research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-(2-hy­dr­oxy­phen­yl)quinoline-6-sulfonamide

crossmark logo

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Université Frères Mentouri Constantine 1, Constantine, 25017, Algeria, bCentre Universitaire Abd El Hafid Boussouf, Mila, 43000 Mila, Algeria, and cLaboratoire de Technologie des Matériaux Avancés, École Nationale Polytechnique de Constantine, Nouvelle Ville Universitaire, Ali Mendjeli, Constantine 25000, Algeria
*Correspondence e-mail:

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 16 February 2022; accepted 14 March 2022; online 17 March 2022)

In the title compound, C15H12N2O3S, there are two mol­ecules (A and B) in the asymmetric unit. The attached phenol and quinoline moieties of each mol­ecule are almost coplanar with a dihedral angle of 6.05 (15)° for mol­ecule A and 1.89 (13)° for mol­ecule B. The crystal structure features N—H⋯O and C—H⋯O hydrogen bonds, C—H⋯π inter­actions and ππ stacking inter­actions. Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are C⋯H/H⋯C (29.2%), O⋯H/H⋯O (28.6%) and H⋯H (28.5%).

1. Chemical context

Quinolines are well-known heterocyclic compounds and have been used successfully in many pharmacological and medicinal fields, exhibiting biological properties including anti­cancer, anti­malarial, anti­bacterial, anti­asthmatic and antihypertensive activities (Chi et al., 2018[Chi, N. T. T., Thong, P. V., Mai, T. T. C. & Van Meervelt, L. (2018). Acta Cryst. C74, 1732-1743.]; Ferreira et al., 2020[Ferreira, J. P. S., Cardoso, S. M., Almeida Paz, F. A., Silva, A. M. S. & Silva, V. L. M. (2020). New J. Chem. 44, 6501-6509.]; Elgawad et al., 2019[Elgawad, H. A., Alhusseiny, S. M., Taman, A., Youssef, M. Y., Mansour, B., Massoud, M. & Handousa, A. (2019). Exp. Parasitol. 206, 107756-107765.]; Mulakayala et al., 2012[Mulakayala, N., Rambabu, D., Raja, M. R. M. C., Kumar, C. S., Kalle, A. M., Rama Krishna, G., Malla Reddy, C., Basaveswara Rao, M. V. & Pal, M. (2012). Bioorg. Med. Chem. 20, 759-768.]; Lavanya et al., 2021[Lavanya, G., Magesh, C. J., Venkatapathy, K., Perumal, P. T. & Prema, S. (2021). Bioorg. Chem. 107, 104582-104596.]; Yadav & Shah, 2021[Yadav, P. & Shah, K. (2021). Bioorg. Chem. 109, 104639-104680.]; Shishkina et al., 2018[Shishkina, S. V., Levandovskiy, I. A., Ukrainets, I. V., Sidorenko, L. V., Grinevich, L. A. & Yanchuk, I. B. (2018). Acta Cryst. C74, 1759-1767.]). In addition, quinolines and/or their metal complexes have a wide range of physical and chemical applications. They have been used in fields such as coordination chemistry (Twaróg et al., 2020[Twaróg, K., Hołyńska, M. & Kochel, A. (2020). Acta Cryst. C76, 500-506.]), metal–organic frameworks (MOFs) (Wu et al., 2015[Wu, X.-W., Wu, W.-F., Yin, S. & Ma, J.-P. (2015). Acta Cryst. C71, 683-689.]), catalysis (Redshaw & Tang, 2012[Redshaw, C. & Tang, Y. (2012). Chem. Soc. Rev. 41, 4484-4510.]), textile printing (Hassan et al., 2022[Hassan, K. M., Shaban, E., Elhaddad, G. M., Shokair, S. H., Pannipara, M. & ElSayed, I. E. (2022). J. King Saud Univ. Sci. 34, 101670-101678.]), food additives (Al-Shabib et al., 2020[Al-Shabib, N. A., Khan, J. M., Malik, A., Rehman, M. T., AlAjmi, M. F., Husain, F. M., Ahmed, M. Z. & Alamery, S. F. (2020). J. Mol. Liq. 311, 113215-113221.]), anti-corrosion (Galai et al., 2021[Galai, M., Rbaa, M., Ouakki, M., Dahmani, K., Kaya, S., Arrousse, N., Dkhireche, N., Briche, S., Lakhrissi, B. & Ebn Touhami, M. (2021). Chem. Phys. Lett. 776, 138700-138720.]), photoluminescence (Twaróg et al., 2020[Twaróg, K., Hołyńska, M. & Kochel, A. (2020). Acta Cryst. C76, 500-506.]), magnetism (Yu et al., 2019[Yu, H., Yang, J.-X., Han, J.-Q., Li, P.-F., Hou, Y.-L., Wang, W.-M. & Fang, M. (2019). New J. Chem. 43, 8067-8074.]) and non-linear optics (Goel et al., 2018[Goel, S., Yadav, H., Sinha, N., Singh, B., Bdikin, I. & Kumar, B. (2018). Acta Cryst. B74, 12-23.]).

[Scheme 1]

We report here the synthesis, structural characterization and Hirshfeld surface analysis of a new quinoline derivative, 2-(2-hy­droxy­phen­yl)quinoline-6-sulfonamide. This compound was prepared in a two-step reaction, viz. reflux and solvothermal (see Synthesis and crystallization section).

2. Structural commentary

The asymmetric unit of title compound (I)[link], illustrated in Fig. 1[link], contains two crystallographically independent mol­ecules (A and B). The C6A—C7A and C6B—C7B bond lengths of 1.472 (5) and 1.470 (5) Å, respectively, are notably shorter than the normal C—C single bond due to conjugation but are comparable to those observed in related structures (Shrungesh Kumar et al., 2015[Shrungesh Kumar, T. O., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2015). Acta Cryst. E71, o514-o515.]; Mague et al., 2016[Mague, J. T., Mohamed, S. K., Akkurt, M., Albayati, M. R. & Ahmed, E. A. (2016). IUCrData, 1, x161544-x161546.]).

[Figure 1]
Figure 1
View of the two independent mol­ecules of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular hydrogen bonds are shown as dashed cyan lines.

The hydroxyl group in the ortho-position of each independent mol­ecule in (I)[link] allows the formation of an intra­molecular O—H⋯N hydrogen bond, generating an S(6) ring motifs (Fig. 1[link], Table 1[link]), which stabilize the mol­ecules and also affect the overall mol­ecular conformation. The conformational differences between mol­ecules A and B are highlighted in an overlay diagram shown in Fig. 2[link]a. The two rings of the quinoline system are fused almost coaxially (r.m.s. deviation = 0.004 Å), with a dihedral angle between their planes of 4.0 (2)° for mol­ecule A and 1.49 (17)° for mol­ecule B.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3, Cg4, Cg5 and Cg6 are the centroids of the C10A–C15A, N1A/C7A–C15A, N1B/C7B–C10B/C15B and C1B–C6B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1B—H1B⋯N1B 0.85 (2) 1.82 (3) 2.578 (3) 146 (4)
O1A—H1A⋯N1A 0.87 (2) 1.76 (3) 2.566 (4) 153 (6)
N2B—H2BA⋯O2Ai 0.87 (5) 2.20 (5) 2.878 (4) 135 (4)
N2B—H2BB⋯O3Aii 0.87 (5) 2.13 (5) 2.908 (6) 149 (4)
N2A—H2AA⋯O3B 0.89 (5) 2.05 (5) 2.929 (6) 171 (5)
N2A—H2AB⋯O2Biii 0.92 (5) 2.13 (5) 2.742 (5) 124 (4)
C13B—H13B⋯O2B 0.95 2.57 2.928 (4) 103
C8B—H8B⋯O1Biii 0.95 2.76 3.191 (6) 109
C3B—H3B⋯O2Aiv 0.95 2.55 3.496 (4) 176
C14B—H14B⋯O1Bv 0.95 2.59 3.515 (4) 165
C14A—H14A⋯O1Avi 0.95 2.48 3.419 (5) 170
C9A—H9ACg5vii 0.95 2.62 3.331 (3) 132
C9B—H9BCg4i 0.95 2.77 3.331 (5) 119
C9B—H9BCg3i 0.95 2.91 3.470 (5) 119
C5A—H5ACg6vii 0.95 2.89 3.566 (4) 129
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-1, y, z]; (iv) [-x+1, -y+1, -z+1]; (v) [-x+2, -y+1, -z+1]; (vi) [-x+1, -y, -z+1]; (vii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
(a) Overlay image of the two mol­ecules in the asymmetric unit of the title compound. (b) Dihedral angles between the quinoline and the phenol moieties in the title compound.

The attached quinoline and phenol moieties are almost coplanar with a dihedral angle of 6.05 (15)° for mol­ecule A and 1.89 (13)° for mol­ecule B (Fig. 2[link]b), indicating a significant electron delocalization within the mol­ecules. The sulfonamide groups are twisted away from the attached quinoline fragment with an C11A—C12A—S1A—N2A torsion angle of 91.8 (4)° for mol­ecule A and C11B—C12B—S1B—N2B torsion angle of − 79.9 (3)° for mol­ecule B. The sulfonamide atoms S1A and S1B deviate by 0.228 (1) and 0.054 (1) Å from the planes of the quinoline fragment in mol­ecules A and B respectively.

3. Supra­molecular features

In the crystal of (I)[link], the presence of sulfonamide group leads indeed to the formation of strong inter­molecular N—H⋯O hydrogen bonds (Table 1[link]), generating supra­molecular hydrogen-bonded layers parallel to the (010) plane (Fig. 3[link]a). The packing diagram of the title compound viewed down the a axis (Fig. 3[link]b) shows that the layers are stacked perpendicular to the b axis at (0,1/4,0) and (0,3/4,0). These layers are formed by aggregation of R44(14) ring motifs (Fig. 3[link]c). In addition, the hydroxyl group of each mol­ecule is involved in a C—H⋯O hydrogen bond, forming an inversion dimer with an R22(16) graph-set motif. The dimers are linked by a further C—H⋯O hydrogen bond involving one of the oxygen atoms of the sulfonamide group (Fig. 3[link]d). Weak inter­molecular C—H⋯π inter­actions are also observed in the crystal packing, forming a chain along the a-axis direction (Fig. 3[link]e).

[Figure 3]
Figure 3
Part of the crystal structure of the compound (I)[link] showing (a) a view along the b axis of the two-dimensional hydrogen-bonded network; (b) the two-dimensional network parallel to the ac plane at 1/4 and 3/4 of the b-axis length; (c) the N—H⋯O hydrogen bonds of the sulfonamide groups generating an R44(14) motif; (d) C—H⋯O hydrogen bonds generating an inversion dimer with an R22(16) ring motif and (e) the C—H⋯π inter­action generating a chain running along the a-axis direction.

Cohesion of the crystal structure is enhanced by the presence of ππ stacking inter­actions, the most significant being between the 2-hy­droxy­phenyl and benzene rings of the quinoline groups of each mol­ecule [Cg2⋯Cg3(−x, −y, 1 − z) = 3.779 (2) Å (Fig. 4[link]a) for A mol­ecules and Cg6⋯Cg7(1 − x, 1 − y, 1 − z) = 3.6636 (18) Å (Fig. 4[link]b) for B mol­ecules where Cg2, Cg3, Cg6 and Cg7 are the centroids of the C1A–C6A, C10A–C15A, C1B–C6B and C10B–C15B rings, respectively]. These result in the formation of a supra­molecular ribbon parallel to the a axis based on the stacked mol­ecules (Fig. 4[link]c).

[Figure 4]
Figure 4
ππ stacking inter­actions in (I)[link], showing (a) the resulting stacks formed by the A mol­ecules; (b) a similar view showing the stacks formed by the B mol­ecules and (c) a view along the a axis of the stacked A and B mol­ecules. Dashed magenta lines denote Cg2⋯Cg3 contacts and dashed light-green lines Cg6⋯Cg7 contacts.

4. Hirshfeld surface analysis

For further characterization of the inter­molecular inter­actions in (I)[link], we carried out a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and generated the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]). The HS of (I)[link] mapped over dnorm in the range −0.5231 to +1.1263 a.u. is illustrated in Fig. 5[link]a using color to indicate contacts that are shorter (red areas), equal to (white areas), or longer than (blue areas) the sum of the van der Waals radii. The dominant inter­actions between sulfonamide N—H and O atoms can be seen as the bright-red areas marked as 1, 2, 3 and 4. The light-red spots labeled as 5, 6 and 7 are due to C—H⋯O inter­actions. The weak C—H⋯π contacts are indicated by the red ellipse.

[Figure 5]
Figure 5
A view of the Hirshfeld surface for (I)[link] mapped over (a) dnorm in the range −0.5231 to +1.1263 arbitrary units, (b) shape-index and (c) curvedness.

The presence of characteristic triangles on the shape-index surface (Fig. 5[link]b) clearly indicate the presence of ππ inter­actions between neighboring mol­ecules while the curvedness plots (Fig. 5[link]c) show flat surface patches characteristic of planar stacking.

The overall two-dimensional fingerprint plot and those delineated into C⋯H/H⋯C, O⋯H/H⋯O, H⋯H, C⋯C and N⋯H/H⋯N contacts are illustrated in Fig. 6[link] together with their relative contributions to the Hirshfeld surface. The fingerprint plots show that the C⋯H/H⋯C contacts (29.2%) make the largest contribution to the overall packing of the crystal (Table 2[link], Fig. 7[link]), which are related to the presence of C—H⋯π inter­actions in the structure of (I)[link] (Fig. 8[link]cd).

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surface

Contact Percentage contribution
C⋯H/H⋯C 29.2
O⋯H/H⋯O 28.6
H⋯H 28.5
C⋯C 5.2
N⋯H/H⋯N 5
C⋯O/O⋯C 1.4
C⋯N/N⋯C 1.2
O⋯O 0.6
N⋯O/O⋯N 0.2
N⋯N 0.1
[Figure 6]
Figure 6
Two-dimensional fingerprint plots for (I)[link], showing the contributions of all contacts and and those delineated into C⋯H/H⋯C, O⋯H/H⋯O, H⋯H, C⋯C and N⋯H/H⋯N contacts.
[Figure 7]
Figure 7
Percentage contributions of contacts to the Hirshfeld surface in the title compound.
[Figure 8]
Figure 8
Views of the Hirshfeld surface mapped over dnorm showing (a) and (b) O⋯H/H⋯O contacts, and (c) and (d) C⋯H/H⋯C contacts.

The second most important inter­actions are O⋯H/H⋯O contributing by 28.6% to the overall crystal packing (Table 2[link], Fig. 6[link]), and are related to the presence of N—H⋯O and C—H⋯O inter­actions in the structure of (I)[link] (Fig. 8[link]a,b). In addition, van der Waals inter­actions (H⋯H) are one of the major (28.5%) inter­actions in this structure. The presence of weak ππ stacking inter­actions are reflected in the 5.2 and 1.2% contributions from C⋯C and C⋯N/N⋯C contacts to the Hirshfeld surface. Other contacts make a contribution of 3.5% in total and are not discussed in this work.

5. Database survey

A search for 2-hy­droxy­phenyl­quinoline in the Cambridge Structural Database (CSD; Version 2021.3.0, last update November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 29 hits, which exhibit structural diversity with inter­esting properties, such as chemical (Alexandre et al., 2020[Alexandre, P.-E., Zhang, W.-S., Rominger, F., Elbert, S. M., Schröder, R. R. & Mastalerz, M. (2020). Angew. Chem. Int. Ed. 59, 19675-19679.]; Han et al., 2017[Han, Y.-P., Li, X.-S., Sun, Z., Zhu, X.-Y., Li, M., Song, X.-R. & Liang, Y.-M. (2017). Adv. Synth. Catal. 359, 2735-2740.]; Yao et al., 2012[Yao, C., Qin, B., Zhang, H., Lu, J., Wang, D. & Tu, S. (2012). RSC Adv. 2, 3759-3764.]; Guo et al., 2006[Guo, Q.-S., Lu, Y.-N., Liu, B., Xiao, J. & Li, J.-S. (2006). J. Organomet. Chem. 691, 1282-1287.]), physical (Zheng et al., 2013[Zheng, Y.-H., Lu, H.-Y., Li, M. & Chen, C.-F. (2013). Eur. J. Org. Chem. pp. 3059-3066.]; Elbert et al., 2017[Elbert, S. M., Wagner, P., Kanagasundaram, T., Rominger, F. & Mastalerz, M. (2017). Chem. Eur. J. 23, 935-945.]) and biological (Mulakayala et al., 2012[Mulakayala, N., Rambabu, D., Raja, M. R. M. C., Kumar, C. S., Kalle, A. M., Rama Krishna, G., Malla Reddy, C., Basaveswara Rao, M. V. & Pal, M. (2012). Bioorg. Med. Chem. 20, 759-768.]).

6. Synthesis and crystallization

The title compound was prepared by a two-step reaction. First, an ethanol solution (5 mL) of 4-amino­benzene­sulfonamide (0.33 g, 1.9 mmol) was added dropwise under stirring to an ethanol solution (5 mL) of 2-hy­droxy­benzaldehyde (0.2 mL, 0.234 g, 1.9 mmol) and refluxed for 2 h. After that, an acetone solution (5 mL) of palladium(II) acetate (0.05 g, 0.2 mmol) was added dropwise under stirring for 1 h. The yellow mixture was then transferred to a 25 mL Teflon-lined stainless-steel autoclave and sealed to heat at 393 K. After reaction for 48 h, the autoclave was cooled down to room temperature. Yellow block-like crystals suitable for X-ray diffraction analysis were obtained, isolated by filtration, washed with water and dried in air. Yield: 0.25 g, 43.44%.

7. Refinement

Crystal data, details of data collection, and results of structure refinement are summarized in Table 3[link]. The hydrogen atoms of the sulfonamide NH2 and hydroxyl groups were localized in a difference-Fourier map and refined with O—H = 0.84 ± 0.01 Å, and with Uiso(H) set to 1.5Ueq(O) or 1.2Ueq(N). All other hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Table 3
Experimental details

Crystal data
Chemical formula C15H12N2O3S
Mr 300.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 5.7667 (2), 28.4129 (7), 15.5339 (5)
β (°) 91.728 (3)
V3) 2544.05 (14)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.18 × 0.11 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 81539, 4473, 3058
Rint 0.103
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.184, 1.05
No. of reflections 4473
No. of parameters 397
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.58
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2020).

2-(2-Hydroxyphenyl)quinoline-6-sulfonamide top
Crystal data top
C15H12N2O3SF(000) = 1248
Mr = 300.33Dx = 1.568 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.7667 (2) ÅCell parameters from 81539 reflections
b = 28.4129 (7) Åθ = 3.4–25.0°
c = 15.5339 (5) ŵ = 0.27 mm1
β = 91.728 (3)°T = 100 K
V = 2544.05 (14) Å3Block, yellow
Z = 80.18 × 0.11 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.103
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 3.4°
ω scansh = 66
81539 measured reflectionsk = 3333
4473 independent reflectionsl = 1818
3058 reflections with I > 2σ(I)
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.1002P)2 + 1.3957P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4473 reflectionsΔρmax = 0.36 e Å3
397 parametersΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1B0.43707 (17)0.26762 (3)0.54873 (6)0.0427 (3)
S1A0.0621 (2)0.22144 (3)0.29850 (7)0.0542 (4)
O1B0.8560 (4)0.54324 (8)0.56908 (17)0.0415 (6)
H1B0.793 (7)0.5165 (9)0.559 (3)0.062*
O2B0.5936 (4)0.25170 (9)0.48546 (17)0.0472 (7)
O1A0.3524 (4)0.04503 (9)0.4612 (2)0.0510 (7)
O3B0.1941 (5)0.26115 (10)0.5344 (2)0.0608 (9)
N1B0.5920 (5)0.47193 (9)0.59665 (18)0.0334 (7)
O2A0.3019 (6)0.23513 (9)0.29823 (19)0.0604 (9)
O3A0.0705 (6)0.22426 (10)0.22008 (19)0.0656 (9)
N1A0.0991 (5)0.02087 (10)0.39571 (19)0.0382 (7)
N2B0.5049 (8)0.24069 (11)0.6371 (2)0.0552 (10)
H2BA0.380 (8)0.2476 (17)0.664 (3)0.066*
H2BB0.653 (9)0.2448 (17)0.646 (3)0.066*
C15B0.5513 (6)0.42388 (11)0.5876 (2)0.0320 (8)
C7B0.4401 (5)0.49941 (11)0.6335 (2)0.0328 (8)
C10B0.3518 (6)0.40222 (11)0.6190 (2)0.0316 (8)
C11B0.3197 (6)0.35382 (11)0.6058 (2)0.0316 (8)
H11B0.1841840.3388070.6256470.038*
C12B0.4831 (6)0.32827 (12)0.5646 (2)0.0323 (8)
C7A0.0617 (6)0.00943 (12)0.3720 (2)0.0344 (8)
C6B0.4950 (6)0.54968 (11)0.6434 (2)0.0318 (8)
C1B0.7007 (6)0.56924 (12)0.6119 (2)0.0329 (8)
C6A0.0177 (6)0.05960 (11)0.3894 (2)0.0332 (8)
C5B0.3413 (6)0.57959 (12)0.6855 (2)0.0349 (8)
H5B0.2015670.5670440.7067980.042*
C13B0.6843 (6)0.34967 (12)0.5342 (2)0.0355 (8)
H13B0.7978530.3313760.5063640.043*
C14B0.7158 (6)0.39730 (12)0.5450 (2)0.0339 (8)
H14B0.8497900.4121310.5234580.041*
N2A0.0595 (10)0.25402 (12)0.3687 (3)0.0700 (14)
H2AA0.030 (9)0.258 (2)0.416 (3)0.084*
H2AB0.215 (9)0.2471 (19)0.371 (3)0.084*
C1A0.1874 (6)0.07528 (12)0.4322 (2)0.0369 (8)
C2B0.7453 (6)0.61686 (12)0.6239 (2)0.0381 (8)
H2B0.8840800.6299880.6028500.046*
C3B0.5928 (6)0.64522 (12)0.6654 (2)0.0397 (9)
H3B0.6263950.6777080.6730740.048*
C15A0.0715 (6)0.06803 (12)0.3764 (2)0.0402 (9)
C4B0.3887 (6)0.62652 (12)0.6964 (2)0.0394 (9)
H4B0.2824870.6462010.7250880.047*
C3A0.0600 (6)0.15561 (12)0.4198 (2)0.0413 (9)
H3A0.0857280.1881770.4301520.050*
C5A0.1792 (7)0.09350 (13)0.3627 (2)0.0420 (9)
H5A0.3176220.0837730.3331660.050*
C12A0.0561 (7)0.16215 (12)0.3321 (2)0.0418 (9)
C14A0.2468 (6)0.09824 (12)0.4045 (3)0.0432 (9)
H14A0.3720490.0863940.4392590.052*
C2A0.2235 (6)0.12309 (12)0.4460 (3)0.0418 (9)
H2A0.3633170.1334020.4738910.050*
C13A0.2416 (7)0.14491 (13)0.3828 (3)0.0441 (9)
H13A0.3626350.1653850.4020710.053*
C4A0.1436 (7)0.14054 (13)0.3781 (3)0.0467 (10)
H4A0.2579250.1628330.3601840.056*
C11A0.1244 (7)0.13377 (13)0.3064 (3)0.0496 (10)
H11A0.2513970.1461600.2732820.060*
C10A0.1193 (7)0.08580 (13)0.3298 (3)0.0472 (10)
C8B0.2383 (9)0.47967 (18)0.6658 (3)0.0719 (14)
H8B0.1288800.4990320.6934430.086*
C9B0.1984 (9)0.4318 (2)0.6572 (3)0.0758 (14)
H9B0.0593640.4190240.6787300.091*
C8A0.2589 (9)0.00637 (19)0.3285 (3)0.0768 (15)
H8A0.3764570.0154450.3114680.092*
C9A0.2877 (10)0.05392 (19)0.3092 (4)0.0781 (15)
H9A0.4272660.0642440.2811710.094*
H1A0.299 (10)0.0174 (11)0.448 (4)0.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1B0.0467 (6)0.0297 (5)0.0529 (6)0.0118 (4)0.0204 (4)0.0139 (4)
S1A0.0887 (9)0.0228 (5)0.0533 (7)0.0071 (5)0.0400 (6)0.0043 (4)
O1B0.0353 (13)0.0271 (13)0.0627 (17)0.0064 (11)0.0140 (12)0.0010 (12)
O2B0.0527 (16)0.0352 (15)0.0547 (17)0.0069 (12)0.0198 (13)0.0160 (12)
O1A0.0411 (15)0.0271 (14)0.084 (2)0.0025 (12)0.0145 (14)0.0052 (13)
O3B0.0464 (17)0.0471 (17)0.090 (2)0.0215 (13)0.0276 (15)0.0315 (15)
N1B0.0345 (15)0.0240 (15)0.0421 (17)0.0030 (12)0.0061 (13)0.0014 (12)
O2A0.092 (2)0.0278 (14)0.0642 (19)0.0076 (14)0.0472 (17)0.0009 (12)
O3A0.103 (2)0.0396 (17)0.0556 (19)0.0231 (16)0.0297 (17)0.0169 (13)
N1A0.0396 (17)0.0273 (16)0.0475 (18)0.0027 (13)0.0012 (13)0.0015 (13)
N2B0.079 (3)0.0261 (17)0.062 (2)0.0065 (18)0.033 (2)0.0044 (15)
C15B0.0348 (18)0.0239 (17)0.0372 (19)0.0069 (14)0.0014 (15)0.0002 (14)
C7B0.0320 (18)0.0282 (18)0.039 (2)0.0035 (14)0.0089 (15)0.0015 (15)
C10B0.0305 (18)0.0278 (18)0.0371 (19)0.0003 (14)0.0072 (15)0.0017 (14)
C11B0.0317 (18)0.0296 (18)0.0339 (18)0.0100 (14)0.0048 (14)0.0000 (14)
C12B0.0367 (19)0.0264 (18)0.0340 (18)0.0050 (14)0.0077 (15)0.0045 (14)
C7A0.0365 (19)0.0290 (19)0.037 (2)0.0016 (15)0.0010 (15)0.0036 (15)
C6B0.0355 (18)0.0259 (18)0.0341 (19)0.0009 (14)0.0039 (15)0.0020 (14)
C1B0.0325 (18)0.0273 (18)0.0390 (19)0.0003 (14)0.0030 (15)0.0047 (14)
C6A0.0390 (19)0.0273 (18)0.0334 (18)0.0021 (15)0.0044 (15)0.0003 (14)
C5B0.0370 (19)0.0286 (19)0.039 (2)0.0018 (15)0.0048 (15)0.0024 (15)
C13B0.0370 (19)0.0307 (19)0.039 (2)0.0028 (15)0.0103 (16)0.0058 (15)
C14B0.0319 (18)0.0320 (19)0.0383 (19)0.0083 (15)0.0074 (15)0.0026 (15)
N2A0.118 (4)0.0254 (18)0.070 (3)0.011 (2)0.057 (3)0.0023 (18)
C1A0.0335 (19)0.0277 (19)0.050 (2)0.0021 (15)0.0046 (16)0.0023 (16)
C2B0.038 (2)0.0295 (19)0.047 (2)0.0072 (15)0.0000 (16)0.0081 (16)
C3B0.050 (2)0.0253 (18)0.043 (2)0.0021 (16)0.0039 (17)0.0016 (15)
C15A0.050 (2)0.0251 (18)0.046 (2)0.0015 (16)0.0096 (18)0.0027 (16)
C4B0.050 (2)0.0282 (19)0.040 (2)0.0059 (16)0.0029 (17)0.0004 (15)
C3A0.053 (2)0.0242 (19)0.047 (2)0.0025 (16)0.0100 (18)0.0008 (16)
C5A0.047 (2)0.033 (2)0.045 (2)0.0085 (16)0.0067 (17)0.0027 (16)
C12A0.058 (2)0.0223 (18)0.046 (2)0.0005 (17)0.0193 (19)0.0013 (16)
C14A0.043 (2)0.0271 (19)0.059 (2)0.0030 (16)0.0023 (18)0.0013 (17)
C2A0.043 (2)0.029 (2)0.054 (2)0.0017 (16)0.0056 (18)0.0036 (17)
C13A0.048 (2)0.0265 (19)0.058 (2)0.0043 (16)0.0100 (19)0.0034 (17)
C4A0.054 (2)0.029 (2)0.057 (2)0.0132 (17)0.0004 (19)0.0020 (17)
C11A0.062 (3)0.030 (2)0.057 (2)0.0102 (19)0.001 (2)0.0028 (18)
C10A0.050 (2)0.031 (2)0.061 (3)0.0032 (18)0.0034 (19)0.0040 (18)
C8B0.075 (3)0.062 (3)0.079 (4)0.002 (3)0.017 (3)0.004 (3)
C9B0.074 (3)0.075 (4)0.079 (4)0.014 (3)0.015 (3)0.003 (3)
C8A0.080 (4)0.067 (3)0.083 (4)0.011 (3)0.000 (3)0.003 (3)
C9A0.082 (3)0.074 (4)0.078 (4)0.008 (3)0.009 (3)0.003 (3)
Geometric parameters (Å, º) top
S1B—O2B1.428 (2)C5B—C4B1.371 (5)
S1B—O3B1.424 (3)C13B—H13B0.9500
S1B—N2B1.610 (4)C13B—C14B1.375 (5)
S1B—C12B1.760 (3)C14B—H14B0.9500
S1A—O2A1.437 (3)N2A—H2AA0.89 (5)
S1A—O3A1.421 (4)N2A—H2AB0.92 (5)
S1A—N2A1.607 (4)C1A—C2A1.390 (5)
S1A—C12A1.764 (4)C2B—H2B0.9500
O1B—H1B0.854 (19)C2B—C3B1.369 (5)
O1B—C1B1.351 (4)C3B—H3B0.9500
O1A—C1A1.350 (4)C3B—C4B1.390 (5)
O1A—H1A0.87 (2)C15A—C14A1.387 (5)
N1B—C15B1.392 (4)C15A—C10A1.393 (5)
N1B—C7B1.317 (4)C4B—H4B0.9500
N1A—C7A1.310 (4)C3A—H3A0.9500
N1A—C15A1.381 (4)C3A—C2A1.373 (5)
N2B—H2BA0.87 (5)C3A—C4A1.392 (5)
N2B—H2BB0.87 (5)C5A—H5A0.9500
C15B—C10B1.405 (4)C5A—C4A1.372 (5)
C15B—C14B1.394 (5)C12A—C13A1.398 (5)
C7B—C6B1.470 (5)C12A—C11A1.367 (5)
C7B—C8B1.398 (6)C14A—H14A0.9500
C10B—C11B1.401 (5)C14A—C13A1.368 (5)
C10B—C9B1.369 (6)C2A—H2A0.9500
C11B—H11B0.9500C13A—H13A0.9500
C11B—C12B1.365 (4)C4A—H4A0.9500
C12B—C13B1.404 (4)C11A—H11A0.9500
C7A—C6A1.472 (5)C11A—C10A1.411 (5)
C7A—C8A1.380 (6)C10A—C9A1.359 (6)
C6B—C1B1.411 (5)C8B—H8B0.9500
C6B—C5B1.403 (5)C8B—C9B1.385 (7)
C1B—C2B1.389 (5)C9B—H9B0.9500
C6A—C1A1.411 (5)C8A—H8A0.9500
C6A—C5A1.394 (5)C8A—C9A1.392 (7)
C5B—H5B0.9500C9A—H9A0.9500
O2B—S1B—N2B107.10 (19)S1A—N2A—H2AB110 (3)
O2B—S1B—C12B108.09 (15)H2AA—N2A—H2AB122 (5)
O3B—S1B—O2B119.39 (17)O1A—C1A—C6A121.9 (3)
O3B—S1B—N2B106.6 (2)O1A—C1A—C2A118.0 (3)
O3B—S1B—C12B106.96 (16)C2A—C1A—C6A120.0 (3)
N2B—S1B—C12B108.33 (17)C1B—C2B—H2B119.4
O2A—S1A—N2A106.6 (2)C3B—C2B—C1B121.2 (3)
O2A—S1A—C12A106.65 (18)C3B—C2B—H2B119.4
O3A—S1A—O2A118.37 (18)C2B—C3B—H3B120.0
O3A—S1A—N2A108.3 (2)C2B—C3B—C4B120.1 (3)
O3A—S1A—C12A107.01 (19)C4B—C3B—H3B120.0
N2A—S1A—C12A109.67 (18)N1A—C15A—C14A117.0 (3)
C1B—O1B—H1B107 (3)N1A—C15A—C10A123.3 (3)
C1A—O1A—H1A105 (4)C14A—C15A—C10A119.7 (3)
C7B—N1B—C15B120.9 (3)C5B—C4B—C3B119.7 (3)
C7A—N1A—C15A120.0 (3)C5B—C4B—H4B120.1
S1B—N2B—H2BA97 (3)C3B—C4B—H4B120.1
S1B—N2B—H2BB106 (3)C2A—C3A—H3A120.2
H2BA—N2B—H2BB136 (4)C2A—C3A—C4A119.5 (3)
N1B—C15B—C10B122.1 (3)C4A—C3A—H3A120.2
N1B—C15B—C14B117.7 (3)C6A—C5A—H5A119.1
C14B—C15B—C10B120.2 (3)C4A—C5A—C6A121.7 (4)
N1B—C7B—C6B118.5 (3)C4A—C5A—H5A119.1
N1B—C7B—C8B119.3 (3)C13A—C12A—S1A118.7 (3)
C8B—C7B—C6B122.1 (3)C11A—C12A—S1A119.9 (3)
C11B—C10B—C15B119.0 (3)C11A—C12A—C13A121.4 (3)
C9B—C10B—C15B115.4 (3)C15A—C14A—H14A119.6
C9B—C10B—C11B125.5 (3)C13A—C14A—C15A120.8 (4)
C10B—C11B—H11B120.0C13A—C14A—H14A119.6
C12B—C11B—C10B120.0 (3)C1A—C2A—H2A119.5
C12B—C11B—H11B120.0C3A—C2A—C1A120.9 (3)
C11B—C12B—S1B118.9 (2)C3A—C2A—H2A119.5
C11B—C12B—C13B121.1 (3)C12A—C13A—H13A120.4
C13B—C12B—S1B120.0 (2)C14A—C13A—C12A119.3 (3)
N1A—C7A—C6A117.9 (3)C14A—C13A—H13A120.4
N1A—C7A—C8A119.3 (4)C3A—C4A—H4A120.0
C8A—C7A—C6A122.7 (4)C5A—C4A—C3A120.0 (3)
C1B—C6B—C7B121.8 (3)C5A—C4A—H4A120.0
C5B—C6B—C7B120.0 (3)C12A—C11A—H11A120.5
C5B—C6B—C1B118.2 (3)C12A—C11A—C10A119.0 (4)
O1B—C1B—C6B122.1 (3)C10A—C11A—H11A120.5
O1B—C1B—C2B118.4 (3)C15A—C10A—C11A119.6 (4)
C2B—C1B—C6B119.4 (3)C9A—C10A—C15A115.4 (4)
C1A—C6A—C7A122.0 (3)C9A—C10A—C11A125.0 (4)
C5A—C6A—C7A120.3 (3)C7B—C8B—H8B120.1
C5A—C6A—C1A117.7 (3)C9B—C8B—C7B119.8 (4)
C6B—C5B—H5B119.3C9B—C8B—H8B120.1
C4B—C5B—C6B121.4 (3)C10B—C9B—C8B122.5 (4)
C4B—C5B—H5B119.3C10B—C9B—H9B118.8
C12B—C13B—H13B120.3C8B—C9B—H9B118.8
C14B—C13B—C12B119.5 (3)C7A—C8A—H8A119.6
C14B—C13B—H13B120.3C7A—C8A—C9A120.8 (5)
C15B—C14B—H14B119.9C9A—C8A—H8A119.6
C13B—C14B—C15B120.1 (3)C10A—C9A—C8A121.1 (5)
C13B—C14B—H14B119.9C10A—C9A—H9A119.5
S1A—N2A—H2AA112 (4)C8A—C9A—H9A119.5
S1B—C12B—C13B—C14B178.4 (3)C7A—N1A—C15A—C14A179.1 (3)
S1A—C12A—C13A—C14A175.7 (3)C7A—N1A—C15A—C10A1.9 (5)
S1A—C12A—C11A—C10A176.4 (3)C7A—C6A—C1A—O1A1.4 (5)
O1B—C1B—C2B—C3B178.9 (3)C7A—C6A—C1A—C2A178.9 (3)
O2B—S1B—C12B—C11B164.4 (3)C7A—C6A—C5A—C4A179.9 (3)
O2B—S1B—C12B—C13B15.0 (3)C7A—C8A—C9A—C10A2.4 (8)
O1A—C1A—C2A—C3A178.5 (3)C6B—C7B—C8B—C9B177.9 (4)
O3B—S1B—C12B—C11B34.7 (3)C6B—C1B—C2B—C3B0.2 (5)
O3B—S1B—C12B—C13B144.7 (3)C6B—C5B—C4B—C3B0.0 (5)
N1B—C15B—C10B—C11B178.6 (3)C1B—C6B—C5B—C4B0.3 (5)
N1B—C15B—C10B—C9B1.4 (5)C1B—C2B—C3B—C4B0.1 (5)
N1B—C15B—C14B—C13B180.0 (3)C6A—C7A—C8A—C9A176.4 (4)
N1B—C7B—C6B—C1B2.3 (5)C6A—C1A—C2A—C3A1.2 (5)
N1B—C7B—C6B—C5B177.4 (3)C6A—C5A—C4A—C3A1.2 (6)
N1B—C7B—C8B—C9B1.2 (7)C5B—C6B—C1B—O1B178.6 (3)
O2A—S1A—C12A—C13A25.1 (3)C5B—C6B—C1B—C2B0.4 (5)
O2A—S1A—C12A—C11A153.1 (3)C14B—C15B—C10B—C11B0.8 (5)
O3A—S1A—C12A—C13A152.7 (3)C14B—C15B—C10B—C9B178.0 (4)
O3A—S1A—C12A—C11A25.5 (4)N2A—S1A—C12A—C13A90.0 (4)
N1A—C7A—C6A—C1A1.7 (5)N2A—S1A—C12A—C11A91.8 (4)
N1A—C7A—C6A—C5A177.7 (3)C1A—C6A—C5A—C4A0.8 (5)
N1A—C7A—C8A—C9A0.4 (7)C2B—C3B—C4B—C5B0.2 (5)
N1A—C15A—C14A—C13A175.2 (3)C15A—N1A—C7A—C6A176.3 (3)
N1A—C15A—C10A—C11A174.5 (3)C15A—N1A—C7A—C8A0.6 (6)
N1A—C15A—C10A—C9A4.5 (6)C15A—C14A—C13A—C12A0.3 (6)
N2B—S1B—C12B—C11B79.9 (3)C15A—C10A—C9A—C8A4.6 (7)
N2B—S1B—C12B—C13B100.7 (3)C5A—C6A—C1A—O1A179.3 (3)
C15B—N1B—C7B—C6B178.4 (3)C5A—C6A—C1A—C2A0.4 (5)
C15B—N1B—C7B—C8B1.6 (5)C12A—C11A—C10A—C15A1.7 (6)
C15B—C10B—C11B—C12B1.3 (5)C12A—C11A—C10A—C9A179.4 (4)
C15B—C10B—C9B—C8B1.0 (7)C14A—C15A—C10A—C11A4.5 (6)
C7B—N1B—C15B—C10B1.8 (5)C14A—C15A—C10A—C9A176.5 (4)
C7B—N1B—C15B—C14B177.6 (3)C2A—C3A—C4A—C5A0.5 (6)
C7B—C6B—C1B—O1B1.7 (5)C13A—C12A—C11A—C10A1.8 (6)
C7B—C6B—C1B—C2B179.3 (3)C4A—C3A—C2A—C1A0.7 (6)
C7B—C6B—C5B—C4B179.4 (3)C11A—C12A—C13A—C14A2.5 (6)
C7B—C8B—C9B—C10B0.9 (8)C11A—C10A—C9A—C8A174.3 (5)
C10B—C15B—C14B—C13B0.5 (5)C10A—C15A—C14A—C13A3.8 (6)
C10B—C11B—C12B—S1B179.8 (3)C8B—C7B—C6B—C1B179.0 (4)
C10B—C11B—C12B—C13B0.4 (5)C8B—C7B—C6B—C5B0.7 (5)
C11B—C10B—C9B—C8B178.0 (4)C9B—C10B—C11B—C12B178.1 (4)
C11B—C12B—C13B—C14B1.0 (5)C8A—C7A—C6A—C1A178.5 (4)
C12B—C13B—C14B—C15B1.4 (5)C8A—C7A—C6A—C5A0.8 (6)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg4, Cg5 and Cg6 are the centroids of the C10A–C15A, N1A/C7A–C15A, N1B/C7B–C10B/C15B and C1B–C6B rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1B—H1B···N1B0.85 (2)1.82 (3)2.578 (3)146 (4)
O1A—H1A···N1A0.87 (2)1.76 (3)2.566 (4)153 (6)
N2B—H2BA···O2Ai0.87 (5)2.20 (5)2.878 (4)135 (4)
N2B—H2BB···O3Aii0.87 (5)2.13 (5)2.908 (6)149 (4)
N2A—H2AA···O3B0.89 (5)2.05 (5)2.929 (6)171 (5)
N2A—H2AB···O2Biii0.92 (5)2.13 (5)2.742 (5)124 (4)
C13B—H13B···O2B0.952.572.928 (4)103
C8B—H8B···O1Biii0.952.763.191 (6)109
C3B—H3B···O2Aiv0.952.553.496 (4)176
C14B—H14B···O1Bv0.952.593.515 (4)165
C14A—H14A···O1Avi0.952.483.419 (5)170
C9A—H9A···Cg5vii0.952.623.331 (3)132
C9B—H9B···Cg4i0.952.773.331 (5)119
C9B—H9B···Cg3i0.952.913.470 (5)119
C5A—H5A···Cg6vii0.952.893.566 (4)129
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x+1, y, z+1; (vii) x1, y+1/2, z1/2.
Percentage contributions of interatomic contacts to the Hirshfeld surface top
ContactPercentage contribution
C···H/H···C29.2
O···H/H···O28.6
H···H28.5
C···C5.2
N···H/H···N5
C···O/O···C1.4
C···N/N···C1.2
O···O0.6
N···O/O···N0.2
N···N0.1
 

Acknowledgements

The authors acknowledge CRM2, Institut Jean Barriol (UMR 7036 CNRS, University de Lorraine, France), for providing access to the experimental crystallographic facilities.

References

First citationAlexandre, P.-E., Zhang, W.-S., Rominger, F., Elbert, S. M., Schröder, R. R. & Mastalerz, M. (2020). Angew. Chem. Int. Ed. 59, 19675–19679.  Web of Science CSD CrossRef CAS Google Scholar
First citationAl-Shabib, N. A., Khan, J. M., Malik, A., Rehman, M. T., AlAjmi, M. F., Husain, F. M., Ahmed, M. Z. & Alamery, S. F. (2020). J. Mol. Liq. 311, 113215–113221.  CAS Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationChi, N. T. T., Thong, P. V., Mai, T. T. C. & Van Meervelt, L. (2018). Acta Cryst. C74, 1732–1743.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElbert, S. M., Wagner, P., Kanagasundaram, T., Rominger, F. & Mastalerz, M. (2017). Chem. Eur. J. 23, 935–945.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationElgawad, H. A., Alhusseiny, S. M., Taman, A., Youssef, M. Y., Mansour, B., Massoud, M. & Handousa, A. (2019). Exp. Parasitol. 206, 107756–107765.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFerreira, J. P. S., Cardoso, S. M., Almeida Paz, F. A., Silva, A. M. S. & Silva, V. L. M. (2020). New J. Chem. 44, 6501–6509.  Web of Science CSD CrossRef CAS Google Scholar
First citationGalai, M., Rbaa, M., Ouakki, M., Dahmani, K., Kaya, S., Arrousse, N., Dkhireche, N., Briche, S., Lakhrissi, B. & Ebn Touhami, M. (2021). Chem. Phys. Lett. 776, 138700–138720.  Web of Science CrossRef CAS Google Scholar
First citationGoel, S., Yadav, H., Sinha, N., Singh, B., Bdikin, I. & Kumar, B. (2018). Acta Cryst. B74, 12–23.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, Q.-S., Lu, Y.-N., Liu, B., Xiao, J. & Li, J.-S. (2006). J. Organomet. Chem. 691, 1282–1287.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, Y.-P., Li, X.-S., Sun, Z., Zhu, X.-Y., Li, M., Song, X.-R. & Liang, Y.-M. (2017). Adv. Synth. Catal. 359, 2735–2740.  Web of Science CSD CrossRef CAS Google Scholar
First citationHassan, K. M., Shaban, E., Elhaddad, G. M., Shokair, S. H., Pannipara, M. & ElSayed, I. E. (2022). J. King Saud Univ. Sci. 34, 101670–101678.  Web of Science CrossRef Google Scholar
First citationLavanya, G., Magesh, C. J., Venkatapathy, K., Perumal, P. T. & Prema, S. (2021). Bioorg. Chem. 107, 104582–104596.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Albayati, M. R. & Ahmed, E. A. (2016). IUCrData, 1, x161544–x161546.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMulakayala, N., Rambabu, D., Raja, M. R. M. C., Kumar, C. S., Kalle, A. M., Rama Krishna, G., Malla Reddy, C., Basaveswara Rao, M. V. & Pal, M. (2012). Bioorg. Med. Chem. 20, 759–768.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRedshaw, C. & Tang, Y. (2012). Chem. Soc. Rev. 41, 4484–4510.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShishkina, S. V., Levandovskiy, I. A., Ukrainets, I. V., Sidorenko, L. V., Grinevich, L. A. & Yanchuk, I. B. (2018). Acta Cryst. C74, 1759–1767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShrungesh Kumar, T. O., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2015). Acta Cryst. E71, o514–o515.  CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTwaróg, K., Hołyńska, M. & Kochel, A. (2020). Acta Cryst. C76, 500–506.  CSD CrossRef IUCr Journals Google Scholar
First citationWu, X.-W., Wu, W.-F., Yin, S. & Ma, J.-P. (2015). Acta Cryst. C71, 683–689.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYadav, P. & Shah, K. (2021). Bioorg. Chem. 109, 104639–104680.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYao, C., Qin, B., Zhang, H., Lu, J., Wang, D. & Tu, S. (2012). RSC Adv. 2, 3759–3764.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, H., Yang, J.-X., Han, J.-Q., Li, P.-F., Hou, Y.-L., Wang, W.-M. & Fang, M. (2019). New J. Chem. 43, 8067–8074.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Y.-H., Lu, H.-Y., Li, M. & Chen, C.-F. (2013). Eur. J. Org. Chem. pp. 3059–3066.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds