research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface and computational study of 1-(9,10-dioxo-9,10-di­hydroanthracen-1-yl)-3-propano­ylthio­urea

crossmark logo

aDepartment of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria, bUniversal College of Learning, Private Bag 11022, Palmerston North, New Zealand, and cSchool of Chemical Sciences, the University of Auckland, New Zealand
*Correspondence e-mail: obinna.okpareke@unn.edu.ng, niyi.asegbeloyin@unn.edu.ng

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 14 January 2022; accepted 23 March 2022; online 29 March 2022)

The title compound, C18H14N2O3S, crystallizes in the ortho­rhom­bic crystal system and Pbca space group. The thio­urea chromophore is planar to an r.m.s deviation of 0.032 Å with the thiol­ate sulfur atom being the most deviated. Bifurcated N—H⋯O intra­molecular hydrogen bonds result in an S(6) supra­molecular synthon. In the crystal, mol­ecules are linked by N—H⋯O inter­molecular hydrogen-bonding inter­actions and stabilized by C—H⋯π and ππ inter­actions. Hirshfeld surface analysis and fingerprint plot indicate the H⋯H inter­molecular contacts as the highest contributor to the overall surface contacts (38%) and this is supported by the high dispersive and electrostatic inter­action energies.

1. Chemical context

Anthra­quinones, a group of tricyclic aromatic organic compounds, are the largest group of natural and synthetic quinones. A large number of them are well-known natural pigments found in plants, lichens, and fungi (Duval et al., 2016[Duval, J., Pecher, V., Poujol, M. & Lesellier, E. (2016). Ind. Crops Prod. 94, 812-833.]). These compounds exhibit important biological activities, including anti­tumor (Huang et al., 2007[Huang, Q., Lu, G., Shen, H. M., Chung, M. C. & Ong, C. N. (2007). Med. Res. Rev. 27, 609-630.]; Murdock et al., 1979[Murdock, K., Child, R., Fabio, P., Angier, R. D., Wallace, R. E., Durr, F. E. & Citarella, R. (1979). J. Med. Chem. 22, 1024-1030.], Shrestha et al., 2014[Shrestha, J. P., Fosso, M. Y., Bearss, J. & Chang, C. T. (2014). Eur. J. Med. Chem. 77, 96-102.], 2015[Shrestha, J. P., Subedi, Y. P., Chen, L. & Chang, C. T. (2015). Med. Chem. Commun. 6, 2012-2022.]; Chien et al., 2015[Chien, S. C., Wu, Y.-C., Chen, Z.-W. & Yang, W. C. (2015). Evid. Based Complementary Altern. Med. pp. 1-14.]), anti-inflammatory (Chien et al., 2015[Chien, S. C., Wu, Y.-C., Chen, Z.-W. & Yang, W. C. (2015). Evid. Based Complementary Altern. Med. pp. 1-14.]; Khan et al., 2011[Khan, K., Karodi, R., Siddiqui, A., Thube, S. & Rub, R. (2011). Int. J. Appl. Res. Nat. Prod. 4, 28-36.]), diuretic (Chien et al., 2015[Chien, S. C., Wu, Y.-C., Chen, Z.-W. & Yang, W. C. (2015). Evid. Based Complementary Altern. Med. pp. 1-14.]), anti­arthritic (Davis et al., 1986[Davis, R. H., Agnew, P. S. & Shapiro, E. (1986). J. Am. Podiatric Med. Assoc. 76, 1-8.]), anti­fungal (Wuthi-udomlert et al., 2010[Wuthi-udomlert, M., Kupittayanant, P. & Gritsanapan, W. (2010). J. Health Res. 24, 117-122.]), anti­bacterial (Fosso et al., 2012[Fosso, M. Y., Chan, K. Y., Gregory, R. & Chang, C. T. (2012). ACS Comb. Sci. 14, 231-235.]), anti­malarial (Winter et al., 1996[Winter, R., Cornell, K. A., Johnson, L. L., Ignatushchenko, M., Hinrichs, D. J. & Riscoe, M. K. (1996). Antimicrob. Agents Chemother. 40, 1408-1411.]), anti­oxidant (Dave & Ledwani, 2012[Dave, H. & Ledwani, L. (2012). Indian J. Nat. Prod. Resour. 3, 291-319.]), anti­leukemic (Chang & Lee, 1984[Chang, P. & Lee, K. H. (1984). Phytochemistry, 23, 1733-1736.]; Ismail et al., 1997[Ismail, N. H., Ali, A. M., Aimi, N., Kitajima, M., Takayama, H. & Lajis, N. H. (1997). Phytochemistry, 45, 1723-1725.]), anti­viral and anti-HIV properties (Alves et al., 2004[Alves, D. S., Pérez-Fons, L., Estepa, A. & Micol, V. (2004). Biochem. Pharmacol. 68, 549-561.]; Barnard et al., 1992[Barnard, D. L., Huffman, J. H., Morris, J. L., Wood, S. G., Hughes, B. G. & Sidwell, R. W. (1992). Antiviral Res. 17, 63-77.]; Schinazi et al., 1990[Schinazi, R. F., Chu, C. K., Babu, J. R., Oswald, B. J., Saalmann, V., Cannon, D. L., Eriksson, B. F. & Nasr, M. (1990). Antiviral Res. 13, 265-272.]; Schrader et al., 2000[Schrader, K. K., Dayan, F. E., Allen, S. N., de Regt, M. Q., Tucker, C. S. & Paul, R. N. Jr (2000). Int. J. Plant Sci. 161, 265-270.]). Some amino­anthra­quinone derivatives have also been reported to be good DNA inter­calators (Hande, 2008[Hande, K. R. (2008). Update on Cancer Therapeutics, 3, 13-26.]; Schrader et al., 2000[Schrader, K. K., Dayan, F. E., Allen, S. N., de Regt, M. Q., Tucker, C. S. & Paul, R. N. Jr (2000). Int. J. Plant Sci. 161, 265-270.]). The versatility of acyl thio­ureas stems from their ease of preparation and ability to introduce different functionalities, resulting in compounds with very inter­esting biological properties including anti­fungal (del Campo et al., 2002[Campo, R. del, Criado, J. J., García, E., Hermosa, M. R., Jiménez-Sánchez, A., Manzano, J. L., Monte, E., Rodríguez-Fernández, E. & Sanz, F. (2002). J. Inorg. Biochem. 89, 74-82.], 2004[Campo, R. del, Criado, J. J., Gheorghe, R., González, F. J., Hermosa, M., Sanz, F., Manzano, J. L., Monte, E. & Rodríguez-Fernández, E. (2004). J. Inorg. Biochem. 98, 1307-1314.]), anti­tumor (Sacht & Datt, 2000[Sacht, C. & Datt, M. (2000). Polyhedron, 19, 1347-1354.]; Sacht et al., 2000[Sacht, C., Datt, M. S., Otto, S. & Roodt, A. (2000). J. Chem. Soc. Dalton Trans. pp. 727-733.]; Hernández et al., 2005[Hernández, W., Spodine, E., Beyer, L., Schröder, U., Richter, R., Ferreira, J. & Pavani, M. (2005). Bioinorg. Chem. Appl. 3, 299-316.]), anti­viral, anti­bacterial, herbicidal, insecticidal and pharmacological activities (Binzet et al., 2006[Binzet, G., Arslan, H., Flörke, U., Külcü, N. & Duran, N. (2006). J. Coord. Chem. 59, 1395-1406.]; Saeed et al., 2010[Saeed, S., Rashid, N., Ali, M., Hussain, R. & Jones, P. G. (2010). Eur. J. Chem. 1, 221-227.]). Recently, our research group reported the synthesis and crystal structures of a number of thio­urea derivatives (Asegbeloyin et al., 2018[Asegbeloyin, J. N., Oyeka, E. E., Okpareke, O. & Ibezim, A. (2018). J. Mol. Struct. 1153, 69-77.], 2019[Asegbeloyin, J. N., Ifeanyieze, K. J., Okpareke, O. C., Oyeka, E. E. & Groutso, T. V. (2019). Acta Cryst. E75, 1297-1300.]; Okpareke et al., 2020[Okpareke, O. C., Henderson, W., Lane, J. R. & Okafor, S. N. (2020). J. Mol. Struct. 1203, 127360.]; 2022[Okpareke, O. C., Henderson, W., Akkoç, S. & Coban, B. (2022). Inorg. Chim. Acta, 531, 120707.]; Oyeka et al., 2021[Oyeka, E. E., Babahan, I., Eboma, B., Ifeanyieze, K. J., Okpareke, O. C., Coban, E. P., Özmen, A., Coban, B., Aksel, M., Özdemir, N., Groutso, T. V., Ayogu, J. I., Yildiz, U., Bilgin, M. D., Biyik, H. H., Schrage, B. R., Ziegler, C. J. & Asegbeloyin, J. N. (2021). Inorg. Chim. Acta, 528, 120590.]). In a continuation of our series on thio­urea derivatives, we present herein the crystal structure, Hirshfeld surface and computational study of a new potential biologically active thio­urea derivative with an amino­anthra­quinone moiety.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the ortho­rhom­bic crystal system and Pbca space group. The mol­ecular structure (Fig. 1[link]) shows a central thio­urea chromophore flanked on either side by methyl­ene and anthra­quinone units. The central thio­urea moiety is essentially planar with an r.m.s deviation of 0.032 Å with the thiol­ate S atom being the most deviated out of the plane with a deviation of 0.044 (3) Å. The torsion angles between the thio­urea and the adjourning methyl­ene and anthra­quinone moieties are −177.5 (2) and −140.8 (2)°, respectively, indicating that the anthra­quinone moiety is slightly deviated from the thio­urea plane, compared to the methyl­ene moiety. The C1—N1—C5 bond angle of 126.09 (19)° subtended at the N1 atom is smaller than the less encumbered C2—N2—C1 angle [129.79 (19)°] subtended at N2 and larger than the central N1—C1—N2 [114.5 (2)°] bond angle subtended at the thiol­ate C1 carbon atom. The C1—N2 bond [1.395 (3) Å] is slightly longer than C1—N1 [1.364 (3) Å]. The thio­urea carbonyl oxygen and imine groups are involved in a strong intra­molecular N1—H1⋯O1 hydrogen bond (Table 1[link]). The second amine nitro­gen N2 is also involved in a hydrogen-bonding S(6) graph-set (Kansiz et al., 2022[Kansiz, S., Yesilbag, S., Dege, N., Saif, E. & Agar, E. (2022). Acta Cryst. E78, 84-87.]) inter­action.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.98 2.685 (2) 138
N1—H1⋯O2 0.86 2.14 2.652 (2) 117
N2—H2⋯O3i 0.86 2.19 3.038 (2) 167
C3—H3B⋯O2ii 0.97 2.52 3.414 (3) 153
C15—H15⋯S1iii 0.93 2.87 3.553 (2) 131
C17—H17⋯O2iv 0.93 2.47 3.280 (3) 145
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, with the atom labeling. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by imine N—H⋯O (anthra­quinone) hydrogen-bonding inter­actions, leading to supra­molecular chains running along the c-axis direction (Fig. 2[link]a). Supra­molecular layers are obtained from self-assembly of these chains via anthra­quinone ππ stacking inter­actions along the ab plane with centroid–centroid distances of 3.916(3), 3.531(5), 3.701(2) and 3.705(2) Å (Fig. 2[link]b). These inter­molecular inter­actions are balanced and stabilized by the phenyl C—H⋯O(carbonyl) and imine N—H⋯O(carbonyl) intra­molecular S(6) synthon.

[Figure 2]
Figure 2
(a) Supra­molecular 1-D hydrogen-bonding inter­actions along c-axis direction of the title compound and (b) mol­ecular aggregation structure of the crystal along the ab plane, showing repeating units of pairwise ππ stacking inter­actions.

4. Hirshfeld surface analysis and fingerprint plots

Hirshfeld surfaces (HS) and corresponding two-dimensional fingerprint plots (FPs) were calculated using the Crystal Explorer 17.5 software (Turner et al., 2017[Turner, M., McKinnon, J., Wolff, S., Grimwood, D., Spackman, P., Jayatilaka, D. & Spackman, M. (2017). Crystal Explorer 17.5. University of Western Australia.]). The Hirshfeld surfaces mapped over dnorm and shape-index were generated according to a procedure described by Tan et al. (2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) and used for further analysis of the inter­molecular inter­actions. The HS mapped over dnorm shows the most intense red regions around the thio­urea N—H groups resulting from the amine-N—H⋯O (anthra­quinone) hydrogen-bonding inter­actions (Fig. 3[link]a). Other intense red spots can be identified around the thio­urea carbonyl oxygen and resulting from carbonyl C17—H17⋯O12 inter­molecular inter­action. Apart from the intense red spots, there are a number of other less intense red spots found around the alkyl C3 atom resulting from C3—H3B⋯O2 inter­molecular inter­action. Other inter­molecular inter­actions in the Hirshfeld surface are the anthra­quinone C—H⋯S(thio­urea) and anthra­quinone-C—H⋯H(alk­yl) inter­actions shown respectively as pink and green dotted lines in Fig. 3[link]b. The anthra­quinone ππ inter­actions can be seen in Fig. 3[link]c. The C⋯H/H⋯C contacts in the mol­ecule are responsible for the mol­ecular packing in the supra­molecular structure and are the result of the C—H⋯π and ππ inter­actions (Tan & Tiekink, 2020[Tan, S. L. & Tiekink, E. R. T. (2020). Acta Cryst. E76, 102-110.]) and are depicted by mapping the structure over the shape-index isosurface as shown in Fig. 3[link]d. The C—H⋯π inter­actions appear as hollow orange areas (π⋯H—C) and bulging blue areas (C—H⋯π) in the compound. The small blue regions surrounding a bright orange spot within the anthro­quinone rings of the mol­ecule indicate ππ stacking inter­actions.

[Figure 3]
Figure 3
Hirshfeld surfaces mapped over (a), (b) and (c) dnorm and (d) shape-index showing inter­molecular atom-to-atom and ππ inter­actions in the crystal structure.

The overall two-dimensional fingerprint plot (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Tan & Tiekink, 2020[Tan, S. L. & Tiekink, E. R. T. (2020). Acta Cryst. E76, 102-110.]) and those delineated into H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C, S⋯H/H⋯S and C⋯O/O⋯C inter­actions are illustrated in Fig. 4[link], and their percentage contributions are presented in Table 2[link]. The overall fingerprint plot comprises all inter­molecular contacts in the mol­ecule and exhibits a shield-like profile with two symmetric spikes on each side of a triangular protrusion. These spikes are also observed in the fingerprint plots for the O⋯H/H⋯O contacts, which make a 19.5% contribution to the overall surface contact, but not in the other surface contacts. These spikes are due to the C—H⋯O and N2—H2⋯O3 hydrogen-bonding inter­actions in the crystal structure of the title compound. H⋯H contacts are the single highest contributor to the overall surface with a 38.0% contribution and and result from C—H⋯H and H⋯H dispersion inter­actions. The other major surface contacts are C⋯H/H⋯C (13.0%) S⋯H/H⋯S (10.8%), and C⋯C (11.2%), showing that C⋯H and π inter­molecular contacts contribute significantly to the overall stability of the supra­molecular architecture in the crystal structure (Ekowo et al., 2020[Ekowo, L. C., Eze, S. I., Ezeorah, J. C., Groutso, T., Atiga, S., Lane, J. R., Okafor, S., Akpomie, K. G. & Okparaeke, O. C. (2020). J. Mol. Struct. 1210, 127994.]; Izuogu et al., 2020[Izuogu, D. C., Asegbeloyin, J. N., Jotani, M. M. & Tiekink, E. R. T. (2020). Acta Cryst. E76, 697-702.]).

Table 2
Percentage contributions of inter­molecular contacts to the Hirshfeld surface

Contact Percentage contribution
H⋯H 38.0
H⋯O/O⋯H 19.5
C⋯H/H⋯C 13.0
C⋯C 26.3
H⋯H 11.2
S⋯H/H⋯S 10.8
C⋯O/O⋯C 2.7
N⋯H/H⋯N 1.4
C⋯O/O⋯C 1.3
[Figure 4]
Figure 4
The overall and individual two-dimensional fingerprint plots for inter­molecular contacts in the crystal structure.

5. Inter­action energy calculations

The inter­action energies between pairs of mol­ecules within the crystal of the title compound were calculated by adding up the four energy components, viz. electrostatic (Eele), polarization (Epol), dispersion (Edis), and exchange repulsion (Erep) (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]; Ayiya & Okpareke, 2021[Ayiya, B. B. & Okpareke, O. C. (2021). J. Chem. Crystallogr., https://doi.org/10.1007/s10870-021-00902-4.]). The energies were obtained by calculating the wave function of each pair of mol­ecules or atoms at the B3LYP/6-31G(d,p) level of theory (Ayiya & Okpareke, 2021[Ayiya, B. B. & Okpareke, O. C. (2021). J. Chem. Crystallogr., https://doi.org/10.1007/s10870-021-00902-4.]; Izuogu et al., 2020[Izuogu, D. C., Asegbeloyin, J. N., Jotani, M. M. & Tiekink, E. R. T. (2020). Acta Cryst. E76, 697-702.]). Qu­anti­tative estimations of the strength and nature of the inter­molecular inter­actions in title compound crystal with individual energy components (Eele, Epol, Edis, and Erep) as well as the sum of the energy components Etot are presented in Table 3[link]. This shows that the dispersive component of the energy makes the most significant contribution to the total inter­action energy profile in the crystal structure, probably due to the inter­molecular dispersive π inter­actions resulting from the ππ stacking of adjacent anthra­quinone ring systems in the crystal. The electrostatic component is the second highest contributor to the total inter­action energy and probably results from the C⋯H, H⋯H and van der Waals inter­actions. A graphical representation of the magnitude of the inter­action energies is presented in Fig, 5ad in the form of energy frameworks to show the supra­molecular architecture using cylindrical poles joining the centroids of mol­ecular pairs. The red, green, and blue color-coded frameworks in Fig. 5[link]a, 5b, and 5c, respectively, represent the Eele, Edis, and Etot, energy components for inter­molecular inter­actions in crystal of the title compound, while Fig. 5[link]d shows the annotated Etot energy. The magnitude of the cylindrical pipes indicates the significance of the Eele energy component to the total inter­action energy and the mol­ecular packing in the crystal.

Table 3
A summary of the calculated inter­action energies for the title compound (kJ mol−1)

Please define N and R

N Symop R E_ele E_pol E_dis E_rep E_tot
1 x, −y + [{1\over 2}], z + [{1\over 2}] 14.92 0.6 −0.2 −2.7 0.4 −1.6
0 -x, −y, −z 6.11 −24.1 −4.8 −85.9 77.8 −55.8
0 -x + [{1\over 2}], −y, z + [{1\over 2}] 11.23 −33.2 −7.5 −17.8 38.4 −32.3
1 -x + [{1\over 2}], −y, −z + [{1\over 2}] 7.82 −17.7 −6.2 −44.9 42.1 −36.4
0 -x + [{1\over 2}], y + [{1\over 2}], z 9.48 −0.7 −1.1 −13.3 8.2 −8.0
0 x + [{1\over 2}], −y + [{1\over 2}], −z 8.88 −10.8 −3.0 −17.6 14.2 −20.1
0 x, −y + [{1\over 2}], z + [{1\over 2}] 13.01 −0.0 −0.5 −9.9 3.6 −6.8
1 -x, y + [{1\over 2}], −z + [{1\over 2}] 12.22 −0.1 −0.7 −10.2 8.5 −4.2
0 -x, −y, −z 5.85 −11.3 −1.1 −69.5 42.1 −47.3
[Figure 5]
Figure 5
Perspective views of the energy frameworks of the title compound showing (a) electrostatic, (b) dispersion, (c) total energy and (d) annotated total energy. The cylindrical radius is proportional to the relative strength of the corresponding energies and they were adjusted to the same scale factor of 100 with a cut-off value of 5 kJmol−1 within 2 x 2 x 2 unit cells.

6. Database survey

Anthra­quinones derivatives with thio­urea unit are scarce and our search for the basic architecture of the compound in the Cambridge Structural Database (CSD, version 5.42, update of May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) did not reveal any structure similar to the title compound.

7. Synthesis and crystallization

A solution of propionyl chloride (1.85 g, 0.02 mol) dissolved in 40 mL acetone was mixed with 30 mL of an acetone solution of potassium thio­cyanate (1.94 g, 0.02 mol). The reaction mixture was refluxed for 30 min to give a suspension of propionyliso­thio­cyanate, which was left to cool to room temperature. 1-Amino­anthra­quinone (4.47 g, 0.02 mol) was dissolved in 40 mL of acetone and the resulting solution was mixed with the suspension of propionyliso­thio­cyanate, and the mixture was stirred for 2 h. The resultant reddish suspension was filtered, and left at room temperature for 96 h to obtain a reddish crystalline solid of the title compound.

8. Refinement

Crystal data, collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions and were included in the refinement using the riding-model approximation with Uiso(H) set to 1.2Ueq(C). The nitro­gen-bound H atoms were located in the difference-Fourier maps and refined freely with appropriate RIGU restraints placed on the bonds.

Table 4
Experimental details

Crystal data
Chemical formula C18H14N2O3S
Mr 338.37
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 7.3003 (1), 18.9557 (3), 21.9045 (3)
V3) 3031.19 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 2.07
Crystal size (mm) 0.18 × 0.12 × 0.08
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, Pilatus 200K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.869, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18022, 3013, 2816
Rint 0.034
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.144, 1.13
No. of reflections 3013
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −0.64
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-(9,10-Dioxo-9,10-dihydroanthracen-1-yl)-3-propanoylthiourea top
Crystal data top
C18H14N2O3SDx = 1.483 Mg m3
Mr = 338.37Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 10712 reflections
a = 7.3003 (1) Åθ = 4.0–74.2°
b = 18.9557 (3) ŵ = 2.07 mm1
c = 21.9045 (3) ÅT = 100 K
V = 3031.19 (8) Å3Block, clear colourless
Z = 80.18 × 0.12 × 0.08 mm
F(000) = 1408
Data collection top
XtaLAB Synergy, Dualflex, Pilatus 200K
diffractometer
3013 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2816 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
ω scansθmax = 74.3°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 88
Tmin = 0.869, Tmax = 1.000k = 2322
18022 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0724P)2 + 3.6939P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
3013 reflectionsΔρmax = 0.67 e Å3
218 parametersΔρmin = 0.64 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72292 (8)0.44246 (3)0.25812 (3)0.02439 (19)
O20.7597 (2)0.64440 (8)0.41206 (7)0.0228 (4)
O30.6789 (2)0.46534 (8)0.60029 (7)0.0244 (4)
O10.9337 (3)0.66694 (9)0.29076 (7)0.0287 (4)
N10.8521 (3)0.53993 (9)0.33766 (8)0.0195 (4)
H10.8890180.5826730.3423450.023*
N20.8371 (3)0.57086 (10)0.23530 (8)0.0223 (4)
H20.8158390.5576020.1984280.027*
C120.6591 (3)0.62664 (11)0.51256 (9)0.0171 (4)
C50.8416 (3)0.49780 (11)0.39044 (9)0.0172 (4)
C130.6390 (3)0.58121 (11)0.56248 (9)0.0169 (4)
C100.7788 (3)0.52594 (11)0.44627 (9)0.0154 (4)
C110.7332 (3)0.60171 (11)0.45330 (9)0.0163 (4)
C90.7647 (3)0.48093 (11)0.49745 (9)0.0159 (4)
C60.9019 (3)0.42781 (11)0.38807 (10)0.0200 (5)
H60.9514560.4100160.3521190.024*
C70.8881 (3)0.38493 (11)0.43898 (10)0.0208 (5)
H70.9272470.3383180.4366830.025*
C150.5707 (3)0.60672 (12)0.61753 (10)0.0220 (5)
H150.5567320.5764710.6506320.026*
C80.8170 (3)0.41032 (11)0.49330 (10)0.0179 (4)
H80.8041790.3805240.5267570.022*
C140.6936 (3)0.50620 (11)0.55722 (9)0.0172 (4)
C180.6119 (3)0.69770 (11)0.51866 (10)0.0223 (5)
H180.6255880.7282320.4857430.027*
C20.8937 (3)0.64023 (12)0.24157 (10)0.0230 (5)
C170.5446 (3)0.72278 (13)0.57380 (11)0.0262 (5)
H170.5137000.7701490.5778110.031*
C10.8093 (3)0.51926 (12)0.27974 (10)0.0203 (5)
C160.5234 (3)0.67731 (13)0.62298 (11)0.0254 (5)
H160.4772950.6942510.6597390.031*
C30.8997 (4)0.68035 (13)0.18245 (11)0.0298 (6)
H3A0.7776270.6815450.1649610.036*
H3B0.9788800.6556470.1540390.036*
C40.9688 (5)0.75570 (14)0.19012 (13)0.0380 (6)
H4A0.9656840.7793970.1514050.057*
H4B1.0922600.7548600.2051790.057*
H4C0.8919400.7802890.2186170.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0304 (3)0.0229 (3)0.0198 (3)0.0057 (2)0.0008 (2)0.0018 (2)
O20.0358 (9)0.0158 (7)0.0170 (7)0.0024 (6)0.0019 (7)0.0034 (6)
O30.0347 (10)0.0221 (8)0.0163 (8)0.0002 (7)0.0017 (6)0.0062 (6)
O10.0417 (11)0.0264 (9)0.0180 (8)0.0020 (7)0.0021 (7)0.0015 (6)
N10.0294 (10)0.0152 (8)0.0140 (9)0.0018 (7)0.0012 (7)0.0009 (7)
N20.0289 (10)0.0232 (10)0.0148 (9)0.0010 (8)0.0003 (8)0.0001 (7)
C120.0153 (10)0.0190 (10)0.0168 (10)0.0003 (8)0.0012 (8)0.0007 (8)
C50.0192 (11)0.0175 (10)0.0149 (10)0.0025 (8)0.0018 (8)0.0025 (8)
C130.0142 (10)0.0199 (10)0.0165 (10)0.0004 (8)0.0019 (8)0.0005 (8)
C100.0151 (10)0.0146 (10)0.0165 (10)0.0016 (7)0.0031 (8)0.0013 (8)
C110.0168 (10)0.0166 (10)0.0156 (10)0.0022 (8)0.0032 (8)0.0005 (8)
C90.0138 (10)0.0178 (10)0.0162 (10)0.0028 (8)0.0021 (8)0.0014 (8)
C60.0224 (11)0.0189 (10)0.0187 (10)0.0014 (8)0.0004 (8)0.0010 (8)
C70.0240 (11)0.0146 (10)0.0239 (11)0.0015 (9)0.0020 (9)0.0013 (8)
C150.0208 (11)0.0289 (12)0.0164 (10)0.0010 (9)0.0004 (8)0.0016 (9)
C80.0183 (10)0.0164 (10)0.0190 (10)0.0011 (8)0.0024 (8)0.0042 (8)
C140.0158 (10)0.0202 (10)0.0156 (10)0.0026 (8)0.0033 (8)0.0022 (8)
C180.0267 (11)0.0174 (10)0.0228 (11)0.0025 (9)0.0006 (9)0.0015 (8)
C20.0235 (11)0.0230 (11)0.0226 (11)0.0006 (9)0.0019 (9)0.0008 (9)
C170.0277 (12)0.0211 (11)0.0298 (12)0.0043 (9)0.0021 (10)0.0033 (9)
C10.0205 (11)0.0218 (11)0.0185 (10)0.0013 (8)0.0006 (8)0.0017 (8)
C160.0258 (12)0.0293 (12)0.0212 (11)0.0037 (9)0.0028 (9)0.0048 (9)
C30.0398 (14)0.0298 (13)0.0199 (11)0.0015 (11)0.0037 (10)0.0016 (9)
C40.0559 (18)0.0280 (13)0.0302 (13)0.0085 (12)0.0012 (12)0.0085 (10)
Geometric parameters (Å, º) top
S1—C11.656 (2)C9—C141.487 (3)
O2—C111.228 (3)C6—H60.9300
O3—C141.226 (3)C6—C71.384 (3)
O1—C21.226 (3)C7—H70.9300
N1—H10.8600C7—C81.384 (3)
N1—C51.407 (3)C15—H150.9300
N1—C11.364 (3)C15—C161.387 (3)
N2—H20.8600C8—H80.9300
N2—C21.385 (3)C18—H180.9300
N2—C11.395 (3)C18—C171.388 (3)
C12—C131.400 (3)C2—C31.503 (3)
C12—C111.484 (3)C17—H170.9300
C12—C181.397 (3)C17—C161.388 (3)
C5—C101.411 (3)C16—H160.9300
C5—C61.399 (3)C3—H3A0.9700
C13—C151.392 (3)C3—H3B0.9700
C13—C141.481 (3)C3—C41.524 (4)
C10—C111.482 (3)C4—H4A0.9600
C10—C91.412 (3)C4—H4B0.9600
C9—C81.395 (3)C4—H4C0.9600
C5—N1—H1117.0C9—C8—H8120.3
C1—N1—H1117.0C7—C8—C9119.49 (19)
C1—N1—C5126.06 (19)C7—C8—H8120.3
C2—N2—H2115.1O3—C14—C13121.5 (2)
C2—N2—C1129.79 (19)O3—C14—C9120.32 (19)
C1—N2—H2115.1C13—C14—C9118.13 (18)
C13—C12—C11121.73 (19)C12—C18—H18120.0
C18—C12—C13119.5 (2)C17—C18—C12120.1 (2)
C18—C12—C11118.74 (19)C17—C18—H18120.0
N1—C5—C10121.02 (18)O1—C2—N2123.4 (2)
C6—C5—N1119.38 (19)O1—C2—C3122.8 (2)
C6—C5—C10119.54 (19)N2—C2—C3113.80 (19)
C12—C13—C14120.11 (19)C18—C17—H17119.9
C15—C13—C12120.1 (2)C18—C17—C16120.1 (2)
C15—C13—C14119.83 (19)C16—C17—H17119.9
C5—C10—C11121.97 (18)N1—C1—S1127.30 (17)
C5—C10—C9118.90 (19)N1—C1—N2114.5 (2)
C9—C10—C11119.10 (19)N2—C1—S1118.19 (16)
O2—C11—C12119.42 (19)C15—C16—C17120.3 (2)
O2—C11—C10121.78 (19)C15—C16—H16119.9
C10—C11—C12118.78 (18)C17—C16—H16119.9
C10—C9—C14121.97 (18)C2—C3—H3A109.0
C8—C9—C10120.52 (19)C2—C3—H3B109.0
C8—C9—C14117.50 (18)C2—C3—C4112.9 (2)
C5—C6—H6119.9H3A—C3—H3B107.8
C7—C6—C5120.3 (2)C4—C3—H3A109.0
C7—C6—H6119.9C4—C3—H3B109.0
C6—C7—H7119.5C3—C4—H4A109.5
C6—C7—C8121.0 (2)C3—C4—H4B109.5
C8—C7—H7119.5C3—C4—H4C109.5
C13—C15—H15120.0H4A—C4—H4B109.5
C16—C15—C13119.9 (2)H4A—C4—H4C109.5
C16—C15—H15120.0H4B—C4—H4C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.982.685 (2)138
N1—H1···O20.862.142.652 (2)117
N2—H2···O3i0.862.193.038 (2)167
C3—H3B···O2ii0.972.523.414 (3)153
C15—H15···S1iii0.932.873.553 (2)131
C17—H17···O2iv0.932.473.280 (3)145
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+3/2, y+1, z+1/2; (iv) x1/2, y+3/2, z+1.
Percentage contributions of intermolecular contacts to the Hirshfeld surface top
ContactPercentage contribution
H···H38.0
H···O/O···H19.5
C···H/H···C13.0
C···C26.3
H···H11.2
S···H/H···S10.8
C···O/O···C2.7
N···H/H···N1.4
C···O/O···C1.3
A summary of the calculated interaction energies for the title compound (kJ mol-1) top
Please define N and R
NSymopRE_eleE_polE_disE_repE_tot
1x, -y + 1/2, z + 1/214.920.6-0.2-2.70.4-1.6
0-x, -y, -z6.11-24.1-4.8-85.977.8-55.8
0-x + 1/2, -y, z + 1/211.23-33.2-7.5-17.838.4-32.3
1-x + 1/2, -y, -z + 1/27.82-17.7-6.2-44.942.1-36.4
0-x + 1/2, y + 1/2, z9.48-0.7-1.1-13.38.2-8.0
0x + 1/2, -y + 1/2, -z8.88-10.8-3.0-17.614.2-20.1
0x, -y + 1/2, z + 1/213.01-0.0-0.5-9.93.6-6.8
1-x, y + 1/2, -z + 1/212.22-0.1-0.7-10.28.5-4.2
0-x, -y, -z5.85-11.3-1.1-69.542.1-47.3
 

Acknowledgements

The authors are thankful to the University of Nigeria Nsukka for research funding and the School of Chemical Sciences of the University of Auckland for the use of their X-ray diffractometer.

References

First citationAlves, D. S., Pérez-Fons, L., Estepa, A. & Micol, V. (2004). Biochem. Pharmacol. 68, 549–561.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAsegbeloyin, J. N., Ifeanyieze, K. J., Okpareke, O. C., Oyeka, E. E. & Groutso, T. V. (2019). Acta Cryst. E75, 1297–1300.  CSD CrossRef IUCr Journals Google Scholar
First citationAsegbeloyin, J. N., Oyeka, E. E., Okpareke, O. & Ibezim, A. (2018). J. Mol. Struct. 1153, 69–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationAyiya, B. B. & Okpareke, O. C. (2021). J. Chem. Crystallogr., https://doi.org/10.1007/s10870-021-00902-4.  Google Scholar
First citationBarnard, D. L., Huffman, J. H., Morris, J. L., Wood, S. G., Hughes, B. G. & Sidwell, R. W. (1992). Antiviral Res. 17, 63–77.  CrossRef PubMed CAS Google Scholar
First citationBinzet, G., Arslan, H., Flörke, U., Külcü, N. & Duran, N. (2006). J. Coord. Chem. 59, 1395–1406.  Web of Science CSD CrossRef CAS Google Scholar
First citationCampo, R. del, Criado, J. J., García, E., Hermosa, M. R., Jiménez-Sánchez, A., Manzano, J. L., Monte, E., Rodríguez-Fernández, E. & Sanz, F. (2002). J. Inorg. Biochem. 89, 74–82.  Web of Science CSD CrossRef PubMed Google Scholar
First citationCampo, R. del, Criado, J. J., Gheorghe, R., González, F. J., Hermosa, M., Sanz, F., Manzano, J. L., Monte, E. & Rodríguez-Fernández, E. (2004). J. Inorg. Biochem. 98, 1307–1314.  CSD CrossRef PubMed Google Scholar
First citationChang, P. & Lee, K. H. (1984). Phytochemistry, 23, 1733–1736.  CrossRef CAS Google Scholar
First citationChien, S. C., Wu, Y.-C., Chen, Z.-W. & Yang, W. C. (2015). Evid. Based Complementary Altern. Med. pp. 1–14.  CrossRef Google Scholar
First citationDave, H. & Ledwani, L. (2012). Indian J. Nat. Prod. Resour. 3, 291–319.  CAS Google Scholar
First citationDavis, R. H., Agnew, P. S. & Shapiro, E. (1986). J. Am. Podiatric Med. Assoc. 76, 1–8.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuval, J., Pecher, V., Poujol, M. & Lesellier, E. (2016). Ind. Crops Prod. 94, 812–833.  CrossRef CAS Google Scholar
First citationEkowo, L. C., Eze, S. I., Ezeorah, J. C., Groutso, T., Atiga, S., Lane, J. R., Okafor, S., Akpomie, K. G. & Okparaeke, O. C. (2020). J. Mol. Struct. 1210, 127994.  CSD CrossRef Google Scholar
First citationFosso, M. Y., Chan, K. Y., Gregory, R. & Chang, C. T. (2012). ACS Comb. Sci. 14, 231–235.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHande, K. R. (2008). Update on Cancer Therapeutics, 3, 13–26.  CrossRef Google Scholar
First citationHernández, W., Spodine, E., Beyer, L., Schröder, U., Richter, R., Ferreira, J. & Pavani, M. (2005). Bioinorg. Chem. Appl. 3, 299–316.  Google Scholar
First citationHuang, Q., Lu, G., Shen, H. M., Chung, M. C. & Ong, C. N. (2007). Med. Res. Rev. 27, 609–630.  CrossRef PubMed CAS Google Scholar
First citationIsmail, N. H., Ali, A. M., Aimi, N., Kitajima, M., Takayama, H. & Lajis, N. H. (1997). Phytochemistry, 45, 1723–1725.  CrossRef CAS Web of Science Google Scholar
First citationIzuogu, D. C., Asegbeloyin, J. N., Jotani, M. M. & Tiekink, E. R. T. (2020). Acta Cryst. E76, 697–702.  CrossRef IUCr Journals Google Scholar
First citationKansiz, S., Yesilbag, S., Dege, N., Saif, E. & Agar, E. (2022). Acta Cryst. E78, 84–87.  CSD CrossRef IUCr Journals Google Scholar
First citationKhan, K., Karodi, R., Siddiqui, A., Thube, S. & Rub, R. (2011). Int. J. Appl. Res. Nat. Prod. 4, 28–36.  Google Scholar
First citationMurdock, K., Child, R., Fabio, P., Angier, R. D., Wallace, R. E., Durr, F. E. & Citarella, R. (1979). J. Med. Chem. 22, 1024–1030.  CrossRef CAS PubMed Google Scholar
First citationOkpareke, O. C., Henderson, W., Akkoç, S. & Coban, B. (2022). Inorg. Chim. Acta, 531, 120707.  CSD CrossRef Google Scholar
First citationOkpareke, O. C., Henderson, W., Lane, J. R. & Okafor, S. N. (2020). J. Mol. Struct. 1203, 127360.  CSD CrossRef Google Scholar
First citationOyeka, E. E., Babahan, I., Eboma, B., Ifeanyieze, K. J., Okpareke, O. C., Coban, E. P., Özmen, A., Coban, B., Aksel, M., Özdemir, N., Groutso, T. V., Ayogu, J. I., Yildiz, U., Bilgin, M. D., Biyik, H. H., Schrage, B. R., Ziegler, C. J. & Asegbeloyin, J. N. (2021). Inorg. Chim. Acta, 528, 120590.  CSD CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSacht, C. & Datt, M. (2000). Polyhedron, 19, 1347–1354.  CrossRef CAS Google Scholar
First citationSacht, C., Datt, M. S., Otto, S. & Roodt, A. (2000). J. Chem. Soc. Dalton Trans. pp. 727–733.  Web of Science CSD CrossRef Google Scholar
First citationSaeed, S., Rashid, N., Ali, M., Hussain, R. & Jones, P. G. (2010). Eur. J. Chem. 1, 221–227.  CSD CrossRef CAS Google Scholar
First citationSchinazi, R. F., Chu, C. K., Babu, J. R., Oswald, B. J., Saalmann, V., Cannon, D. L., Eriksson, B. F. & Nasr, M. (1990). Antiviral Res. 13, 265–272.  CrossRef PubMed CAS Google Scholar
First citationSchrader, K. K., Dayan, F. E., Allen, S. N., de Regt, M. Q., Tucker, C. S. & Paul, R. N. Jr (2000). Int. J. Plant Sci. 161, 265–270.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShrestha, J. P., Fosso, M. Y., Bearss, J. & Chang, C. T. (2014). Eur. J. Med. Chem. 77, 96–102.  CrossRef CAS PubMed Google Scholar
First citationShrestha, J. P., Subedi, Y. P., Chen, L. & Chang, C. T. (2015). Med. Chem. Commun. 6, 2012–2022.  CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L. & Tiekink, E. R. T. (2020). Acta Cryst. E76, 102–110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M., McKinnon, J., Wolff, S., Grimwood, D., Spackman, P., Jayatilaka, D. & Spackman, M. (2017). Crystal Explorer 17.5. University of Western Australia.  Google Scholar
First citationWinter, R., Cornell, K. A., Johnson, L. L., Ignatushchenko, M., Hinrichs, D. J. & Riscoe, M. K. (1996). Antimicrob. Agents Chemother. 40, 1408–1411.  CrossRef CAS PubMed Google Scholar
First citationWuthi-udomlert, M., Kupittayanant, P. & Gritsanapan, W. (2010). J. Health Res. 24, 117–122.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds