 (3)C26—C27—N27A—C21179.8 (3)
C16—C17—N17A—C13A1.6 (4)C26—C27—N27A—C23A1.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Br1i0.952.613.401 (9)141
C12—H12B···Br2ii0.982.903.820 (3)156
C12—H12C···Br20.982.723.621 (4)153
C13—H13···Br40.952.833.666 (4)148
C13—H13···Br4iii0.953.093.577 (4)113
C17—H17···Br1i0.952.923.649 (12)134
C21—H21···Br3iv0.952.843.685 (6)149
C23—H23···Br1v0.952.933.541 (12)123
C24—H24···Br3v0.952.753.627 (6)155
C27—H27···Br4vi0.952.873.657 (4)141
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+2, y+1, z+1; (iv) x1, y+1, z; (v) x, y+1, z; (vi) x+1, y+1, z+1.
Bis(2-methylimidazo[1,5-a]pyridinium) trichloridoiodidozincate(II) (III) top
Crystal data top
(C8H9N2)2[CdCl3.90I0.10]Z = 2
Mr = 529.69F(000) = 523
Triclinic, P1Dx = 1.745 Mg m3
a = 9.4304 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.7968 (3) ÅCell parameters from 10758 reflections
c = 10.7565 (3) Åθ = 4.2–67.2°
α = 99.209 (3)°µ = 14.69 mm1
β = 110.746 (3)°T = 100 K
γ = 90.837 (2)°Needle, colourless
V = 1007.97 (5) Å30.25 × 0.08 × 0.04 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
3581 independent reflections
Radiation source: sealed X-ray tube, Enhance Ultra (Cu) X-ray Source3309 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.4738 pixels mm-1θmax = 67.3°, θmin = 4.2°
ω scansh = 1111
Absorption correction: analytical
CrysAlis Pro (Rigaku OD, 2016)
k = 1212
Tmin = 0.052, Tmax = 0.522l = 1212
18506 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.6373P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3581 reflectionsΔρmax = 0.79 e Å3
234 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The halogen site 2 was modelled as being part Cl and part I, with Cl site occupancies refined to 0.9008 (15) with the I site occupancies being its complement. Cd-X bond lengths of the disordered atoms were restrained to ideal values. The cations were modelled as being rotationally disordered by 180 degrees. The site occupancies refined to 0.72 (3) and its complement for cation 1 and 0.81 (3) and its complement for cation 2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.6607 (3)0.6542 (3)0.1045 (3)0.0263 (6)
H110.6494430.7042610.0370150.032*
N120.7924 (3)0.6108 (2)0.1810 (2)0.0254 (5)
C120.9396 (3)0.6325 (3)0.1681 (3)0.0326 (7)
H12A1.0107140.6811870.2528430.049*
H12B0.9269390.6794060.0945060.049*
H12C0.9796880.5515130.1483160.049*
C130.7667 (3)0.5435 (3)0.2662 (3)0.0279 (6)
H130.8402470.5032530.3294480.034*
N13A0.6172 (3)0.5435 (2)0.2456 (3)0.0273 (7)0.72 (3)
C13A0.6172 (3)0.5435 (2)0.2456 (3)0.0273 (7)0.28 (3)
C140.5312 (4)0.4912 (3)0.3101 (3)0.0371 (7)
H140.5776240.4449770.3801840.045*
C150.3812 (4)0.5080 (3)0.2705 (4)0.0409 (8)
H150.3218880.4739740.3140890.049*
C160.3102 (4)0.5760 (3)0.1644 (4)0.0367 (7)
H160.2041060.5853640.1377270.044*
C170.3904 (3)0.6272 (3)0.1010 (3)0.0303 (6)
H170.3421530.6721360.0301210.036*
C17A0.5482 (3)0.6124 (3)0.1428 (3)0.0263 (7)0.72 (3)
N17A0.5482 (3)0.6124 (3)0.1428 (3)0.0263 (7)0.28 (3)
C210.2961 (3)0.8984 (3)0.3210 (3)0.0300 (6)
H210.2002500.8992210.3315040.036*
N220.3296 (3)0.9360 (2)0.2187 (2)0.0307 (5)
C220.2224 (4)0.9883 (3)0.1069 (3)0.0408 (8)
H22A0.2768221.0180140.0535090.061*
H22B0.1759951.0587340.1434480.061*
H22C0.1427960.9228930.0493110.061*
C230.4755 (4)0.9209 (3)0.2355 (3)0.0302 (6)
H230.5255000.9394920.1772600.036*
N23A0.5383 (3)0.8745 (2)0.3502 (2)0.0271 (6)0.81 (3)
C23A0.5383 (3)0.8745 (2)0.3502 (2)0.0271 (6)0.19 (3)
C240.6866 (3)0.8419 (3)0.4123 (3)0.0323 (7)
H240.7618770.8519030.3741010.039*
C250.7201 (4)0.7958 (3)0.5286 (3)0.0365 (7)
H250.8198790.7719120.5714910.044*
C260.6093 (4)0.7825 (3)0.5874 (3)0.0372 (7)
H260.6366630.7516610.6700010.045*
C270.4657 (4)0.8128 (3)0.5282 (3)0.0323 (7)
H270.3920580.8030670.5681330.039*
C27A0.4262 (3)0.8595 (3)0.4050 (3)0.0269 (7)0.81 (3)
N27A0.4262 (3)0.8595 (3)0.4050 (3)0.0269 (7)0.19 (3)
Cd10.84479 (2)0.18596 (2)0.25036 (2)0.02670 (9)
Cl10.56777 (8)0.18525 (7)0.12937 (7)0.03186 (16)
Cl20.9928 (4)0.2964 (3)0.1472 (4)0.0282 (3)0.9008 (15)
I21.0135 (10)0.3068 (9)0.1370 (10)0.0282 (3)0.0992 (15)
Cl30.90087 (9)0.03537 (7)0.23842 (8)0.03669 (18)
Cl40.89426 (8)0.30982 (7)0.47693 (7)0.03601 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0271 (14)0.0234 (14)0.0276 (15)0.0046 (12)0.0096 (11)0.0023 (11)
N120.0249 (12)0.0222 (12)0.0287 (12)0.0027 (10)0.0110 (10)0.0002 (10)
C120.0286 (15)0.0320 (16)0.0397 (17)0.0046 (13)0.0163 (13)0.0038 (13)
C130.0292 (15)0.0238 (14)0.0282 (15)0.0034 (12)0.0083 (12)0.0022 (11)
N13A0.0297 (14)0.0203 (13)0.0311 (14)0.0020 (10)0.0122 (11)0.0002 (10)
C13A0.0297 (14)0.0203 (13)0.0311 (14)0.0020 (10)0.0122 (11)0.0002 (10)
C140.0490 (19)0.0291 (16)0.0414 (18)0.0038 (14)0.0249 (15)0.0095 (14)
C150.046 (2)0.0317 (17)0.054 (2)0.0027 (15)0.0321 (17)0.0006 (15)
C160.0281 (15)0.0305 (16)0.050 (2)0.0005 (13)0.0182 (14)0.0065 (14)
C170.0281 (15)0.0262 (15)0.0329 (16)0.0052 (12)0.0102 (12)0.0040 (12)
C17A0.0272 (14)0.0210 (14)0.0284 (15)0.0040 (11)0.0096 (11)0.0012 (11)
N17A0.0272 (14)0.0210 (14)0.0284 (15)0.0040 (11)0.0096 (11)0.0012 (11)
C210.0288 (15)0.0248 (15)0.0349 (16)0.0042 (12)0.0133 (12)0.0035 (12)
N220.0377 (14)0.0227 (12)0.0269 (13)0.0037 (11)0.0085 (11)0.0015 (10)
C220.0459 (19)0.0349 (18)0.0314 (17)0.0067 (15)0.0033 (14)0.0014 (14)
C230.0398 (17)0.0233 (15)0.0285 (15)0.0008 (13)0.0159 (13)0.0010 (12)
N23A0.0334 (14)0.0203 (12)0.0285 (13)0.0000 (10)0.0156 (11)0.0031 (10)
C23A0.0334 (14)0.0203 (12)0.0285 (13)0.0000 (10)0.0156 (11)0.0031 (10)
C240.0269 (15)0.0257 (15)0.0430 (18)0.0015 (12)0.0172 (13)0.0080 (13)
C250.0332 (16)0.0261 (16)0.0409 (18)0.0056 (13)0.0058 (14)0.0027 (13)
C260.049 (2)0.0265 (16)0.0296 (16)0.0022 (14)0.0083 (14)0.0009 (13)
C270.0436 (18)0.0245 (15)0.0306 (16)0.0064 (13)0.0192 (14)0.0029 (12)
C27A0.0297 (15)0.0222 (14)0.0291 (15)0.0010 (11)0.0147 (12)0.0038 (11)
N27A0.0297 (15)0.0222 (14)0.0291 (15)0.0010 (11)0.0147 (12)0.0038 (11)
Cd10.02659 (12)0.02715 (13)0.02568 (12)0.00296 (8)0.00879 (8)0.00419 (8)
Cl10.0268 (3)0.0371 (4)0.0308 (4)0.0035 (3)0.0079 (3)0.0094 (3)
Cl20.0328 (10)0.0261 (7)0.0321 (7)0.0008 (6)0.0181 (5)0.0086 (4)
I20.0328 (10)0.0261 (7)0.0321 (7)0.0008 (6)0.0181 (5)0.0086 (4)
Cl30.0409 (4)0.0297 (4)0.0459 (4)0.0095 (3)0.0204 (3)0.0128 (3)
Cl40.0351 (4)0.0413 (4)0.0278 (4)0.0015 (3)0.0094 (3)0.0000 (3)
Geometric parameters (Å, º) top
C11—N121.362 (4)C21—H210.9500
C11—N17A1.363 (4)N22—C231.338 (4)
C11—C17A1.363 (4)N22—C221.470 (4)
C11—H110.9500C22—H22A0.9800
N12—C131.338 (4)C22—H22B0.9800
N12—C121.462 (4)C22—H22C0.9800
C12—H12A0.9800C23—C23A1.346 (4)
C12—H12B0.9800C23—N23A1.346 (4)
C12—H12C0.9800C23—H230.9500
C13—C13A1.347 (4)N23A—C241.398 (4)
C13—N13A1.347 (4)N23A—C27A1.399 (4)
C13—H130.9500C23A—C241.398 (4)
N13A—C17A1.402 (4)C23A—N27A1.399 (4)
N13A—C141.402 (4)C24—C251.355 (5)
C13A—N17A1.402 (4)C24—H240.9500
C13A—C141.402 (4)C25—C261.416 (5)
C14—C151.350 (5)C25—H250.9500
C14—H140.9500C26—C271.347 (5)
C15—C161.425 (5)C26—H260.9500
C15—H150.9500C27—N27A1.420 (4)
C16—C171.348 (5)C27—C27A1.420 (4)
C16—H160.9500C27—H270.9500
C17—N17A1.413 (4)Cd1—Cl32.4481 (8)
C17—C17A1.413 (4)Cd1—Cl22.4654 (16)
C17—H170.9500Cd1—Cl42.4655 (7)
C21—N27A1.360 (4)Cd1—Cl12.4710 (7)
C21—C27A1.360 (4)Cd1—I22.747 (4)
C21—N221.364 (4)
N12—C11—N17A107.1 (3)C23—N22—C22124.4 (3)
N12—C11—C17A107.1 (3)C21—N22—C22125.1 (3)
N12—C11—H11126.4N22—C22—H22A109.5
C17A—C11—H11126.4N22—C22—H22B109.5
C13—N12—C11110.5 (2)H22A—C22—H22B109.5
C13—N12—C12125.3 (3)N22—C22—H22C109.5
C11—N12—C12124.2 (2)H22A—C22—H22C109.5
N12—C12—H12A109.5H22B—C22—H22C109.5
N12—C12—H12B109.5N22—C23—C23A107.4 (3)
H12A—C12—H12B109.5N22—C23—N23A107.4 (3)
N12—C12—H12C109.5N22—C23—H23126.3
H12A—C12—H12C109.5N23A—C23—H23126.3
H12B—C12—H12C109.5C23—N23A—C24130.1 (3)
N12—C13—C13A107.3 (3)C23—N23A—C27A108.4 (3)
N12—C13—N13A107.3 (3)C24—N23A—C27A121.5 (3)
N12—C13—H13126.3C23—C23A—C24130.1 (3)
N13A—C13—H13126.3C23—C23A—N27A108.4 (3)
C13—N13A—C17A108.5 (2)C24—C23A—N27A121.5 (3)
C13—N13A—C14131.1 (3)C25—C24—N23A118.1 (3)
C17A—N13A—C14120.4 (3)C25—C24—C23A118.1 (3)
C13—C13A—N17A108.5 (2)C25—C24—H24120.9
C13—C13A—C14131.1 (3)N23A—C24—H24120.9
N17A—C13A—C14120.4 (3)C24—C25—C26121.3 (3)
C15—C14—N13A118.6 (3)C24—C25—H25119.3
C15—C14—C13A118.6 (3)C26—C25—H25119.3
C15—C14—H14120.7C27—C26—C25121.2 (3)
N13A—C14—H14120.7C27—C26—H26119.4
C14—C15—C16121.1 (3)C25—C26—H26119.4
C14—C15—H15119.5C26—C27—N27A118.9 (3)
C16—C15—H15119.5C26—C27—C27A118.9 (3)
C17—C16—C15121.4 (3)C26—C27—H27120.5
C17—C16—H16119.3C27A—C27—H27120.5
C15—C16—H16119.3C21—C27A—N23A106.9 (3)
C16—C17—N17A118.2 (3)C21—C27A—C27134.1 (3)
C16—C17—C17A118.2 (3)N23A—C27A—C27119.0 (3)
C16—C17—H17120.9C21—N27A—C23A106.9 (3)
C17A—C17—H17120.9C21—N27A—C27134.1 (3)
C11—C17A—N13A106.5 (2)C23A—N27A—C27119.0 (3)
C11—C17A—C17133.2 (3)Cl3—Cd1—Cl2109.94 (9)
N13A—C17A—C17120.3 (3)Cl3—Cd1—Cl4116.91 (3)
C11—N17A—C13A106.5 (2)Cl2—Cd1—Cl4106.67 (9)
C11—N17A—C17133.2 (3)Cl3—Cd1—Cl1105.93 (3)
C13A—N17A—C17120.3 (3)Cl2—Cd1—Cl1112.21 (9)
N27A—C21—N22106.9 (3)Cl4—Cd1—Cl1105.20 (3)
C27A—C21—N22106.9 (3)Cl3—Cd1—I2109.2 (2)
C27A—C21—H21126.6Cl2—Cd1—I20.9 (3)
N22—C21—H21126.6Cl4—Cd1—I2106.7 (2)
C23—N22—C21110.5 (3)Cl1—Cd1—I2113.0 (2)
N17A—C11—N12—C130.2 (3)N27A—C21—N22—C230.5 (3)
C17A—C11—N12—C130.2 (3)C27A—C21—N22—C230.5 (3)
N17A—C11—N12—C12178.3 (3)N27A—C21—N22—C22178.3 (3)
C17A—C11—N12—C12178.3 (3)C27A—C21—N22—C22178.3 (3)
C11—N12—C13—C13A0.3 (3)C21—N22—C23—C23A0.7 (3)
C12—N12—C13—C13A178.7 (2)C22—N22—C23—C23A178.1 (3)
C11—N12—C13—N13A0.3 (3)C21—N22—C23—N23A0.7 (3)
C12—N12—C13—N13A178.7 (2)C22—N22—C23—N23A178.1 (3)
N12—C13—N13A—C17A0.6 (3)N22—C23—N23A—C24179.8 (3)
N12—C13—N13A—C14177.6 (3)N22—C23—N23A—C27A0.5 (3)
N12—C13—C13A—N17A0.6 (3)N22—C23—C23A—C24179.8 (3)
N12—C13—C13A—C14177.6 (3)N22—C23—C23A—N27A0.5 (3)
C13—N13A—C14—C15178.5 (3)C23—N23A—C24—C25179.5 (3)
C17A—N13A—C14—C150.4 (4)C27A—N23A—C24—C250.4 (4)
C13—C13A—C14—C15178.5 (3)C23—C23A—C24—C25179.5 (3)
N17A—C13A—C14—C150.4 (4)N27A—C23A—C24—C250.4 (4)
N13A—C14—C15—C160.7 (5)N23A—C24—C25—C261.0 (4)
C13A—C14—C15—C160.7 (5)C23A—C24—C25—C261.0 (4)
C14—C15—C16—C170.9 (5)C24—C25—C26—C271.4 (5)
C15—C16—C17—N17A0.2 (5)C25—C26—C27—N27A0.4 (4)
C15—C16—C17—C17A0.2 (5)C25—C26—C27—C27A0.4 (4)
N12—C11—C17A—N13A0.5 (3)N22—C21—C27A—N23A0.2 (3)
N12—C11—C17A—C17179.7 (3)N22—C21—C27A—C27178.7 (3)
C13—N13A—C17A—C110.7 (3)C23—N23A—C27A—C210.2 (3)
C14—N13A—C17A—C11177.8 (3)C24—N23A—C27A—C21179.6 (2)
C13—N13A—C17A—C17180.0 (2)C23—N23A—C27A—C27179.3 (3)
C14—N13A—C17A—C171.5 (4)C24—N23A—C27A—C271.4 (4)
C16—C17—C17A—C11177.7 (3)C26—C27—C27A—C21179.7 (3)
C16—C17—C17A—N13A1.4 (4)C26—C27—C27A—N23A1.0 (4)
N12—C11—N17A—C13A0.5 (3)N22—C21—N27A—C23A0.2 (3)
N12—C11—N17A—C17179.7 (3)N22—C21—N27A—C27178.7 (3)
C13—C13A—N17A—C110.7 (3)C23—C23A—N27A—C210.2 (3)
C14—C13A—N17A—C11177.8 (3)C24—C23A—N27A—C21179.6 (2)
C13—C13A—N17A—C17180.0 (2)C23—C23A—N27A—C27179.3 (3)
C14—C13A—N17A—C171.5 (4)C24—C23A—N27A—C271.4 (4)
C16—C17—N17A—C11177.7 (3)C26—C27—N27A—C21179.7 (3)
C16—C17—N17A—C13A1.4 (4)C26—C27—N27A—C23A1.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Cl40.952.773.597 (3)146
C12—H12A···Cl4i0.982.713.520 (3)141
C12—H12C···Cl20.982.763.652 (5)152
C11—H11···Cl1ii0.952.643.412 (3)139
C17—H17···Cl1ii0.952.813.560 (3)137
C21—H21···Cl3iii0.952.783.623 (3)148
C23—H23···Cl1iv0.952.833.447 (3)123
C24—H24···Cl3iv0.952.683.568 (3)155
C27—H27···Cl4v0.952.793.605 (3)144
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y+1, z; (iv) x, y+1, z; (v) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 22BP037-13).

References

First citationAlcarazo, M., Roseblade, S. J., Cowley, A. R., Fernández, R., Brown, J. M. & Lassaletta, J. M. (2005). J. Am. Chem. Soc. 127, 3290–3291.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationArdizzoia, G. A., Ghiotti, D., Therrien, B. & Brenna, S. (2018). Inorg. Chim. Acta, 471, 384–390.  Web of Science CSD CrossRef CAS Google Scholar
First citationAskar, A. M., Karmakar, A., Bernard, G. M., Ha, M., Terskikh, V. V., Wiltshire, B. D., Patel, S., Fleet, J., Shankar, K. & Michaelis, V. K. (2018). J. Phys. Chem. Lett. 9, 2671–2677.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBurstein, C., Lehmann, C. W. & Glorius, F. (2005). Tetrahedron, 61, 6207–6217.  Web of Science CSD CrossRef CAS Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Linnik, R. P., Vassilyeva, O. Y. & Skelton, B. W. (2015). Dalton Trans. 44, 13735–13744.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCarson, J. J. K., Miron, C. E., Luo, J., Mergny, J. L., van Staalduinen, L., Jia, Z. & Petitjean, A. (2021). Inorg. Chim. Acta, 518, 120236.  Web of Science CSD CrossRef Google Scholar
First citationChattopadhyay, S. K., Mitra, K., Biswas, S., Naskar, S., Mishra, D., Adhikary, B., Harrison, R. G. & Cannon, J. F. (2004). Transition Met. Chem. 29, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationDou, L., Yang, Y., You, J., Hong, Z., Chang, W.-H., Li, G. & Yang, Y. (2014). Nat. Commun. 5, 1–6.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLeblanc, A., Mercier, N., Allain, M., Dittmer, J., Pauporté, T., Fernandez, V., Boucher, F., Kepenekian, M. & Katan, C. (2019). Appl. Mater. Interfaces, 11, 20743–20751.  Web of Science CSD CrossRef Google Scholar
First citationLeijtens, T., Eperon, G. E., Noel, N. K., Habisreutinger, S. N., Petrozza, A. & Snaith, H. J. (2015). Adv. Energy Mater. 5, 1500963.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManser, J. S., Christians, J. A. & Kamat, P. V. (2016). Chem. Rev. 116, 12956–13008.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806–5812.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRoccanova, R., Ming, W., Whiteside, V. R., McGuire, M. A., Sellers, I. R., Du, M. H. & Saparov, B. (2017). Inorg. Chem. 56, 13878–13888.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRogers, R. D., Gurau, G., Kelley, S. P., Kore, R. & Shamshina, J. L. (2019). University of Alabama (UA), US Patent 10, 357, 762.  Google Scholar
First citationSamanta, T., Rana, B. K., Roymahapatra, G., Giri, S., Mitra, P., Pallepogu, R., Chattaraj, P. K. & Dinda, J. (2011). Inorg. Chim. Acta, 375, 271–279.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStranks, S. D. & Snaith, H. J. (2015). Nature Nanotech, 10, 391–402.  Web of Science CrossRef CAS Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096–5105.  Web of Science CSD CrossRef CAS Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713–7722.  Web of Science CSD CrossRef CAS Google Scholar
First citationYagishita, F., Nii, C., Tezuka, Y., Tabata, A., Nagamune, H., Uemura, N., Yoshida, Y., Mino, T., Sakamoto, M. & Kawamura, Y. (2018). Asia. J. Org. Chem. 7, 1614–1619.  Web of Science CrossRef CAS Google Scholar
First citationYang, C., Wang, M. S., Cai, L. Z., Jiang, X. M., Wu, M. F., Guo, G. C. & Huang, J. S. (2010). Inorg. Chem. Commun. 13, 1021–1024.  Web of Science CSD CrossRef CAS Google Scholar
First citationYangui, A., Roccanova, R., McWhorter, T. M., Wu, Y., Du, M. H. & Saparov, B. (2019). Chem. Mater. 31, 2983–2991.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds