research communications
Hirshfeld surface and computational study of 1-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-3-propanoylthiourea
aDepartment of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria, bUniversal College of Learning, Private Bag 11022, Palmerston North, New Zealand, and cSchool of Chemical Sciences, the University of Auckland, New Zealand
*Correspondence e-mail: obinna.okpareke@unn.edu.ng, niyi.asegbeloyin@unn.edu.ng
The title compound, C18H14N2O3S, crystallizes in the orthorhombic and Pbca The thiourea chromophore is planar to an r.m.s deviation of 0.032 Å with the thiolate sulfur atom being the most deviated. Bifurcated N—H⋯O intramolecular hydrogen bonds result in an S(6) supramolecular synthon. In the crystal, molecules are linked by N—H⋯O intermolecular hydrogen-bonding interactions and stabilized by C—H⋯π and π–π interactions. Hirshfeld surface analysis and fingerprint plot indicate the H⋯H intermolecular contacts as the highest contributor to the overall surface contacts (38%) and this is supported by the high dispersive and electrostatic interaction energies.
Keywords: anthraquinone; thiourea; crystal structure; Hirshfeld surface; computational study.
CCDC reference: 2161135
1. Chemical context
Anthraquinones, a group of tricyclic aromatic organic compounds, are the largest group of natural and synthetic et al., 2016). These compounds exhibit important biological activities, including antitumor (Huang et al., 2007; Murdock et al., 1979, Shrestha et al., 2014, 2015; Chien et al., 2015), anti-inflammatory (Chien et al., 2015; Khan et al., 2011), diuretic (Chien et al., 2015), antiarthritic (Davis et al., 1986), antifungal (Wuthi-udomlert et al., 2010), antibacterial (Fosso et al., 2012), antimalarial (Winter et al., 1996), antioxidant (Dave & Ledwani, 2012), antileukemic (Chang & Lee, 1984; Ismail et al., 1997), antiviral and anti-HIV properties (Alves et al., 2004; Barnard et al., 1992; Schinazi et al., 1990; Schrader et al., 2000). Some aminoanthraquinone derivatives have also been reported to be good DNA intercalators (Hande, 2008; Schrader et al., 2000). The versatility of acyl thioureas stems from their ease of preparation and ability to introduce different functionalities, resulting in compounds with very interesting biological properties including antifungal (del Campo et al., 2002, 2004), antitumor (Sacht & Datt, 2000; Sacht et al., 2000; Hernández et al., 2005), antiviral, antibacterial, herbicidal, insecticidal and pharmacological activities (Binzet et al., 2006; Saeed et al., 2010). Recently, our research group reported the synthesis and crystal structures of a number of thiourea derivatives (Asegbeloyin et al., 2018, 2019; Okpareke et al., 2020; 2022; Oyeka et al., 2021). In a continuation of our series on thiourea derivatives, we present herein the Hirshfeld surface and computational study of a new potential biologically active thiourea derivative with an aminoanthraquinone moiety.
A large number of them are well-known natural pigments found in plants, lichens, and fungi (Duval2. Structural commentary
The title compound crystallizes in the orthorhombic Pbca The molecular structure (Fig. 1) shows a central thiourea chromophore flanked on either side by methylene and anthraquinone units. The central thiourea moiety is essentially planar with an r.m.s deviation of 0.032 Å with the thiolate S atom being the most deviated out of the plane with a deviation of 0.044 (3) Å. The torsion angles between the thiourea and the adjourning methylene and anthraquinone moieties are −177.5 (2) and −140.8 (2)°, respectively, indicating that the anthraquinone moiety is slightly deviated from the thiourea plane, compared to the methylene moiety. The C1—N1—C5 bond angle of 126.09 (19)° subtended at the N1 atom is smaller than the less encumbered C2—N2—C1 angle [129.79 (19)°] subtended at N2 and larger than the central N1—C1—N2 [114.5 (2)°] bond angle subtended at the thiolate C1 carbon atom. The C1—N2 bond [1.395 (3) Å] is slightly longer than C1—N1 [1.364 (3) Å]. The thiourea carbonyl oxygen and imine groups are involved in a strong intramolecular N1—H1⋯O1 hydrogen bond (Table 1). The second amine nitrogen N2 is also involved in a hydrogen-bonding S(6) graph-set (Kansiz et al., 2022) interaction.
and3. Supramolecular features
In the crystal, the molecules are linked by imine N—H⋯O (anthraquinone) hydrogen-bonding interactions, leading to supramolecular chains running along the c-axis direction (Fig. 2a). Supramolecular layers are obtained from self-assembly of these chains via anthraquinone π–π stacking interactions along the ab plane with centroid–centroid distances of 3.916(3), 3.531(5), 3.701(2) and 3.705(2) Å (Fig. 2b). These intermolecular interactions are balanced and stabilized by the phenyl C—H⋯O(carbonyl) and imine N—H⋯O(carbonyl) intramolecular S(6) synthon.
4. Hirshfeld surface analysis and fingerprint plots
Hirshfeld surfaces (HS) and corresponding two-dimensional fingerprint plots (FPs) were calculated using the Crystal Explorer 17.5 software (Turner et al., 2017). The Hirshfeld surfaces mapped over dnorm and shape-index were generated according to a procedure described by Tan et al. (2019) and used for further analysis of the intermolecular interactions. The HS mapped over dnorm shows the most intense red regions around the thiourea N—H groups resulting from the amine-N—H⋯O (anthraquinone) hydrogen-bonding interactions (Fig. 3a). Other intense red spots can be identified around the thiourea carbonyl oxygen and resulting from carbonyl C17—H17⋯O12 intermolecular interaction. Apart from the intense red spots, there are a number of other less intense red spots found around the alkyl C3 atom resulting from C3—H3B⋯O2 intermolecular interaction. Other intermolecular interactions in the Hirshfeld surface are the anthraquinone C—H⋯S(thiourea) and anthraquinone-C—H⋯H(alkyl) interactions shown respectively as pink and green dotted lines in Fig. 3b. The anthraquinone π–π interactions can be seen in Fig. 3c. The C⋯H/H⋯C contacts in the molecule are responsible for the molecular packing in the supramolecular structure and are the result of the C—H⋯π and π–π interactions (Tan & Tiekink, 2020) and are depicted by mapping the structure over the shape-index isosurface as shown in Fig. 3d. The C—H⋯π interactions appear as hollow orange areas (π⋯H—C) and bulging blue areas (C—H⋯π) in the compound. The small blue regions surrounding a bright orange spot within the anthroquinone rings of the molecule indicate π–π stacking interactions.
The overall two-dimensional fingerprint plot (Spackman & McKinnon, 2002; Tan & Tiekink, 2020) and those delineated into H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C, S⋯H/H⋯S and C⋯O/O⋯C interactions are illustrated in Fig. 4, and their percentage contributions are presented in Table 2. The overall fingerprint plot comprises all intermolecular contacts in the molecule and exhibits a shield-like profile with two symmetric spikes on each side of a triangular protrusion. These spikes are also observed in the fingerprint plots for the O⋯H/H⋯O contacts, which make a 19.5% contribution to the overall surface contact, but not in the other surface contacts. These spikes are due to the C—H⋯O and N2—H2⋯O3 hydrogen-bonding interactions in the of the title compound. H⋯H contacts are the single highest contributor to the overall surface with a 38.0% contribution and and result from C—H⋯H and H⋯H dispersion interactions. The other major surface contacts are C⋯H/H⋯C (13.0%) S⋯H/H⋯S (10.8%), and C⋯C (11.2%), showing that C⋯H and π intermolecular contacts contribute significantly to the overall stability of the supramolecular architecture in the (Ekowo et al., 2020; Izuogu et al., 2020).
|
5. Interaction energy calculations
The interaction energies between pairs of molecules within the crystal of the title compound were calculated by adding up the four energy components, viz. electrostatic (Eele), polarization (Epol), dispersion (Edis), and exchange repulsion (Erep) (Tan et al., 2019; Ayiya & Okpareke, 2021). The energies were obtained by calculating the wave function of each pair of molecules or atoms at the B3LYP/6-31G(d,p) level of theory (Ayiya & Okpareke, 2021; Izuogu et al., 2020). Quantitative estimations of the strength and nature of the intermolecular interactions in title compound crystal with individual energy components (Eele, Epol, Edis, and Erep) as well as the sum of the energy components Etot are presented in Table 3. This shows that the dispersive component of the energy makes the most significant contribution to the total interaction in the probably due to the intermolecular dispersive π interactions resulting from the π–π stacking of adjacent anthraquinone ring systems in the crystal. The electrostatic component is the second highest contributor to the total interaction energy and probably results from the C⋯H, H⋯H and van der Waals interactions. A graphical representation of the magnitude of the interaction energies is presented in Fig, 5a–d in the form of energy frameworks to show the supramolecular architecture using cylindrical poles joining the centroids of molecular pairs. The red, green, and blue color-coded frameworks in Fig. 5a, 5b, and 5c, respectively, represent the Eele, Edis, and Etot, energy components for intermolecular interactions in crystal of the title compound, while Fig. 5d shows the annotated Etot energy. The magnitude of the cylindrical pipes indicates the significance of the Eele energy component to the total interaction energy and the molecular packing in the crystal.
|
6. Database survey
Anthraquinones derivatives with thiourea unit are scarce and our search for the basic architecture of the compound in the Cambridge Structural Database (CSD, version 5.42, update of May 2021; Groom et al., 2016) did not reveal any structure similar to the title compound.
7. Synthesis and crystallization
A solution of propionyl chloride (1.85 g, 0.02 mol) dissolved in 40 mL acetone was mixed with 30 mL of an acetone solution of potassium thiocyanate (1.94 g, 0.02 mol). The reaction mixture was refluxed for 30 min to give a suspension of propionylisothiocyanate, which was left to cool to room temperature. 1-Aminoanthraquinone (4.47 g, 0.02 mol) was dissolved in 40 mL of acetone and the resulting solution was mixed with the suspension of propionylisothiocyanate, and the mixture was stirred for 2 h. The resultant reddish suspension was filtered, and left at room temperature for 96 h to obtain a reddish crystalline solid of the title compound.
8. Refinement
Crystal data, collection and structure . The carbon-bound H atoms were placed in calculated positions and were included in the using the riding-model approximation with Uiso(H) set to 1.2Ueq(C). The nitrogen-bound H atoms were located in the difference-Fourier maps and refined freely with appropriate RIGU restraints placed on the bonds.
details are summarized in Table 4Supporting information
CCDC reference: 2161135
https://doi.org/10.1107/S2056989022003127/zn2016sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989022003127/zn2016Isup2.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C18H14N2O3S | Dx = 1.483 Mg m−3 |
Mr = 338.37 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbca | Cell parameters from 10712 reflections |
a = 7.3003 (1) Å | θ = 4.0–74.2° |
b = 18.9557 (3) Å | µ = 2.07 mm−1 |
c = 21.9045 (3) Å | T = 100 K |
V = 3031.19 (8) Å3 | Block, clear colourless |
Z = 8 | 0.18 × 0.12 × 0.08 mm |
F(000) = 1408 |
XtaLAB Synergy, Dualflex, Pilatus 200K diffractometer | 3013 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2816 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.034 |
ω scans | θmax = 74.3°, θmin = 4.0° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −8→8 |
Tmin = 0.869, Tmax = 1.000 | k = −23→22 |
18022 measured reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.144 | w = 1/[σ2(Fo2) + (0.0724P)2 + 3.6939P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
3013 reflections | Δρmax = 0.67 e Å−3 |
218 parameters | Δρmin = −0.64 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.72292 (8) | 0.44246 (3) | 0.25812 (3) | 0.02439 (19) | |
O2 | 0.7597 (2) | 0.64440 (8) | 0.41206 (7) | 0.0228 (4) | |
O3 | 0.6789 (2) | 0.46534 (8) | 0.60029 (7) | 0.0244 (4) | |
O1 | 0.9337 (3) | 0.66694 (9) | 0.29076 (7) | 0.0287 (4) | |
N1 | 0.8521 (3) | 0.53993 (9) | 0.33766 (8) | 0.0195 (4) | |
H1 | 0.889018 | 0.582673 | 0.342345 | 0.023* | |
N2 | 0.8371 (3) | 0.57086 (10) | 0.23530 (8) | 0.0223 (4) | |
H2 | 0.815839 | 0.557602 | 0.198428 | 0.027* | |
C12 | 0.6591 (3) | 0.62664 (11) | 0.51256 (9) | 0.0171 (4) | |
C5 | 0.8416 (3) | 0.49780 (11) | 0.39044 (9) | 0.0172 (4) | |
C13 | 0.6390 (3) | 0.58121 (11) | 0.56248 (9) | 0.0169 (4) | |
C10 | 0.7788 (3) | 0.52594 (11) | 0.44627 (9) | 0.0154 (4) | |
C11 | 0.7332 (3) | 0.60171 (11) | 0.45330 (9) | 0.0163 (4) | |
C9 | 0.7647 (3) | 0.48093 (11) | 0.49745 (9) | 0.0159 (4) | |
C6 | 0.9019 (3) | 0.42781 (11) | 0.38807 (10) | 0.0200 (5) | |
H6 | 0.951456 | 0.410016 | 0.352119 | 0.024* | |
C7 | 0.8881 (3) | 0.38493 (11) | 0.43898 (10) | 0.0208 (5) | |
H7 | 0.927247 | 0.338318 | 0.436683 | 0.025* | |
C15 | 0.5707 (3) | 0.60672 (12) | 0.61753 (10) | 0.0220 (5) | |
H15 | 0.556732 | 0.576471 | 0.650632 | 0.026* | |
C8 | 0.8170 (3) | 0.41032 (11) | 0.49330 (10) | 0.0179 (4) | |
H8 | 0.804179 | 0.380524 | 0.526757 | 0.022* | |
C14 | 0.6936 (3) | 0.50620 (11) | 0.55722 (9) | 0.0172 (4) | |
C18 | 0.6119 (3) | 0.69770 (11) | 0.51866 (10) | 0.0223 (5) | |
H18 | 0.625588 | 0.728232 | 0.485743 | 0.027* | |
C2 | 0.8937 (3) | 0.64023 (12) | 0.24157 (10) | 0.0230 (5) | |
C17 | 0.5446 (3) | 0.72278 (13) | 0.57380 (11) | 0.0262 (5) | |
H17 | 0.513700 | 0.770149 | 0.577811 | 0.031* | |
C1 | 0.8093 (3) | 0.51926 (12) | 0.27974 (10) | 0.0203 (5) | |
C16 | 0.5234 (3) | 0.67731 (13) | 0.62298 (11) | 0.0254 (5) | |
H16 | 0.477295 | 0.694251 | 0.659739 | 0.031* | |
C3 | 0.8997 (4) | 0.68035 (13) | 0.18245 (11) | 0.0298 (6) | |
H3A | 0.777627 | 0.681545 | 0.164961 | 0.036* | |
H3B | 0.978880 | 0.655647 | 0.154039 | 0.036* | |
C4 | 0.9688 (5) | 0.75570 (14) | 0.19012 (13) | 0.0380 (6) | |
H4A | 0.965684 | 0.779397 | 0.151405 | 0.057* | |
H4B | 1.092260 | 0.754860 | 0.205179 | 0.057* | |
H4C | 0.891940 | 0.780289 | 0.218617 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0304 (3) | 0.0229 (3) | 0.0198 (3) | −0.0057 (2) | 0.0008 (2) | −0.0018 (2) |
O2 | 0.0358 (9) | 0.0158 (7) | 0.0170 (7) | −0.0024 (6) | 0.0019 (7) | 0.0034 (6) |
O3 | 0.0347 (10) | 0.0221 (8) | 0.0163 (8) | 0.0002 (7) | 0.0017 (6) | 0.0062 (6) |
O1 | 0.0417 (11) | 0.0264 (9) | 0.0180 (8) | −0.0020 (7) | −0.0021 (7) | −0.0015 (6) |
N1 | 0.0294 (10) | 0.0152 (8) | 0.0140 (9) | −0.0018 (7) | 0.0012 (7) | 0.0009 (7) |
N2 | 0.0289 (10) | 0.0232 (10) | 0.0148 (9) | −0.0010 (8) | −0.0003 (8) | −0.0001 (7) |
C12 | 0.0153 (10) | 0.0190 (10) | 0.0168 (10) | −0.0003 (8) | −0.0012 (8) | 0.0007 (8) |
C5 | 0.0192 (11) | 0.0175 (10) | 0.0149 (10) | −0.0025 (8) | −0.0018 (8) | 0.0025 (8) |
C13 | 0.0142 (10) | 0.0199 (10) | 0.0165 (10) | −0.0004 (8) | −0.0019 (8) | 0.0005 (8) |
C10 | 0.0151 (10) | 0.0146 (10) | 0.0165 (10) | −0.0016 (7) | −0.0031 (8) | 0.0013 (8) |
C11 | 0.0168 (10) | 0.0166 (10) | 0.0156 (10) | −0.0022 (8) | −0.0032 (8) | 0.0005 (8) |
C9 | 0.0138 (10) | 0.0178 (10) | 0.0162 (10) | −0.0028 (8) | −0.0021 (8) | 0.0014 (8) |
C6 | 0.0224 (11) | 0.0189 (10) | 0.0187 (10) | 0.0014 (8) | 0.0004 (8) | −0.0010 (8) |
C7 | 0.0240 (11) | 0.0146 (10) | 0.0239 (11) | 0.0015 (9) | −0.0020 (9) | 0.0013 (8) |
C15 | 0.0208 (11) | 0.0289 (12) | 0.0164 (10) | 0.0010 (9) | 0.0004 (8) | 0.0016 (9) |
C8 | 0.0183 (10) | 0.0164 (10) | 0.0190 (10) | −0.0011 (8) | −0.0024 (8) | 0.0042 (8) |
C14 | 0.0158 (10) | 0.0202 (10) | 0.0156 (10) | −0.0026 (8) | −0.0033 (8) | 0.0022 (8) |
C18 | 0.0267 (11) | 0.0174 (10) | 0.0228 (11) | 0.0025 (9) | 0.0006 (9) | 0.0015 (8) |
C2 | 0.0235 (11) | 0.0230 (11) | 0.0226 (11) | 0.0006 (9) | 0.0019 (9) | 0.0008 (9) |
C17 | 0.0277 (12) | 0.0211 (11) | 0.0298 (12) | 0.0043 (9) | 0.0021 (10) | −0.0033 (9) |
C1 | 0.0205 (11) | 0.0218 (11) | 0.0185 (10) | 0.0013 (8) | 0.0006 (8) | 0.0017 (8) |
C16 | 0.0258 (12) | 0.0293 (12) | 0.0212 (11) | 0.0037 (9) | 0.0028 (9) | −0.0048 (9) |
C3 | 0.0398 (14) | 0.0298 (13) | 0.0199 (11) | −0.0015 (11) | 0.0037 (10) | 0.0016 (9) |
C4 | 0.0559 (18) | 0.0280 (13) | 0.0302 (13) | −0.0085 (12) | 0.0012 (12) | 0.0085 (10) |
S1—C1 | 1.656 (2) | C9—C14 | 1.487 (3) |
O2—C11 | 1.228 (3) | C6—H6 | 0.9300 |
O3—C14 | 1.226 (3) | C6—C7 | 1.384 (3) |
O1—C2 | 1.226 (3) | C7—H7 | 0.9300 |
N1—H1 | 0.8600 | C7—C8 | 1.384 (3) |
N1—C5 | 1.407 (3) | C15—H15 | 0.9300 |
N1—C1 | 1.364 (3) | C15—C16 | 1.387 (3) |
N2—H2 | 0.8600 | C8—H8 | 0.9300 |
N2—C2 | 1.385 (3) | C18—H18 | 0.9300 |
N2—C1 | 1.395 (3) | C18—C17 | 1.388 (3) |
C12—C13 | 1.400 (3) | C2—C3 | 1.503 (3) |
C12—C11 | 1.484 (3) | C17—H17 | 0.9300 |
C12—C18 | 1.397 (3) | C17—C16 | 1.388 (3) |
C5—C10 | 1.411 (3) | C16—H16 | 0.9300 |
C5—C6 | 1.399 (3) | C3—H3A | 0.9700 |
C13—C15 | 1.392 (3) | C3—H3B | 0.9700 |
C13—C14 | 1.481 (3) | C3—C4 | 1.524 (4) |
C10—C11 | 1.482 (3) | C4—H4A | 0.9600 |
C10—C9 | 1.412 (3) | C4—H4B | 0.9600 |
C9—C8 | 1.395 (3) | C4—H4C | 0.9600 |
C5—N1—H1 | 117.0 | C9—C8—H8 | 120.3 |
C1—N1—H1 | 117.0 | C7—C8—C9 | 119.49 (19) |
C1—N1—C5 | 126.06 (19) | C7—C8—H8 | 120.3 |
C2—N2—H2 | 115.1 | O3—C14—C13 | 121.5 (2) |
C2—N2—C1 | 129.79 (19) | O3—C14—C9 | 120.32 (19) |
C1—N2—H2 | 115.1 | C13—C14—C9 | 118.13 (18) |
C13—C12—C11 | 121.73 (19) | C12—C18—H18 | 120.0 |
C18—C12—C13 | 119.5 (2) | C17—C18—C12 | 120.1 (2) |
C18—C12—C11 | 118.74 (19) | C17—C18—H18 | 120.0 |
N1—C5—C10 | 121.02 (18) | O1—C2—N2 | 123.4 (2) |
C6—C5—N1 | 119.38 (19) | O1—C2—C3 | 122.8 (2) |
C6—C5—C10 | 119.54 (19) | N2—C2—C3 | 113.80 (19) |
C12—C13—C14 | 120.11 (19) | C18—C17—H17 | 119.9 |
C15—C13—C12 | 120.1 (2) | C18—C17—C16 | 120.1 (2) |
C15—C13—C14 | 119.83 (19) | C16—C17—H17 | 119.9 |
C5—C10—C11 | 121.97 (18) | N1—C1—S1 | 127.30 (17) |
C5—C10—C9 | 118.90 (19) | N1—C1—N2 | 114.5 (2) |
C9—C10—C11 | 119.10 (19) | N2—C1—S1 | 118.19 (16) |
O2—C11—C12 | 119.42 (19) | C15—C16—C17 | 120.3 (2) |
O2—C11—C10 | 121.78 (19) | C15—C16—H16 | 119.9 |
C10—C11—C12 | 118.78 (18) | C17—C16—H16 | 119.9 |
C10—C9—C14 | 121.97 (18) | C2—C3—H3A | 109.0 |
C8—C9—C10 | 120.52 (19) | C2—C3—H3B | 109.0 |
C8—C9—C14 | 117.50 (18) | C2—C3—C4 | 112.9 (2) |
C5—C6—H6 | 119.9 | H3A—C3—H3B | 107.8 |
C7—C6—C5 | 120.3 (2) | C4—C3—H3A | 109.0 |
C7—C6—H6 | 119.9 | C4—C3—H3B | 109.0 |
C6—C7—H7 | 119.5 | C3—C4—H4A | 109.5 |
C6—C7—C8 | 121.0 (2) | C3—C4—H4B | 109.5 |
C8—C7—H7 | 119.5 | C3—C4—H4C | 109.5 |
C13—C15—H15 | 120.0 | H4A—C4—H4B | 109.5 |
C16—C15—C13 | 119.9 (2) | H4A—C4—H4C | 109.5 |
C16—C15—H15 | 120.0 | H4B—C4—H4C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 1.98 | 2.685 (2) | 138 |
N1—H1···O2 | 0.86 | 2.14 | 2.652 (2) | 117 |
N2—H2···O3i | 0.86 | 2.19 | 3.038 (2) | 167 |
C3—H3B···O2ii | 0.97 | 2.52 | 3.414 (3) | 153 |
C15—H15···S1iii | 0.93 | 2.87 | 3.553 (2) | 131 |
C17—H17···O2iv | 0.93 | 2.47 | 3.280 (3) | 145 |
Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) x+1/2, y, −z+1/2; (iii) −x+3/2, −y+1, z+1/2; (iv) x−1/2, −y+3/2, −z+1. |
Contact | Percentage contribution |
H···H | 38.0 |
H···O/O···H | 19.5 |
C···H/H···C | 13.0 |
C···C | 26.3 |
H···H | 11.2 |
S···H/H···S | 10.8 |
C···O/O···C | 2.7 |
N···H/H···N | 1.4 |
C···O/O···C | 1.3 |
Please define N and R |
N | Symop | R | E_ele | E_pol | E_dis | E_rep | E_tot |
1 | x, -y + 1/2, z + 1/2 | 14.92 | 0.6 | -0.2 | -2.7 | 0.4 | -1.6 |
0 | -x, -y, -z | 6.11 | -24.1 | -4.8 | -85.9 | 77.8 | -55.8 |
0 | -x + 1/2, -y, z + 1/2 | 11.23 | -33.2 | -7.5 | -17.8 | 38.4 | -32.3 |
1 | -x + 1/2, -y, -z + 1/2 | 7.82 | -17.7 | -6.2 | -44.9 | 42.1 | -36.4 |
0 | -x + 1/2, y + 1/2, z | 9.48 | -0.7 | -1.1 | -13.3 | 8.2 | -8.0 |
0 | x + 1/2, -y + 1/2, -z | 8.88 | -10.8 | -3.0 | -17.6 | 14.2 | -20.1 |
0 | x, -y + 1/2, z + 1/2 | 13.01 | -0.0 | -0.5 | -9.9 | 3.6 | -6.8 |
1 | -x, y + 1/2, -z + 1/2 | 12.22 | -0.1 | -0.7 | -10.2 | 8.5 | -4.2 |
0 | -x, -y, -z | 5.85 | -11.3 | -1.1 | -69.5 | 42.1 | -47.3 |
Acknowledgements
The authors are thankful to the University of Nigeria Nsukka for research funding and the School of Chemical Sciences of the University of Auckland for the use of their X-ray diffractometer.
References
Alves, D. S., Pérez-Fons, L., Estepa, A. & Micol, V. (2004). Biochem. Pharmacol. 68, 549–561. Web of Science CrossRef PubMed CAS Google Scholar
Asegbeloyin, J. N., Ifeanyieze, K. J., Okpareke, O. C., Oyeka, E. E. & Groutso, T. V. (2019). Acta Cryst. E75, 1297–1300. CSD CrossRef IUCr Journals Google Scholar
Asegbeloyin, J. N., Oyeka, E. E., Okpareke, O. & Ibezim, A. (2018). J. Mol. Struct. 1153, 69–77. Web of Science CSD CrossRef CAS Google Scholar
Ayiya, B. B. & Okpareke, O. C. (2021). J. Chem. Crystallogr., https://doi.org/10.1007/s10870-021-00902-4. Google Scholar
Barnard, D. L., Huffman, J. H., Morris, J. L., Wood, S. G., Hughes, B. G. & Sidwell, R. W. (1992). Antiviral Res. 17, 63–77. CrossRef PubMed CAS Google Scholar
Binzet, G., Arslan, H., Flörke, U., Külcü, N. & Duran, N. (2006). J. Coord. Chem. 59, 1395–1406. Web of Science CSD CrossRef CAS Google Scholar
Campo, R. del, Criado, J. J., García, E., Hermosa, M. R., Jiménez-Sánchez, A., Manzano, J. L., Monte, E., Rodríguez-Fernández, E. & Sanz, F. (2002). J. Inorg. Biochem. 89, 74–82. Web of Science CSD CrossRef PubMed Google Scholar
Campo, R. del, Criado, J. J., Gheorghe, R., González, F. J., Hermosa, M., Sanz, F., Manzano, J. L., Monte, E. & Rodríguez-Fernández, E. (2004). J. Inorg. Biochem. 98, 1307–1314. CSD CrossRef PubMed Google Scholar
Chang, P. & Lee, K. H. (1984). Phytochemistry, 23, 1733–1736. CrossRef CAS Google Scholar
Chien, S. C., Wu, Y.-C., Chen, Z.-W. & Yang, W. C. (2015). Evid. Based Complementary Altern. Med. pp. 1–14. CrossRef Google Scholar
Dave, H. & Ledwani, L. (2012). Indian J. Nat. Prod. Resour. 3, 291–319. CAS Google Scholar
Davis, R. H., Agnew, P. S. & Shapiro, E. (1986). J. Am. Podiatric Med. Assoc. 76, 1–8. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duval, J., Pecher, V., Poujol, M. & Lesellier, E. (2016). Ind. Crops Prod. 94, 812–833. CrossRef CAS Google Scholar
Ekowo, L. C., Eze, S. I., Ezeorah, J. C., Groutso, T., Atiga, S., Lane, J. R., Okafor, S., Akpomie, K. G. & Okparaeke, O. C. (2020). J. Mol. Struct. 1210, 127994. CSD CrossRef Google Scholar
Fosso, M. Y., Chan, K. Y., Gregory, R. & Chang, C. T. (2012). ACS Comb. Sci. 14, 231–235. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hande, K. R. (2008). Update on Cancer Therapeutics, 3, 13–26. CrossRef Google Scholar
Hernández, W., Spodine, E., Beyer, L., Schröder, U., Richter, R., Ferreira, J. & Pavani, M. (2005). Bioinorg. Chem. Appl. 3, 299–316. Google Scholar
Huang, Q., Lu, G., Shen, H. M., Chung, M. C. & Ong, C. N. (2007). Med. Res. Rev. 27, 609–630. CrossRef PubMed CAS Google Scholar
Ismail, N. H., Ali, A. M., Aimi, N., Kitajima, M., Takayama, H. & Lajis, N. H. (1997). Phytochemistry, 45, 1723–1725. CrossRef CAS Web of Science Google Scholar
Izuogu, D. C., Asegbeloyin, J. N., Jotani, M. M. & Tiekink, E. R. T. (2020). Acta Cryst. E76, 697–702. CrossRef IUCr Journals Google Scholar
Kansiz, S., Yesilbag, S., Dege, N., Saif, E. & Agar, E. (2022). Acta Cryst. E78, 84–87. CSD CrossRef IUCr Journals Google Scholar
Khan, K., Karodi, R., Siddiqui, A., Thube, S. & Rub, R. (2011). Int. J. Appl. Res. Nat. Prod. 4, 28–36. Google Scholar
Murdock, K., Child, R., Fabio, P., Angier, R. D., Wallace, R. E., Durr, F. E. & Citarella, R. (1979). J. Med. Chem. 22, 1024–1030. CrossRef CAS PubMed Google Scholar
Okpareke, O. C., Henderson, W., Akkoç, S. & Coban, B. (2022). Inorg. Chim. Acta, 531, 120707. CSD CrossRef Google Scholar
Okpareke, O. C., Henderson, W., Lane, J. R. & Okafor, S. N. (2020). J. Mol. Struct. 1203, 127360. CSD CrossRef Google Scholar
Oyeka, E. E., Babahan, I., Eboma, B., Ifeanyieze, K. J., Okpareke, O. C., Coban, E. P., Özmen, A., Coban, B., Aksel, M., Özdemir, N., Groutso, T. V., Ayogu, J. I., Yildiz, U., Bilgin, M. D., Biyik, H. H., Schrage, B. R., Ziegler, C. J. & Asegbeloyin, J. N. (2021). Inorg. Chim. Acta, 528, 120590. CSD CrossRef Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sacht, C. & Datt, M. (2000). Polyhedron, 19, 1347–1354. CrossRef CAS Google Scholar
Sacht, C., Datt, M. S., Otto, S. & Roodt, A. (2000). J. Chem. Soc. Dalton Trans. pp. 727–733. Web of Science CSD CrossRef Google Scholar
Saeed, S., Rashid, N., Ali, M., Hussain, R. & Jones, P. G. (2010). Eur. J. Chem. 1, 221–227. CSD CrossRef CAS Google Scholar
Schinazi, R. F., Chu, C. K., Babu, J. R., Oswald, B. J., Saalmann, V., Cannon, D. L., Eriksson, B. F. & Nasr, M. (1990). Antiviral Res. 13, 265–272. CrossRef PubMed CAS Google Scholar
Schrader, K. K., Dayan, F. E., Allen, S. N., de Regt, M. Q., Tucker, C. S. & Paul, R. N. Jr (2000). Int. J. Plant Sci. 161, 265–270. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shrestha, J. P., Fosso, M. Y., Bearss, J. & Chang, C. T. (2014). Eur. J. Med. Chem. 77, 96–102. CrossRef CAS PubMed Google Scholar
Shrestha, J. P., Subedi, Y. P., Chen, L. & Chang, C. T. (2015). Med. Chem. Commun. 6, 2012–2022. CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Tan, S. L. & Tiekink, E. R. T. (2020). Acta Cryst. E76, 102–110. Web of Science CSD CrossRef IUCr Journals Google Scholar
Turner, M., McKinnon, J., Wolff, S., Grimwood, D., Spackman, P., Jayatilaka, D. & Spackman, M. (2017). Crystal Explorer 17.5. University of Western Australia. Google Scholar
Winter, R., Cornell, K. A., Johnson, L. L., Ignatushchenko, M., Hinrichs, D. J. & Riscoe, M. K. (1996). Antimicrob. Agents Chemother. 40, 1408–1411. CrossRef CAS PubMed Google Scholar
Wuthi-udomlert, M., Kupittayanant, P. & Gritsanapan, W. (2010). J. Health Res. 24, 117–122. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.