research communications
and Hirshfeld surface analysis of 2-(2-hydroxyphenyl)quinoline-6-sulfonamide
aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Université Frères Mentouri Constantine 1, Constantine, 25017, Algeria, bCentre Universitaire Abd El Hafid Boussouf, Mila, 43000 Mila, Algeria, and cLaboratoire de Technologie des Matériaux Avancés, École Nationale Polytechnique de Constantine, Nouvelle Ville Universitaire, Ali Mendjeli, Constantine 25000, Algeria
*Correspondence e-mail:
In the title compound, C15H12N2O3S, there are two molecules (A and B) in the The attached phenol and quinoline moieties of each molecule are almost coplanar with a dihedral angle of 6.05 (15)° for molecule A and 1.89 (13)° for molecule B. The features N—H⋯O and C—H⋯O hydrogen bonds, C—H⋯π interactions and π–π stacking interactions. Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are C⋯H/H⋯C (29.2%), O⋯H/H⋯O (28.6%) and H⋯H (28.5%).
Keywords: quinoline derivatives; single-crystal X-ray diffraction; hydrogen bonding; intermolecular interactions; Hirshfeld surface analysis.
CCDC reference: 2158517
1. Chemical context
Quinolines are well-known et al., 2018; Ferreira et al., 2020; Elgawad et al., 2019; Mulakayala et al., 2012; Lavanya et al., 2021; Yadav & Shah, 2021; Shishkina et al., 2018). In addition, quinolines and/or their metal complexes have a wide range of physical and chemical applications. They have been used in fields such as coordination chemistry (Twaróg et al., 2020), metal–organic frameworks (MOFs) (Wu et al., 2015), catalysis (Redshaw & Tang, 2012), textile printing (Hassan et al., 2022), food additives (Al-Shabib et al., 2020), anti-corrosion (Galai et al., 2021), (Twaróg et al., 2020), magnetism (Yu et al., 2019) and non-linear optics (Goel et al., 2018).
and have been used successfully in many pharmacological and medicinal fields, exhibiting biological properties including anticancer, antimalarial, antibacterial, antiasthmatic and antihypertensive activities (ChiWe report here the synthesis, structural characterization and Hirshfeld surface analysis of a new quinoline derivative, 2-(2-hydroxyphenyl)quinoline-6-sulfonamide. This compound was prepared in a two-step reaction, viz. reflux and solvothermal (see Synthesis and crystallization section).
2. Structural commentary
The , illustrated in Fig. 1, contains two crystallographically independent molecules (A and B). The C6A—C7A and C6B—C7B bond lengths of 1.472 (5) and 1.470 (5) Å, respectively, are notably shorter than the normal C—C single bond due to conjugation but are comparable to those observed in related structures (Shrungesh Kumar et al., 2015; Mague et al., 2016).
of title compound (I)The hydroxyl group in the ortho-position of each independent molecule in (I) allows the formation of an intramolecular O—H⋯N hydrogen bond, generating an S(6) ring motifs (Fig. 1, Table 1), which stabilize the molecules and also affect the overall molecular conformation. The conformational differences between molecules A and B are highlighted in an overlay diagram shown in Fig. 2a. The two rings of the quinoline system are fused almost coaxially (r.m.s. deviation = 0.004 Å), with a dihedral angle between their planes of 4.0 (2)° for molecule A and 1.49 (17)° for molecule B.
The attached quinoline and phenol moieties are almost coplanar with a dihedral angle of 6.05 (15)° for molecule A and 1.89 (13)° for molecule B (Fig. 2b), indicating a significant electron delocalization within the molecules. The sulfonamide groups are twisted away from the attached quinoline fragment with an C11A—C12A—S1A—N2A torsion angle of 91.8 (4)° for molecule A and C11B—C12B—S1B—N2B torsion angle of − 79.9 (3)° for molecule B. The sulfonamide atoms S1A and S1B deviate by 0.228 (1) and 0.054 (1) Å from the planes of the quinoline fragment in molecules A and B respectively.
3. Supramolecular features
In the crystal of (I), the presence of sulfonamide group leads indeed to the formation of strong intermolecular N—H⋯O hydrogen bonds (Table 1), generating supramolecular hydrogen-bonded layers parallel to the (010) plane (Fig. 3a). The packing diagram of the title compound viewed down the a axis (Fig. 3b) shows that the layers are stacked perpendicular to the b axis at (0,1/4,0) and (0,3/4,0). These layers are formed by aggregation of R44(14) ring motifs (Fig. 3c). In addition, the hydroxyl group of each molecule is involved in a C—H⋯O hydrogen bond, forming an inversion dimer with an R22(16) graph-set motif. The dimers are linked by a further C—H⋯O hydrogen bond involving one of the oxygen atoms of the sulfonamide group (Fig. 3d). Weak intermolecular C—H⋯π interactions are also observed in the crystal packing, forming a chain along the a-axis direction (Fig. 3e).
Cohesion of the π–π stacking interactions, the most significant being between the 2-hydroxyphenyl and benzene rings of the quinoline groups of each molecule [Cg2⋯Cg3(−x, −y, 1 − z) = 3.779 (2) Å (Fig. 4a) for A molecules and Cg6⋯Cg7(1 − x, 1 − y, 1 − z) = 3.6636 (18) Å (Fig. 4b) for B molecules where Cg2, Cg3, Cg6 and Cg7 are the centroids of the C1A–C6A, C10A–C15A, C1B–C6B and C10B–C15B rings, respectively]. These result in the formation of a supramolecular ribbon parallel to the a axis based on the stacked molecules (Fig. 4c).
is enhanced by the presence of4. Hirshfeld surface analysis
For further characterization of the intermolecular interactions in (I), we carried out a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) using CrystalExplorer (Spackman et al., 2021) and generated the associated two-dimensional fingerprint plots (McKinnon et al., 2007). The HS of (I) mapped over dnorm in the range −0.5231 to +1.1263 a.u. is illustrated in Fig. 5a using color to indicate contacts that are shorter (red areas), equal to (white areas), or longer than (blue areas) the sum of the van der Waals radii. The dominant interactions between sulfonamide N—H and O atoms can be seen as the bright-red areas marked as 1, 2, 3 and 4. The light-red spots labeled as 5, 6 and 7 are due to C—H⋯O interactions. The weak C—H⋯π contacts are indicated by the red ellipse.
The presence of characteristic triangles on the shape-index surface (Fig. 5b) clearly indicate the presence of π–π interactions between neighboring molecules while the curvedness plots (Fig. 5c) show flat surface patches characteristic of planar stacking.
The overall two-dimensional fingerprint plot and those delineated into C⋯H/H⋯C, O⋯H/H⋯O, H⋯H, C⋯C and N⋯H/H⋯N contacts are illustrated in Fig. 6 together with their relative contributions to the Hirshfeld surface. The fingerprint plots show that the C⋯H/H⋯C contacts (29.2%) make the largest contribution to the overall packing of the crystal (Table 2, Fig. 7), which are related to the presence of C—H⋯π interactions in the structure of (I) (Fig. 8c–d).
|
The second most important interactions are O⋯H/H⋯O contributing by 28.6% to the overall crystal packing (Table 2, Fig. 6), and are related to the presence of N—H⋯O and C—H⋯O interactions in the structure of (I) (Fig. 8a,b). In addition, van der Waals interactions (H⋯H) are one of the major (28.5%) interactions in this structure. The presence of weak π–π stacking interactions are reflected in the 5.2 and 1.2% contributions from C⋯C and C⋯N/N⋯C contacts to the Hirshfeld surface. Other contacts make a contribution of 3.5% in total and are not discussed in this work.
5. Database survey
A search for 2-hydroxyphenylquinoline in the Cambridge Structural Database (CSD; Version 2021.3.0, last update November 2021; Groom et al., 2016) gave 29 hits, which exhibit structural diversity with interesting properties, such as chemical (Alexandre et al., 2020; Han et al., 2017; Yao et al., 2012; Guo et al., 2006), physical (Zheng et al., 2013; Elbert et al., 2017) and biological (Mulakayala et al., 2012).
6. Synthesis and crystallization
The title compound was prepared by a two-step reaction. First, an ethanol solution (5 mL) of 4-aminobenzenesulfonamide (0.33 g, 1.9 mmol) was added dropwise under stirring to an ethanol solution (5 mL) of 2-hydroxybenzaldehyde (0.2 mL, 0.234 g, 1.9 mmol) and refluxed for 2 h. After that, an acetone solution (5 mL) of palladium(II) acetate (0.05 g, 0.2 mmol) was added dropwise under stirring for 1 h. The yellow mixture was then transferred to a 25 mL Teflon-lined stainless-steel autoclave and sealed to heat at 393 K. After reaction for 48 h, the autoclave was cooled down to room temperature. Yellow block-like crystals suitable for X-ray
were obtained, isolated by filtration, washed with water and dried in air. Yield: 0.25 g, 43.44%.7. Refinement
Crystal data, details of data collection, and results of structure . The hydrogen atoms of the sulfonamide NH2 and hydroxyl groups were localized in a difference-Fourier map and refined with O—H = 0.84 ± 0.01 Å, and with Uiso(H) set to 1.5Ueq(O) or 1.2Ueq(N). All other hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].
are summarized in Table 3
|
Supporting information
CCDC reference: 2158517
https://doi.org/10.1107/S2056989022002870/zn2017sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022002870/zn2017Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022002870/zn2017Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2020).C15H12N2O3S | F(000) = 1248 |
Mr = 300.33 | Dx = 1.568 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7667 (2) Å | Cell parameters from 81539 reflections |
b = 28.4129 (7) Å | θ = 3.4–25.0° |
c = 15.5339 (5) Å | µ = 0.27 mm−1 |
β = 91.728 (3)° | T = 100 K |
V = 2544.05 (14) Å3 | Block, yellow |
Z = 8 | 0.18 × 0.11 × 0.05 mm |
Nonius KappaCCD diffractometer | Rint = 0.103 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 3.4° |
ω scans | h = −6→6 |
81539 measured reflections | k = −33→33 |
4473 independent reflections | l = −18→18 |
3058 reflections with I > 2σ(I) |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.060 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.184 | w = 1/[σ2(Fo2) + (0.1002P)2 + 1.3957P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
4473 reflections | Δρmax = 0.36 e Å−3 |
397 parameters | Δρmin = −0.58 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1B | 0.43707 (17) | 0.26762 (3) | 0.54873 (6) | 0.0427 (3) | |
S1A | 0.0621 (2) | 0.22144 (3) | 0.29850 (7) | 0.0542 (4) | |
O1B | 0.8560 (4) | 0.54324 (8) | 0.56908 (17) | 0.0415 (6) | |
H1B | 0.793 (7) | 0.5165 (9) | 0.559 (3) | 0.062* | |
O2B | 0.5936 (4) | 0.25170 (9) | 0.48546 (17) | 0.0472 (7) | |
O1A | 0.3524 (4) | −0.04503 (9) | 0.4612 (2) | 0.0510 (7) | |
O3B | 0.1941 (5) | 0.26115 (10) | 0.5344 (2) | 0.0608 (9) | |
N1B | 0.5920 (5) | 0.47193 (9) | 0.59665 (18) | 0.0334 (7) | |
O2A | 0.3019 (6) | 0.23513 (9) | 0.29823 (19) | 0.0604 (9) | |
O3A | −0.0705 (6) | 0.22426 (10) | 0.22008 (19) | 0.0656 (9) | |
N1A | 0.0991 (5) | 0.02087 (10) | 0.39571 (19) | 0.0382 (7) | |
N2B | 0.5049 (8) | 0.24069 (11) | 0.6371 (2) | 0.0552 (10) | |
H2BA | 0.380 (8) | 0.2476 (17) | 0.664 (3) | 0.066* | |
H2BB | 0.653 (9) | 0.2448 (17) | 0.646 (3) | 0.066* | |
C15B | 0.5513 (6) | 0.42388 (11) | 0.5876 (2) | 0.0320 (8) | |
C7B | 0.4401 (5) | 0.49941 (11) | 0.6335 (2) | 0.0328 (8) | |
C10B | 0.3518 (6) | 0.40222 (11) | 0.6190 (2) | 0.0316 (8) | |
C11B | 0.3197 (6) | 0.35382 (11) | 0.6058 (2) | 0.0316 (8) | |
H11B | 0.184184 | 0.338807 | 0.625647 | 0.038* | |
C12B | 0.4831 (6) | 0.32827 (12) | 0.5646 (2) | 0.0323 (8) | |
C7A | −0.0617 (6) | −0.00943 (12) | 0.3720 (2) | 0.0344 (8) | |
C6B | 0.4950 (6) | 0.54968 (11) | 0.6434 (2) | 0.0318 (8) | |
C1B | 0.7007 (6) | 0.56924 (12) | 0.6119 (2) | 0.0329 (8) | |
C6A | −0.0177 (6) | −0.05960 (11) | 0.3894 (2) | 0.0332 (8) | |
C5B | 0.3413 (6) | 0.57959 (12) | 0.6855 (2) | 0.0349 (8) | |
H5B | 0.201567 | 0.567044 | 0.706798 | 0.042* | |
C13B | 0.6843 (6) | 0.34967 (12) | 0.5342 (2) | 0.0355 (8) | |
H13B | 0.797853 | 0.331376 | 0.506364 | 0.043* | |
C14B | 0.7158 (6) | 0.39730 (12) | 0.5450 (2) | 0.0339 (8) | |
H14B | 0.849790 | 0.412131 | 0.523458 | 0.041* | |
N2A | −0.0595 (10) | 0.25402 (12) | 0.3687 (3) | 0.0700 (14) | |
H2AA | 0.030 (9) | 0.258 (2) | 0.416 (3) | 0.084* | |
H2AB | −0.215 (9) | 0.2471 (19) | 0.371 (3) | 0.084* | |
C1A | 0.1874 (6) | −0.07528 (12) | 0.4322 (2) | 0.0369 (8) | |
C2B | 0.7453 (6) | 0.61686 (12) | 0.6239 (2) | 0.0381 (8) | |
H2B | 0.884080 | 0.629988 | 0.602850 | 0.046* | |
C3B | 0.5928 (6) | 0.64522 (12) | 0.6654 (2) | 0.0397 (9) | |
H3B | 0.626395 | 0.677708 | 0.673074 | 0.048* | |
C15A | 0.0715 (6) | 0.06803 (12) | 0.3764 (2) | 0.0402 (9) | |
C4B | 0.3887 (6) | 0.62652 (12) | 0.6964 (2) | 0.0394 (9) | |
H4B | 0.282487 | 0.646201 | 0.725088 | 0.047* | |
C3A | 0.0600 (6) | −0.15561 (12) | 0.4198 (2) | 0.0413 (9) | |
H3A | 0.085728 | −0.188177 | 0.430152 | 0.050* | |
C5A | −0.1792 (7) | −0.09350 (13) | 0.3627 (2) | 0.0420 (9) | |
H5A | −0.317622 | −0.083773 | 0.333166 | 0.050* | |
C12A | 0.0561 (7) | 0.16215 (12) | 0.3321 (2) | 0.0418 (9) | |
C14A | 0.2468 (6) | 0.09824 (12) | 0.4045 (3) | 0.0432 (9) | |
H14A | 0.372049 | 0.086394 | 0.439259 | 0.052* | |
C2A | 0.2235 (6) | −0.12309 (12) | 0.4460 (3) | 0.0418 (9) | |
H2A | 0.363317 | −0.133402 | 0.473891 | 0.050* | |
C13A | 0.2416 (7) | 0.14491 (13) | 0.3828 (3) | 0.0441 (9) | |
H13A | 0.362635 | 0.165385 | 0.402071 | 0.053* | |
C4A | −0.1436 (7) | −0.14054 (13) | 0.3781 (3) | 0.0467 (10) | |
H4A | −0.257925 | −0.162833 | 0.360184 | 0.056* | |
C11A | −0.1244 (7) | 0.13377 (13) | 0.3064 (3) | 0.0496 (10) | |
H11A | −0.251397 | 0.146160 | 0.273282 | 0.060* | |
C10A | −0.1193 (7) | 0.08580 (13) | 0.3298 (3) | 0.0472 (10) | |
C8B | 0.2383 (9) | 0.47967 (18) | 0.6658 (3) | 0.0719 (14) | |
H8B | 0.128880 | 0.499032 | 0.693443 | 0.086* | |
C9B | 0.1984 (9) | 0.4318 (2) | 0.6572 (3) | 0.0758 (14) | |
H9B | 0.059364 | 0.419024 | 0.678730 | 0.091* | |
C8A | −0.2589 (9) | 0.00637 (19) | 0.3285 (3) | 0.0768 (15) | |
H8A | −0.376457 | −0.015445 | 0.311468 | 0.092* | |
C9A | −0.2877 (10) | 0.05392 (19) | 0.3092 (4) | 0.0781 (15) | |
H9A | −0.427266 | 0.064244 | 0.281171 | 0.094* | |
H1A | 0.299 (10) | −0.0174 (11) | 0.448 (4) | 0.117* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1B | 0.0467 (6) | 0.0297 (5) | 0.0529 (6) | −0.0118 (4) | 0.0204 (4) | −0.0139 (4) |
S1A | 0.0887 (9) | 0.0228 (5) | 0.0533 (7) | 0.0071 (5) | 0.0400 (6) | 0.0043 (4) |
O1B | 0.0353 (13) | 0.0271 (13) | 0.0627 (17) | −0.0064 (11) | 0.0140 (12) | −0.0010 (12) |
O2B | 0.0527 (16) | 0.0352 (15) | 0.0547 (17) | −0.0069 (12) | 0.0198 (13) | −0.0160 (12) |
O1A | 0.0411 (15) | 0.0271 (14) | 0.084 (2) | −0.0025 (12) | −0.0145 (14) | 0.0052 (13) |
O3B | 0.0464 (17) | 0.0471 (17) | 0.090 (2) | −0.0215 (13) | 0.0276 (15) | −0.0315 (15) |
N1B | 0.0345 (15) | 0.0240 (15) | 0.0421 (17) | −0.0030 (12) | 0.0061 (13) | 0.0014 (12) |
O2A | 0.092 (2) | 0.0278 (14) | 0.0642 (19) | −0.0076 (14) | 0.0472 (17) | −0.0009 (12) |
O3A | 0.103 (2) | 0.0396 (17) | 0.0556 (19) | 0.0231 (16) | 0.0297 (17) | 0.0169 (13) |
N1A | 0.0396 (17) | 0.0273 (16) | 0.0475 (18) | −0.0027 (13) | −0.0012 (13) | 0.0015 (13) |
N2B | 0.079 (3) | 0.0261 (17) | 0.062 (2) | −0.0065 (18) | 0.033 (2) | −0.0044 (15) |
C15B | 0.0348 (18) | 0.0239 (17) | 0.0372 (19) | −0.0069 (14) | 0.0014 (15) | −0.0002 (14) |
C7B | 0.0320 (18) | 0.0282 (18) | 0.039 (2) | −0.0035 (14) | 0.0089 (15) | 0.0015 (15) |
C10B | 0.0305 (18) | 0.0278 (18) | 0.0371 (19) | −0.0003 (14) | 0.0072 (15) | −0.0017 (14) |
C11B | 0.0317 (18) | 0.0296 (18) | 0.0339 (18) | −0.0100 (14) | 0.0048 (14) | 0.0000 (14) |
C12B | 0.0367 (19) | 0.0264 (18) | 0.0340 (18) | −0.0050 (14) | 0.0077 (15) | −0.0045 (14) |
C7A | 0.0365 (19) | 0.0290 (19) | 0.037 (2) | −0.0016 (15) | −0.0010 (15) | 0.0036 (15) |
C6B | 0.0355 (18) | 0.0259 (18) | 0.0341 (19) | −0.0009 (14) | 0.0039 (15) | 0.0020 (14) |
C1B | 0.0325 (18) | 0.0273 (18) | 0.0390 (19) | 0.0003 (14) | 0.0030 (15) | 0.0047 (14) |
C6A | 0.0390 (19) | 0.0273 (18) | 0.0334 (18) | −0.0021 (15) | 0.0044 (15) | 0.0003 (14) |
C5B | 0.0370 (19) | 0.0286 (19) | 0.039 (2) | −0.0018 (15) | 0.0048 (15) | 0.0024 (15) |
C13B | 0.0370 (19) | 0.0307 (19) | 0.039 (2) | −0.0028 (15) | 0.0103 (16) | −0.0058 (15) |
C14B | 0.0319 (18) | 0.0320 (19) | 0.0383 (19) | −0.0083 (15) | 0.0074 (15) | −0.0026 (15) |
N2A | 0.118 (4) | 0.0254 (18) | 0.070 (3) | 0.011 (2) | 0.057 (3) | 0.0023 (18) |
C1A | 0.0335 (19) | 0.0277 (19) | 0.050 (2) | −0.0021 (15) | 0.0046 (16) | 0.0023 (16) |
C2B | 0.038 (2) | 0.0295 (19) | 0.047 (2) | −0.0072 (15) | 0.0000 (16) | 0.0081 (16) |
C3B | 0.050 (2) | 0.0253 (18) | 0.043 (2) | −0.0021 (16) | −0.0039 (17) | 0.0016 (15) |
C15A | 0.050 (2) | 0.0251 (18) | 0.046 (2) | 0.0015 (16) | 0.0096 (18) | 0.0027 (16) |
C4B | 0.050 (2) | 0.0282 (19) | 0.040 (2) | 0.0059 (16) | 0.0029 (17) | −0.0004 (15) |
C3A | 0.053 (2) | 0.0242 (19) | 0.047 (2) | −0.0025 (16) | 0.0100 (18) | 0.0008 (16) |
C5A | 0.047 (2) | 0.033 (2) | 0.045 (2) | −0.0085 (16) | −0.0067 (17) | 0.0027 (16) |
C12A | 0.058 (2) | 0.0223 (18) | 0.046 (2) | 0.0005 (17) | 0.0193 (19) | −0.0013 (16) |
C14A | 0.043 (2) | 0.0271 (19) | 0.059 (2) | −0.0030 (16) | 0.0023 (18) | 0.0013 (17) |
C2A | 0.043 (2) | 0.029 (2) | 0.054 (2) | 0.0017 (16) | 0.0056 (18) | 0.0036 (17) |
C13A | 0.048 (2) | 0.0265 (19) | 0.058 (2) | −0.0043 (16) | 0.0100 (19) | −0.0034 (17) |
C4A | 0.054 (2) | 0.029 (2) | 0.057 (2) | −0.0132 (17) | −0.0004 (19) | −0.0020 (17) |
C11A | 0.062 (3) | 0.030 (2) | 0.057 (2) | 0.0102 (19) | 0.001 (2) | 0.0028 (18) |
C10A | 0.050 (2) | 0.031 (2) | 0.061 (3) | −0.0032 (18) | −0.0034 (19) | −0.0040 (18) |
C8B | 0.075 (3) | 0.062 (3) | 0.079 (4) | 0.002 (3) | 0.017 (3) | −0.004 (3) |
C9B | 0.074 (3) | 0.075 (4) | 0.079 (4) | −0.014 (3) | 0.015 (3) | 0.003 (3) |
C8A | 0.080 (4) | 0.067 (3) | 0.083 (4) | −0.011 (3) | 0.000 (3) | −0.003 (3) |
C9A | 0.082 (3) | 0.074 (4) | 0.078 (4) | 0.008 (3) | −0.009 (3) | 0.003 (3) |
S1B—O2B | 1.428 (2) | C5B—C4B | 1.371 (5) |
S1B—O3B | 1.424 (3) | C13B—H13B | 0.9500 |
S1B—N2B | 1.610 (4) | C13B—C14B | 1.375 (5) |
S1B—C12B | 1.760 (3) | C14B—H14B | 0.9500 |
S1A—O2A | 1.437 (3) | N2A—H2AA | 0.89 (5) |
S1A—O3A | 1.421 (4) | N2A—H2AB | 0.92 (5) |
S1A—N2A | 1.607 (4) | C1A—C2A | 1.390 (5) |
S1A—C12A | 1.764 (4) | C2B—H2B | 0.9500 |
O1B—H1B | 0.854 (19) | C2B—C3B | 1.369 (5) |
O1B—C1B | 1.351 (4) | C3B—H3B | 0.9500 |
O1A—C1A | 1.350 (4) | C3B—C4B | 1.390 (5) |
O1A—H1A | 0.87 (2) | C15A—C14A | 1.387 (5) |
N1B—C15B | 1.392 (4) | C15A—C10A | 1.393 (5) |
N1B—C7B | 1.317 (4) | C4B—H4B | 0.9500 |
N1A—C7A | 1.310 (4) | C3A—H3A | 0.9500 |
N1A—C15A | 1.381 (4) | C3A—C2A | 1.373 (5) |
N2B—H2BA | 0.87 (5) | C3A—C4A | 1.392 (5) |
N2B—H2BB | 0.87 (5) | C5A—H5A | 0.9500 |
C15B—C10B | 1.405 (4) | C5A—C4A | 1.372 (5) |
C15B—C14B | 1.394 (5) | C12A—C13A | 1.398 (5) |
C7B—C6B | 1.470 (5) | C12A—C11A | 1.367 (5) |
C7B—C8B | 1.398 (6) | C14A—H14A | 0.9500 |
C10B—C11B | 1.401 (5) | C14A—C13A | 1.368 (5) |
C10B—C9B | 1.369 (6) | C2A—H2A | 0.9500 |
C11B—H11B | 0.9500 | C13A—H13A | 0.9500 |
C11B—C12B | 1.365 (4) | C4A—H4A | 0.9500 |
C12B—C13B | 1.404 (4) | C11A—H11A | 0.9500 |
C7A—C6A | 1.472 (5) | C11A—C10A | 1.411 (5) |
C7A—C8A | 1.380 (6) | C10A—C9A | 1.359 (6) |
C6B—C1B | 1.411 (5) | C8B—H8B | 0.9500 |
C6B—C5B | 1.403 (5) | C8B—C9B | 1.385 (7) |
C1B—C2B | 1.389 (5) | C9B—H9B | 0.9500 |
C6A—C1A | 1.411 (5) | C8A—H8A | 0.9500 |
C6A—C5A | 1.394 (5) | C8A—C9A | 1.392 (7) |
C5B—H5B | 0.9500 | C9A—H9A | 0.9500 |
O2B—S1B—N2B | 107.10 (19) | S1A—N2A—H2AB | 110 (3) |
O2B—S1B—C12B | 108.09 (15) | H2AA—N2A—H2AB | 122 (5) |
O3B—S1B—O2B | 119.39 (17) | O1A—C1A—C6A | 121.9 (3) |
O3B—S1B—N2B | 106.6 (2) | O1A—C1A—C2A | 118.0 (3) |
O3B—S1B—C12B | 106.96 (16) | C2A—C1A—C6A | 120.0 (3) |
N2B—S1B—C12B | 108.33 (17) | C1B—C2B—H2B | 119.4 |
O2A—S1A—N2A | 106.6 (2) | C3B—C2B—C1B | 121.2 (3) |
O2A—S1A—C12A | 106.65 (18) | C3B—C2B—H2B | 119.4 |
O3A—S1A—O2A | 118.37 (18) | C2B—C3B—H3B | 120.0 |
O3A—S1A—N2A | 108.3 (2) | C2B—C3B—C4B | 120.1 (3) |
O3A—S1A—C12A | 107.01 (19) | C4B—C3B—H3B | 120.0 |
N2A—S1A—C12A | 109.67 (18) | N1A—C15A—C14A | 117.0 (3) |
C1B—O1B—H1B | 107 (3) | N1A—C15A—C10A | 123.3 (3) |
C1A—O1A—H1A | 105 (4) | C14A—C15A—C10A | 119.7 (3) |
C7B—N1B—C15B | 120.9 (3) | C5B—C4B—C3B | 119.7 (3) |
C7A—N1A—C15A | 120.0 (3) | C5B—C4B—H4B | 120.1 |
S1B—N2B—H2BA | 97 (3) | C3B—C4B—H4B | 120.1 |
S1B—N2B—H2BB | 106 (3) | C2A—C3A—H3A | 120.2 |
H2BA—N2B—H2BB | 136 (4) | C2A—C3A—C4A | 119.5 (3) |
N1B—C15B—C10B | 122.1 (3) | C4A—C3A—H3A | 120.2 |
N1B—C15B—C14B | 117.7 (3) | C6A—C5A—H5A | 119.1 |
C14B—C15B—C10B | 120.2 (3) | C4A—C5A—C6A | 121.7 (4) |
N1B—C7B—C6B | 118.5 (3) | C4A—C5A—H5A | 119.1 |
N1B—C7B—C8B | 119.3 (3) | C13A—C12A—S1A | 118.7 (3) |
C8B—C7B—C6B | 122.1 (3) | C11A—C12A—S1A | 119.9 (3) |
C11B—C10B—C15B | 119.0 (3) | C11A—C12A—C13A | 121.4 (3) |
C9B—C10B—C15B | 115.4 (3) | C15A—C14A—H14A | 119.6 |
C9B—C10B—C11B | 125.5 (3) | C13A—C14A—C15A | 120.8 (4) |
C10B—C11B—H11B | 120.0 | C13A—C14A—H14A | 119.6 |
C12B—C11B—C10B | 120.0 (3) | C1A—C2A—H2A | 119.5 |
C12B—C11B—H11B | 120.0 | C3A—C2A—C1A | 120.9 (3) |
C11B—C12B—S1B | 118.9 (2) | C3A—C2A—H2A | 119.5 |
C11B—C12B—C13B | 121.1 (3) | C12A—C13A—H13A | 120.4 |
C13B—C12B—S1B | 120.0 (2) | C14A—C13A—C12A | 119.3 (3) |
N1A—C7A—C6A | 117.9 (3) | C14A—C13A—H13A | 120.4 |
N1A—C7A—C8A | 119.3 (4) | C3A—C4A—H4A | 120.0 |
C8A—C7A—C6A | 122.7 (4) | C5A—C4A—C3A | 120.0 (3) |
C1B—C6B—C7B | 121.8 (3) | C5A—C4A—H4A | 120.0 |
C5B—C6B—C7B | 120.0 (3) | C12A—C11A—H11A | 120.5 |
C5B—C6B—C1B | 118.2 (3) | C12A—C11A—C10A | 119.0 (4) |
O1B—C1B—C6B | 122.1 (3) | C10A—C11A—H11A | 120.5 |
O1B—C1B—C2B | 118.4 (3) | C15A—C10A—C11A | 119.6 (4) |
C2B—C1B—C6B | 119.4 (3) | C9A—C10A—C15A | 115.4 (4) |
C1A—C6A—C7A | 122.0 (3) | C9A—C10A—C11A | 125.0 (4) |
C5A—C6A—C7A | 120.3 (3) | C7B—C8B—H8B | 120.1 |
C5A—C6A—C1A | 117.7 (3) | C9B—C8B—C7B | 119.8 (4) |
C6B—C5B—H5B | 119.3 | C9B—C8B—H8B | 120.1 |
C4B—C5B—C6B | 121.4 (3) | C10B—C9B—C8B | 122.5 (4) |
C4B—C5B—H5B | 119.3 | C10B—C9B—H9B | 118.8 |
C12B—C13B—H13B | 120.3 | C8B—C9B—H9B | 118.8 |
C14B—C13B—C12B | 119.5 (3) | C7A—C8A—H8A | 119.6 |
C14B—C13B—H13B | 120.3 | C7A—C8A—C9A | 120.8 (5) |
C15B—C14B—H14B | 119.9 | C9A—C8A—H8A | 119.6 |
C13B—C14B—C15B | 120.1 (3) | C10A—C9A—C8A | 121.1 (5) |
C13B—C14B—H14B | 119.9 | C10A—C9A—H9A | 119.5 |
S1A—N2A—H2AA | 112 (4) | C8A—C9A—H9A | 119.5 |
S1B—C12B—C13B—C14B | 178.4 (3) | C7A—N1A—C15A—C14A | 179.1 (3) |
S1A—C12A—C13A—C14A | −175.7 (3) | C7A—N1A—C15A—C10A | −1.9 (5) |
S1A—C12A—C11A—C10A | 176.4 (3) | C7A—C6A—C1A—O1A | 1.4 (5) |
O1B—C1B—C2B—C3B | 178.9 (3) | C7A—C6A—C1A—C2A | −178.9 (3) |
O2B—S1B—C12B—C11B | 164.4 (3) | C7A—C6A—C5A—C4A | −179.9 (3) |
O2B—S1B—C12B—C13B | −15.0 (3) | C7A—C8A—C9A—C10A | 2.4 (8) |
O1A—C1A—C2A—C3A | 178.5 (3) | C6B—C7B—C8B—C9B | −177.9 (4) |
O3B—S1B—C12B—C11B | 34.7 (3) | C6B—C1B—C2B—C3B | −0.2 (5) |
O3B—S1B—C12B—C13B | −144.7 (3) | C6B—C5B—C4B—C3B | 0.0 (5) |
N1B—C15B—C10B—C11B | 178.6 (3) | C1B—C6B—C5B—C4B | −0.3 (5) |
N1B—C15B—C10B—C9B | 1.4 (5) | C1B—C2B—C3B—C4B | −0.1 (5) |
N1B—C15B—C14B—C13B | −180.0 (3) | C6A—C7A—C8A—C9A | −176.4 (4) |
N1B—C7B—C6B—C1B | 2.3 (5) | C6A—C1A—C2A—C3A | −1.2 (5) |
N1B—C7B—C6B—C5B | −177.4 (3) | C6A—C5A—C4A—C3A | −1.2 (6) |
N1B—C7B—C8B—C9B | −1.2 (7) | C5B—C6B—C1B—O1B | −178.6 (3) |
O2A—S1A—C12A—C13A | 25.1 (3) | C5B—C6B—C1B—C2B | 0.4 (5) |
O2A—S1A—C12A—C11A | −153.1 (3) | C14B—C15B—C10B—C11B | −0.8 (5) |
O3A—S1A—C12A—C13A | 152.7 (3) | C14B—C15B—C10B—C9B | −178.0 (4) |
O3A—S1A—C12A—C11A | −25.5 (4) | N2A—S1A—C12A—C13A | −90.0 (4) |
N1A—C7A—C6A—C1A | 1.7 (5) | N2A—S1A—C12A—C11A | 91.8 (4) |
N1A—C7A—C6A—C5A | −177.7 (3) | C1A—C6A—C5A—C4A | 0.8 (5) |
N1A—C7A—C8A—C9A | 0.4 (7) | C2B—C3B—C4B—C5B | 0.2 (5) |
N1A—C15A—C14A—C13A | 175.2 (3) | C15A—N1A—C7A—C6A | 176.3 (3) |
N1A—C15A—C10A—C11A | −174.5 (3) | C15A—N1A—C7A—C8A | −0.6 (6) |
N1A—C15A—C10A—C9A | 4.5 (6) | C15A—C14A—C13A—C12A | 0.3 (6) |
N2B—S1B—C12B—C11B | −79.9 (3) | C15A—C10A—C9A—C8A | −4.6 (7) |
N2B—S1B—C12B—C13B | 100.7 (3) | C5A—C6A—C1A—O1A | −179.3 (3) |
C15B—N1B—C7B—C6B | 178.4 (3) | C5A—C6A—C1A—C2A | 0.4 (5) |
C15B—N1B—C7B—C8B | 1.6 (5) | C12A—C11A—C10A—C15A | −1.7 (6) |
C15B—C10B—C11B—C12B | 1.3 (5) | C12A—C11A—C10A—C9A | 179.4 (4) |
C15B—C10B—C9B—C8B | −1.0 (7) | C14A—C15A—C10A—C11A | 4.5 (6) |
C7B—N1B—C15B—C10B | −1.8 (5) | C14A—C15A—C10A—C9A | −176.5 (4) |
C7B—N1B—C15B—C14B | 177.6 (3) | C2A—C3A—C4A—C5A | 0.5 (6) |
C7B—C6B—C1B—O1B | 1.7 (5) | C13A—C12A—C11A—C10A | −1.8 (6) |
C7B—C6B—C1B—C2B | −179.3 (3) | C4A—C3A—C2A—C1A | 0.7 (6) |
C7B—C6B—C5B—C4B | 179.4 (3) | C11A—C12A—C13A—C14A | 2.5 (6) |
C7B—C8B—C9B—C10B | 0.9 (8) | C11A—C10A—C9A—C8A | 174.3 (5) |
C10B—C15B—C14B—C13B | −0.5 (5) | C10A—C15A—C14A—C13A | −3.8 (6) |
C10B—C11B—C12B—S1B | −179.8 (3) | C8B—C7B—C6B—C1B | 179.0 (4) |
C10B—C11B—C12B—C13B | −0.4 (5) | C8B—C7B—C6B—C5B | −0.7 (5) |
C11B—C10B—C9B—C8B | −178.0 (4) | C9B—C10B—C11B—C12B | 178.1 (4) |
C11B—C12B—C13B—C14B | −1.0 (5) | C8A—C7A—C6A—C1A | 178.5 (4) |
C12B—C13B—C14B—C15B | 1.4 (5) | C8A—C7A—C6A—C5A | −0.8 (6) |
Cg3, Cg4, Cg5 and Cg6 are the centroids of the C10A–C15A, N1A/C7A–C15A, N1B/C7B–C10B/C15B and C1B–C6B rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1B—H1B···N1B | 0.85 (2) | 1.82 (3) | 2.578 (3) | 146 (4) |
O1A—H1A···N1A | 0.87 (2) | 1.76 (3) | 2.566 (4) | 153 (6) |
N2B—H2BA···O2Ai | 0.87 (5) | 2.20 (5) | 2.878 (4) | 135 (4) |
N2B—H2BB···O3Aii | 0.87 (5) | 2.13 (5) | 2.908 (6) | 149 (4) |
N2A—H2AA···O3B | 0.89 (5) | 2.05 (5) | 2.929 (6) | 171 (5) |
N2A—H2AB···O2Biii | 0.92 (5) | 2.13 (5) | 2.742 (5) | 124 (4) |
C13B—H13B···O2B | 0.95 | 2.57 | 2.928 (4) | 103 |
C8B—H8B···O1Biii | 0.95 | 2.76 | 3.191 (6) | 109 |
C3B—H3B···O2Aiv | 0.95 | 2.55 | 3.496 (4) | 176 |
C14B—H14B···O1Bv | 0.95 | 2.59 | 3.515 (4) | 165 |
C14A—H14A···O1Avi | 0.95 | 2.48 | 3.419 (5) | 170 |
C9A—H9A···Cg5vii | 0.95 | 2.62 | 3.331 (3) | 132 |
C9B—H9B···Cg4i | 0.95 | 2.77 | 3.331 (5) | 119 |
C9B—H9B···Cg3i | 0.95 | 2.91 | 3.470 (5) | 119 |
C5A—H5A···Cg6vii | 0.95 | 2.89 | 3.566 (4) | 129 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x+1, −y+1/2, z+1/2; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1; (v) −x+2, −y+1, −z+1; (vi) −x+1, −y, −z+1; (vii) x−1, −y+1/2, z−1/2. |
Contact | Percentage contribution |
C···H/H···C | 29.2 |
O···H/H···O | 28.6 |
H···H | 28.5 |
C···C | 5.2 |
N···H/H···N | 5 |
C···O/O···C | 1.4 |
C···N/N···C | 1.2 |
O···O | 0.6 |
N···O/O···N | 0.2 |
N···N | 0.1 |
Acknowledgements
The authors acknowledge CRM2, Institut Jean Barriol (UMR 7036 CNRS, University de Lorraine, France), for providing access to the experimental crystallographic facilities.
References
Alexandre, P.-E., Zhang, W.-S., Rominger, F., Elbert, S. M., Schröder, R. R. & Mastalerz, M. (2020). Angew. Chem. Int. Ed. 59, 19675–19679. Web of Science CSD CrossRef CAS Google Scholar
Al-Shabib, N. A., Khan, J. M., Malik, A., Rehman, M. T., AlAjmi, M. F., Husain, F. M., Ahmed, M. Z. & Alamery, S. F. (2020). J. Mol. Liq. 311, 113215–113221. CAS Google Scholar
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Chi, N. T. T., Thong, P. V., Mai, T. T. C. & Van Meervelt, L. (2018). Acta Cryst. C74, 1732–1743. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elbert, S. M., Wagner, P., Kanagasundaram, T., Rominger, F. & Mastalerz, M. (2017). Chem. Eur. J. 23, 935–945. Web of Science CSD CrossRef CAS PubMed Google Scholar
Elgawad, H. A., Alhusseiny, S. M., Taman, A., Youssef, M. Y., Mansour, B., Massoud, M. & Handousa, A. (2019). Exp. Parasitol. 206, 107756–107765. Web of Science CrossRef CAS PubMed Google Scholar
Ferreira, J. P. S., Cardoso, S. M., Almeida Paz, F. A., Silva, A. M. S. & Silva, V. L. M. (2020). New J. Chem. 44, 6501–6509. Web of Science CSD CrossRef CAS Google Scholar
Galai, M., Rbaa, M., Ouakki, M., Dahmani, K., Kaya, S., Arrousse, N., Dkhireche, N., Briche, S., Lakhrissi, B. & Ebn Touhami, M. (2021). Chem. Phys. Lett. 776, 138700–138720. Web of Science CrossRef CAS Google Scholar
Goel, S., Yadav, H., Sinha, N., Singh, B., Bdikin, I. & Kumar, B. (2018). Acta Cryst. B74, 12–23. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guo, Q.-S., Lu, Y.-N., Liu, B., Xiao, J. & Li, J.-S. (2006). J. Organomet. Chem. 691, 1282–1287. Web of Science CSD CrossRef CAS Google Scholar
Han, Y.-P., Li, X.-S., Sun, Z., Zhu, X.-Y., Li, M., Song, X.-R. & Liang, Y.-M. (2017). Adv. Synth. Catal. 359, 2735–2740. Web of Science CSD CrossRef CAS Google Scholar
Hassan, K. M., Shaban, E., Elhaddad, G. M., Shokair, S. H., Pannipara, M. & ElSayed, I. E. (2022). J. King Saud Univ. Sci. 34, 101670–101678. Web of Science CrossRef Google Scholar
Lavanya, G., Magesh, C. J., Venkatapathy, K., Perumal, P. T. & Prema, S. (2021). Bioorg. Chem. 107, 104582–104596. Web of Science CrossRef CAS PubMed Google Scholar
Mague, J. T., Mohamed, S. K., Akkurt, M., Albayati, M. R. & Ahmed, E. A. (2016). IUCrData, 1, x161544–x161546. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Mulakayala, N., Rambabu, D., Raja, M. R. M. C., Kumar, C. S., Kalle, A. M., Rama Krishna, G., Malla Reddy, C., Basaveswara Rao, M. V. & Pal, M. (2012). Bioorg. Med. Chem. 20, 759–768. Web of Science CSD CrossRef CAS PubMed Google Scholar
Redshaw, C. & Tang, Y. (2012). Chem. Soc. Rev. 41, 4484–4510. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shishkina, S. V., Levandovskiy, I. A., Ukrainets, I. V., Sidorenko, L. V., Grinevich, L. A. & Yanchuk, I. B. (2018). Acta Cryst. C74, 1759–1767. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shrungesh Kumar, T. O., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2015). Acta Cryst. E71, o514–o515. CSD CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Twaróg, K., Hołyńska, M. & Kochel, A. (2020). Acta Cryst. C76, 500–506. CSD CrossRef IUCr Journals Google Scholar
Wu, X.-W., Wu, W.-F., Yin, S. & Ma, J.-P. (2015). Acta Cryst. C71, 683–689. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yadav, P. & Shah, K. (2021). Bioorg. Chem. 109, 104639–104680. Web of Science CrossRef CAS PubMed Google Scholar
Yao, C., Qin, B., Zhang, H., Lu, J., Wang, D. & Tu, S. (2012). RSC Adv. 2, 3759–3764. Web of Science CSD CrossRef CAS Google Scholar
Yu, H., Yang, J.-X., Han, J.-Q., Li, P.-F., Hou, Y.-L., Wang, W.-M. & Fang, M. (2019). New J. Chem. 43, 8067–8074. Web of Science CSD CrossRef CAS Google Scholar
Zheng, Y.-H., Lu, H.-Y., Li, M. & Chen, C.-F. (2013). Eur. J. Org. Chem. pp. 3059–3066. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.