research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Halogen-bonded zigzag mol­ecular network based upon 1,2-di­iodo­perchloro­benzene and the photoproduct rctt-1,3-bis­­(pyridin-4-yl)-2,4-di­phenyl­cyclo­butane

crossmark logo

aDepartment of Biological Sciences, Webster University, St. Louis, MO 63119, USA, and bDepartment of Chemistry, Missouri State University, Springfield, MO 65897, USA
*Correspondence e-mail: ryangroeneman19@webster.edu

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 1 March 2022; accepted 19 April 2022; online 22 April 2022)

The formation and crystal structure of a zigzag mol­ecular network held together by I⋯N halogen bonds is reported. In particular, the halogen-bond donor is 1,2-di­iodo­perchloro­benzene (1,2-C6I2Cl4) while the acceptor is a head-to-tail photoproduct, namely rctt-1,3-bis­(pyridin-4-yl)-2,4-di­phenyl­cyclo­butane (ht-PP). In this co-crystal (1,2-C6I2Cl4)·(ht-PP), the donor acts as a bent two-connected node while the acceptor behaves as a linear linker to form the extended solid. Neighbouring chains pack in a tongue-and-groove-like pattern that engage in various Cl⋯π inter­actions to both the phenyl and pyridyl rings resulting in a supra­molecular two-dimensional sheet.

1. Chemical context

A continued area of research within crystal engineering is the design and formation of supra­molecular networks that have specific and targeted structures (Yang et al., 2015[Yang, L., Tan, X., Wang, Z. & Zhang, X. (2015). Chem. Rev. 115, 7196-7239.]; Vantomme & Meijer, 2019[Vantomme, G. & Meijer, E. W. (2019). Science, 363, 1396-1397.]). While the field is diverse and inter­disciplinary, the self-assembly of small mol­ecules to yield purely organic materials continues to be a main focus for materials scientists as well as solid-state chemists (Zhang et al., 2019[Zhang, Q., Deng, Y. X., Luo, H. X., Shi, C. Y., Geise, G. M., Feringa, B. L., Tian, H. & Qu, D. H. (2019). J. Am. Chem. Soc. 141, 12804-12814.]). Controlling the overall topology of these assembled supra­molecular networks can easily be achieved by the careful selection of both the node and linker groups typified by metal–organic and supra­molecular coordination frameworks (Jiang et al., 2018[Jiang, H., Jia, J., Shkurenko, A., Chen, Z., Adil, K., Belmabkhout, Y., Weselinski, L. J., Assen, A. H., Xue, D.-X., O'Keeffe, M. & Eddaoudi, M. (2018). J. Am. Chem. Soc. 140, 8858-8867.]) as well as flexible organic frameworks (Huang et al., 2019[Huang, Q., Li, W., Mao, Z., Qu, L., Li, Y., Zhang, H., Yu, T., Yang, Z., Zhao, J., Zhang, Y., Aldred, M. P. & Chi, Z. (2019). Nat. Commun. 10, 3074.]). Halogen bonding continues to be a well-established and reliable non-covalent inter­action in the formation of these supra­molecular networks (Gilday et al., 2015[Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118-7195.]). A continued goal within our research groups has been the design and construction of halogen-bonded mol­ecular solids containing nodes generated by the [2 + 2] cyclo­addition reaction (Dunning et al., 2021[Dunning, T. J., Unruh, D. K., Bosch, E. & Groeneman, R. H. (2021). Molecules, 26, 3152.]; Oburn et al., 2020[Oburn, S. M., Santana, C. L., Elacqua, E. & Groeneman, R. H. (2020). CrystEngComm, 22, 4349-4352.]; Sinnwell et al., 2020[Sinnwell, M. A., Santana, C. L., Bosch, E., MacGillivray, L. R. & Groeneman, R. H. (2020). CrystEngComm, 22, 6780-6782.]). In each example, the cyclo­butane-based photoproduct accepts I⋯N halogen bonds to form these extended solids. These functionalized photoproducts are ideal components, in the formation of these networks, due to the ability to control the number and position of halogen-bond accepting groups coming off the central cyclo­butane ring (Gan et al., 2018[Gan, M.-M., Yu, J.-G., Wang, Y. Y. & Han, Y.-F. (2018). Cryst. Growth Des. 18, 553-565.]). Recently, we reported the ability to vary the topology within a pair of halogen-bonded networks by controlling the regiochemistry of the pendant groups (Dunning et al., 2021[Dunning, T. J., Unruh, D. K., Bosch, E. & Groeneman, R. H. (2021). Molecules, 26, 3152.]). In that contribution, the resulting topology was dictated by the regiochemical position of the 4-pyridyl groups around the cyclo­butane ring. In particular, the incorporation of the head-to-tail photoproduct rctt-1,3-bis­(pyridin-4-yl)-2,4-di­phenyl­cyclo­butane (ht-PP) or the head-to-head photoproduct rctt-1,2-bis­(pyridin-4-yl)-3,4-di­phenyl­cyclo­butane resulted in either a linear or zigzag mol­ecular topology, respectively. In both networks, the halogen-bond donor was 1,4-di­iodo­perchloro­benzene, which acted as a linear linker due to the para-position of the two I-atoms.

[Scheme 1]

Using this as inspiration, a research project was undertaken to exploit the ability of 1,2-di­iodo­perchloro­benzene (1,2-C6I2Cl4) to act as a halogen-bond donor (Bosch et al., 2020[Bosch, E., Battle, J. D. & Groeneman, R. H. (2020). Acta Cryst. C76, 557-561.]) that would result in a similar zigzag structure when combined with ht-PP, a linear node-based photoproduct. To this end, we report here the synthesis and crystal structure of the co-crystal (1,2-C6I2Cl4)·(ht-PP) that has a zigzag topology due to the ortho-position of the I atoms on the halogen-bond donor. This co-crystal is sustained by I⋯N halogen bonds where neighbouring chains pack in a tongue-and-groove-like pattern. These neighbouring chains engage in various Cl⋯π inter­actions to both the phenyl and pyridyl rings on the photoproduct, resulting in a supra­molecular two-dimensional sheet.

2. Structural commentary

Crystallographic analysis revealed that (1,2-C6I2Cl4)·(ht-PP) crystallizes in the centrosymmetric monoclinic space group P21/n. The asymmetric unit contains a full mol­ecule of both 1,2-C6I2Cl4 and ht-PP (Fig. 1[link]). As a consequence of the rctt-stereochemistry within ht-PP, there are two acute [70.7 (1) and 70.9 (1)°] and two obtuse [101.9 (1) and 121.0 (1)°] angles between neighbouring aromatic rings within the photoproduct (Fig. 2[link]). More important to this contribution, the angle measured between the 4-pyridyl rings and the cyclo­butane has a value of 163.7 (1)°, which allows the photoproduct to act as a linear linker (Fig. 2[link]). All angles were measured from the centroids of both the aromatic and cyclo­butane rings. As expected, 1,2-C6I2Cl4 engages in two crystallographically unique I⋯N halogen bonds with the 4-pyridyl rings on ht-PP (Fig. 2[link]). The I1⋯N1 and I2⋯N2i bond distances are 2.809 (6) and 2.927 (6) Å along with bond angles for C27—I1⋯N1 and C28—I2⋯N2i of 177.8 (2) and 175.6 (2)°, respectively [symmetry code: (i) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]]. Since the I atoms are in an ortho-position, 1,2-C6I2Cl4 acts as a bent halogen-bond donor with a bond angle of 65.8 (1)° measured between the centroid of the donor and the two N atoms (Fig. 2[link]), forming zigzag chains.

[Figure 1]
Figure 1
The labelled asymmetric unit of (1,2-C6I2Cl4)·(ht-PP). Displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms while hydrogen atoms are shown as spheres of arbitrary size.
[Figure 2]
Figure 2
X-ray crystal structure of (1,2-C6I2Cl4)·(ht-PP) illustrating the zigzag network held together by I⋯N halogen bonds. The determined error in all measured angles is 0.1°. Halogen bonds are represented by yellow dashed lines.

3. Supra­molecular features

These zigzag chains inter­act with nearest neighbours by various Cl⋯π inter­actions (Fig. 3[link]). In particular, all the chlorine atoms on 1,2-C6I2Cl4 are found to inter­act via Cl⋯π inter­actions with either 4-pyridyl rings [3.466 (4) and 3.865 (3) Å] or phenyl rings [3.288 (4) and 3.842 (4) Å]. These distances were measured from the chlorine atom to the centroid of the aromatic ring (Youn et al., 2016[Youn, I. S., Kim, D. Y., Cho, W. J., Madridejos, J. M. L., Lee, H. M., Kołaski, M., Lee, J., Baig, C., Shin, S. K., Filatov, M. & Kim, K. S. (2016). J. Phys. Chem. A, 120, 9305-9314.]). The combination of I⋯N halogen bonds along with the various Cl⋯π inter­actions generates a supra­molecular two-dimensional sheet within (1,2-C6I2Cl4)·(ht-PP). The polymeric chain is sustained by I⋯N halogen bonds between 1,2-C6I2Cl4 and the photoproduct ht-PP.

[Figure 3]
Figure 3
Space-filling model of (1,2-C6I2Cl4)·(ht-PP) illustrating a closer view of the various Cl⋯π inter­actions.

The various non-covalent inter­actions were also investigated and visualized by using a Hirshfeld surface analysis (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) mapped over dnorm (Fig. 4[link]). The darkest red spots on the surface represent the I⋯N halogen bonds while the lighter red spots are the Cl⋯π inter­actions. The ortho-position of the I atoms on the halogen-bond donor makes this mol­ecule behave as a bent two-connecting node, which is required for the formation of a zigzag network.

[Figure 4]
Figure 4
Hirshfeld surface of (1,2-C6I2Cl4)·(ht-PP) mapped over dnorm illustrating the I⋯N halogen bonds and Cl⋯π inter­actions.

4. Database survey

A search of the Cambridge Crystallographic Database (CSD, Version 5.43, November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using Conquest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for structures containing 1,2-C6I2Cl4 revealed only one from our earlier study, refcode SUZFUR (Bosch et al., 2020[Bosch, E., Battle, J. D. & Groeneman, R. H. (2020). Acta Cryst. C76, 557-561.]). A similar search for structures including ht-PP with a halo­benzene that is within the sum of the van der Waals radii of one of the pyridine N atoms yielded two structures, refcodes EQOVUC and EQOWEN (Mondal et al., 2011[Mondal, B., Captain, B. & Ramamurthy, V. (2011). Photochem. Photobiol. Sci. 10, 891-894.]). Each of these structures describes a halogen-bonding inter­action within a single mol­ecule, viz. 4,4′-(2,4-bis­(4-bromo­phen­yl)cyclo­butane-1,3-di­yl)di­pyridine and 4,4′-(2,4-bis­(4-iodo­phen­yl)cyclo­butane-1,3-di­yl)di­pyridine, respectively.

5. Synthesis and crystallization

Materials and general methods. The solvents reagent grade ethanol (95%), methyl­ene chloride, and toluene were all purchased from Sigma-Aldrich Chemical (St. Louis, MO, USA) and used as received. In addition, 4,6-di­chloro­resorcinol (4,6-diCl res), 4-stilbazole (SB), and sodium hydroxide pellets were also purchased from Sigma-Aldrich and were used as received. The [2 + 2] cyclo­addition reaction was conducted in an ACE Glass photochemistry cabinet using UV radiation from a 450 W medium-pressure mercury lamp. The occurrence and yield of the [2 + 2] cyclo­addition reaction was determined by using 1H Nuclear Magnetic Resonance Spectroscopy on a Bruker Avance 400 MHz spectrometer with dimethyl sulfoxide (DMSO-d6) as the solvent. The halogen-bond donor 1,2-di­iodo­perchloro­benzene (1,2-C6I2Cl4) was synthesized utilizing a previously published method (Reddy et al., 2006[Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.]).

Synthesis and crystallization. The formation of the photoreactive co-crystal (4,6-diCl res)·(SB) was achieved using a previously published approach (Grobelny et al., 2018[Grobelny, A. L., Rath, N. P. & Groeneman, R. H. (2018). CrystEngComm, 20, 3951-3954.]). In particular, co-crystals of (4,6-diCl res)·(SB) were formed by dissolving 50.0 mg of SB in 2.0 mL of ethanol, which was then combined with a separate 2.0 mL ethanol solution containing 24.7 mg of 4,6-diCl res (2:1 molar equivalent). Then the resulting solution was allowed to slowly evaporate. After evaporation of the solvent, the remaining solid was removed and placed between Pyrex glass plates for irradiation. After 20 h of UV exposure, the [2 + 2] cyclo­addition reaction occurred with a 100% yield. The formation of ht-PP was confirmed by 1H NMR (Grobelny et al., 2018[Grobelny, A. L., Rath, N. P. & Groeneman, R. H. (2018). CrystEngComm, 20, 3951-3954.]) by the complete loss of the olefin peak on SB at 7.57 ppm along with the appearance of a cyclo­butane peak at 4.59 ppm (Fig. S1 in the supporting information). The 4,6-diCl res template was then removed by a base extraction with a 5.0 mL of a 0.2 M sodium hydroxide solution that was heated and stirred on a hot plate for 10 minutes. Afterwards, ht-PP was extracted by using three 10 mL aliquots of methyl­ene chloride as the solvent. Then the methyl­ene chloride was removed under vacuum to yield pure ht-PP. The formation of (1,2-C6I2Cl4)·(ht-PP) was achieved by dissolving 25.0 mg of 1,2-C6I2Cl4 in 2.0 mL of toluene and then combined with a 3.0 mL toluene solution containing 19.4 mg of ht-PP (1:1 molar equivalent). Within two days, single crystals suitable for X-ray diffraction were formed upon loss of some of the solvent by slow evaporation.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Data collection at low temperature, namely 100 K, was facilitated using a Kryoflex system with an accuracy of 1 K. H atoms were included in the refinement at calculated positions.

Table 1
Experimental details

Crystal data
Chemical formula C26H22N2·C6Cl4I2
Mr 830.11
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.6519 (6), 28.3120 (16), 11.1909 (6)
β (°) 92.154 (1)
V3) 3055.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.43
Crystal size (mm) 0.55 × 0.23 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.690, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 39572, 6730, 6601
Rint 0.024
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.118, 1.39
No. of reflections 6730
No. of parameters 361
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.85, −1.11
Computer programs: SMART and SAINT (Bruker, 2014[Bruker (2014). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and X-SEED (Barbour, 2020[Barbour, L. J. (2020). J. Appl. Cryst. 53, 1141-1146.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2014); cell refinement: SMART (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2020).

1,2,3,4-Tetrachloro-5,6-diiodobenzene–\ 4-[2,4-diphenyl-3-(pyridin-4-yl)cyclobutyl]pyridine (1/1) top
Crystal data top
C26H22N2·C6Cl4I2F(000) = 1608
Mr = 830.11Dx = 1.804 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.6519 (6) ÅCell parameters from 9788 reflections
b = 28.3120 (16) Åθ = 2.2–27.1°
c = 11.1909 (6) ŵ = 2.43 mm1
β = 92.154 (1)°T = 100 K
V = 3055.9 (3) Å3Cut block, gold
Z = 40.55 × 0.23 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
6730 independent reflections
Radiation source: fine-focus sealed tube6601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.3660 pixels mm-1θmax = 27.1°, θmin = 1.4°
phi and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 3636
Tmin = 0.690, Tmax = 0.746l = 1414
39572 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + 34.6345P]
where P = (Fo2 + 2Fc2)/3
S = 1.39(Δ/σ)max = 0.001
6730 reflectionsΔρmax = 1.85 e Å3
361 parametersΔρmin = 1.11 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.42402 (5)0.67570 (2)0.76670 (4)0.01997 (11)
Cl10.32159 (16)0.50027 (5)1.01755 (15)0.0205 (3)
N10.4404 (7)0.7347 (2)0.5659 (5)0.0289 (14)
C10.5615 (9)0.7937 (3)0.4624 (7)0.0366 (19)
H10.6431860.8122410.4572800.044*
I20.33844 (4)0.55063 (2)0.75026 (4)0.01986 (11)
Cl20.36316 (19)0.54909 (6)1.26078 (14)0.0278 (4)
N20.2232 (7)0.9965 (2)0.0317 (5)0.0284 (14)
C20.5502 (8)0.7620 (3)0.5512 (7)0.0346 (18)
H20.6261990.7588970.6071780.041*
Cl30.45076 (19)0.65490 (7)1.27684 (15)0.0277 (4)
C30.3349 (8)0.7400 (2)0.4888 (6)0.0265 (15)
H30.2550560.7208640.4977850.032*
Cl40.4745 (2)0.71377 (6)1.04655 (16)0.0308 (4)
C40.3349 (8)0.7723 (2)0.3944 (6)0.0291 (16)
H40.2559370.7757880.3419250.035*
C50.4541 (9)0.7993 (2)0.3794 (6)0.0290 (16)
C60.4776 (8)0.8351 (3)0.2821 (7)0.0307 (16)
H60.5754220.8334430.2559020.037*
C70.3761 (9)0.8370 (3)0.1726 (7)0.0319 (17)
H70.3070570.8106700.1734230.038*
C80.4407 (9)0.8410 (3)0.0559 (7)0.0328 (18)
C90.3756 (10)0.8186 (3)0.0507 (9)0.041 (2)
H90.2899410.8023140.0455220.049*
C100.4405 (12)0.8214 (3)0.1583 (7)0.045 (2)
H100.3984150.8062880.2262640.054*
C110.5575 (12)0.8439 (3)0.1709 (9)0.052 (3)
H110.5976640.8451910.2470320.062*
C120.6206 (11)0.8650 (3)0.0772 (8)0.045 (2)
H120.7049950.8815300.0875810.054*
C130.5657 (8)0.8634 (2)0.0336 (7)0.0286 (16)
H130.6150990.8781760.0983560.034*
C140.3151 (8)0.8844 (3)0.2236 (7)0.0317 (16)
H140.2291830.8772780.2674590.038*
C150.2863 (9)0.9255 (3)0.1365 (7)0.0345 (19)
C160.1784 (10)0.9223 (4)0.0598 (11)0.063 (3)
H160.1208380.8950690.0605820.075*
C170.1494 (10)0.9574 (4)0.0196 (11)0.062 (3)
H170.0694860.9536560.0709860.074*
C180.3302 (10)1.0006 (3)0.0436 (8)0.042 (2)
H180.3865241.0280640.0401730.050*
C190.3647 (10)0.9651 (4)0.1307 (8)0.050 (3)
H190.4423880.9692430.1842860.060*
C200.4378 (7)0.8881 (3)0.3126 (7)0.0258 (15)
H200.5086460.9098020.2796370.031*
C210.4104 (9)0.9027 (2)0.4437 (7)0.0294 (16)
C220.5038 (8)0.9328 (2)0.5010 (7)0.0258 (15)
H220.5784660.9449340.4572920.031*
C230.4934 (7)0.9460 (3)0.6190 (6)0.0259 (15)
H230.5608610.9664180.6553450.031*
C240.3846 (8)0.9296 (3)0.6843 (8)0.0337 (17)
H240.3754290.9383160.7656290.040*
C250.2873 (8)0.8993 (3)0.6255 (9)0.040 (2)
H250.2104840.8878970.6675560.047*
C260.3022 (9)0.8863 (3)0.5083 (8)0.0340 (17)
H260.2363640.8654320.4713840.041*
C270.4096 (6)0.6337 (2)0.9214 (6)0.0165 (12)
C280.3769 (6)0.5853 (2)0.9156 (5)0.0142 (11)
C290.3655 (6)0.5593 (2)1.0213 (6)0.0162 (12)
C300.3846 (6)0.5812 (2)1.1325 (6)0.0172 (12)
C310.4211 (6)0.6286 (2)1.1393 (5)0.0168 (12)
C320.4323 (7)0.6547 (2)1.0351 (6)0.0190 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0268 (2)0.01597 (19)0.0172 (2)0.00231 (16)0.00253 (15)0.00356 (15)
Cl10.0182 (7)0.0156 (7)0.0277 (8)0.0016 (6)0.0019 (6)0.0031 (6)
N10.046 (4)0.017 (3)0.024 (3)0.005 (3)0.001 (3)0.006 (2)
C10.038 (4)0.042 (5)0.030 (4)0.015 (4)0.011 (3)0.003 (3)
I20.0240 (2)0.0190 (2)0.0166 (2)0.00125 (16)0.00060 (15)0.00368 (15)
Cl20.0359 (9)0.0298 (9)0.0178 (7)0.0041 (7)0.0029 (7)0.0089 (6)
N20.039 (4)0.029 (3)0.017 (3)0.012 (3)0.004 (3)0.008 (2)
C20.030 (4)0.038 (4)0.036 (4)0.008 (3)0.001 (3)0.000 (3)
Cl30.0316 (9)0.0345 (9)0.0170 (7)0.0033 (7)0.0026 (6)0.0080 (7)
C30.037 (4)0.021 (3)0.022 (3)0.011 (3)0.005 (3)0.003 (3)
Cl40.0479 (11)0.0180 (8)0.0268 (8)0.0092 (7)0.0075 (8)0.0041 (6)
C40.042 (4)0.020 (3)0.024 (4)0.003 (3)0.012 (3)0.001 (3)
C50.050 (5)0.018 (3)0.019 (3)0.006 (3)0.007 (3)0.001 (3)
C60.032 (4)0.030 (4)0.030 (4)0.002 (3)0.002 (3)0.002 (3)
C70.040 (4)0.027 (4)0.028 (4)0.002 (3)0.003 (3)0.007 (3)
C80.042 (4)0.025 (4)0.032 (4)0.018 (3)0.018 (3)0.019 (3)
C90.047 (5)0.021 (4)0.055 (5)0.002 (3)0.004 (4)0.008 (4)
C100.086 (8)0.032 (4)0.016 (3)0.023 (5)0.004 (4)0.002 (3)
C110.081 (8)0.038 (5)0.038 (5)0.025 (5)0.015 (5)0.005 (4)
C120.063 (6)0.040 (5)0.034 (5)0.022 (4)0.029 (4)0.013 (4)
C130.041 (4)0.020 (3)0.025 (4)0.002 (3)0.001 (3)0.006 (3)
C140.034 (4)0.036 (4)0.025 (4)0.003 (3)0.005 (3)0.003 (3)
C150.040 (4)0.043 (5)0.021 (3)0.022 (4)0.010 (3)0.004 (3)
C160.032 (5)0.058 (6)0.098 (9)0.005 (4)0.001 (5)0.047 (6)
C170.034 (5)0.055 (6)0.095 (9)0.003 (4)0.028 (5)0.035 (6)
C180.046 (5)0.026 (4)0.052 (5)0.008 (4)0.003 (4)0.012 (4)
C190.052 (6)0.059 (6)0.036 (5)0.032 (5)0.026 (4)0.029 (4)
C200.020 (3)0.025 (4)0.032 (4)0.002 (3)0.002 (3)0.005 (3)
C210.044 (4)0.016 (3)0.028 (4)0.001 (3)0.011 (3)0.007 (3)
C220.025 (3)0.020 (3)0.032 (4)0.002 (3)0.007 (3)0.004 (3)
C230.019 (3)0.029 (4)0.029 (4)0.001 (3)0.000 (3)0.008 (3)
C240.035 (4)0.026 (4)0.041 (4)0.009 (3)0.008 (3)0.002 (3)
C250.019 (4)0.025 (4)0.076 (6)0.005 (3)0.011 (4)0.021 (4)
C260.032 (4)0.029 (4)0.039 (4)0.002 (3)0.011 (3)0.001 (3)
C270.015 (3)0.015 (3)0.019 (3)0.002 (2)0.000 (2)0.002 (2)
C280.010 (3)0.018 (3)0.015 (3)0.003 (2)0.000 (2)0.002 (2)
C290.011 (3)0.017 (3)0.021 (3)0.001 (2)0.001 (2)0.000 (2)
C300.013 (3)0.021 (3)0.018 (3)0.004 (2)0.002 (2)0.003 (2)
C310.014 (3)0.023 (3)0.014 (3)0.000 (2)0.001 (2)0.003 (2)
C320.022 (3)0.016 (3)0.019 (3)0.002 (2)0.002 (2)0.000 (2)
Geometric parameters (Å, º) top
I1—C272.110 (6)C12—C131.367 (11)
Cl1—C291.725 (6)C12—H120.9500
N1—C31.318 (10)C13—H130.9500
N1—C21.327 (11)C14—C201.522 (10)
C1—C21.348 (11)C14—C151.535 (11)
C1—C51.375 (12)C14—H141.0000
C1—H10.9500C15—C161.328 (14)
I2—C282.115 (6)C15—C191.356 (14)
Cl2—C301.718 (6)C16—C171.356 (13)
N2—C181.314 (11)C16—H160.9500
N2—C171.327 (12)C17—H170.9500
C2—H20.9500C18—C191.431 (13)
Cl3—C311.725 (6)C18—H180.9500
C3—C41.397 (10)C19—H190.9500
C3—H30.9500C20—C211.556 (11)
Cl4—C321.725 (7)C20—H201.0000
C4—C51.397 (11)C21—C261.375 (12)
C4—H40.9500C21—C221.381 (10)
C5—C61.513 (10)C22—C231.381 (10)
C6—C71.541 (11)C22—H220.9500
C6—C201.588 (10)C23—C241.382 (11)
C6—H61.0000C23—H230.9500
C7—C81.472 (10)C24—C251.415 (12)
C7—C141.583 (11)C24—H240.9500
C7—H71.0000C25—C261.375 (13)
C8—C131.393 (11)C25—H250.9500
C8—C91.472 (13)C26—H260.9500
C9—C101.381 (13)C27—C281.406 (9)
C9—H90.9500C27—C321.414 (9)
C10—C111.309 (15)C28—C291.400 (9)
C10—H100.9500C29—C301.396 (9)
C11—C121.335 (15)C30—C311.389 (9)
C11—H110.9500C31—C321.389 (9)
C3—N1—C2117.0 (6)C19—C15—C14124.7 (8)
C2—C1—C5119.6 (8)C15—C16—C17120.8 (10)
C2—C1—H1120.2C15—C16—H16119.6
C5—C1—H1120.2C17—C16—H16119.6
C18—N2—C17114.8 (7)N2—C17—C16125.5 (9)
N1—C2—C1124.5 (8)N2—C17—H17117.2
N1—C2—H2117.7C16—C17—H17117.2
C1—C2—H2117.7N2—C18—C19122.2 (9)
N1—C3—C4123.2 (7)N2—C18—H18118.9
N1—C3—H3118.4C19—C18—H18118.9
C4—C3—H3118.4C15—C19—C18119.9 (8)
C5—C4—C3118.2 (7)C15—C19—H19120.1
C5—C4—H4120.9C18—C19—H19120.1
C3—C4—H4120.9C14—C20—C21118.6 (6)
C1—C5—C4117.4 (7)C14—C20—C689.1 (6)
C1—C5—C6115.7 (7)C21—C20—C6120.3 (6)
C4—C5—C6126.9 (7)C14—C20—H20109.1
C5—C6—C7119.1 (7)C21—C20—H20109.1
C5—C6—C20115.8 (6)C6—C20—H20109.1
C7—C6—C2089.3 (6)C26—C21—C22117.4 (7)
C5—C6—H6110.3C26—C21—C20124.4 (7)
C7—C6—H6110.3C22—C21—C20118.1 (7)
C20—C6—H6110.3C23—C22—C21122.8 (7)
C8—C7—C6115.5 (7)C23—C22—H22118.6
C8—C7—C14115.4 (6)C21—C22—H22118.6
C6—C7—C1488.6 (6)C22—C23—C24119.9 (7)
C8—C7—H7111.8C22—C23—H23120.0
C6—C7—H7111.8C24—C23—H23120.0
C14—C7—H7111.8C23—C24—C25117.5 (8)
C13—C8—C7126.4 (8)C23—C24—H24121.3
C13—C8—C9113.4 (7)C25—C24—H24121.3
C7—C8—C9120.2 (8)C26—C25—C24121.0 (8)
C10—C9—C8119.2 (8)C26—C25—H25119.5
C10—C9—H9120.4C24—C25—H25119.5
C8—C9—H9120.4C21—C26—C25121.3 (7)
C11—C10—C9122.9 (9)C21—C26—H26119.3
C11—C10—H10118.5C25—C26—H26119.3
C9—C10—H10118.5C28—C27—C32118.6 (6)
C10—C11—C12120.3 (9)C28—C27—I1122.2 (5)
C10—C11—H11119.9C32—C27—I1119.2 (5)
C12—C11—H11119.9C29—C28—C27119.8 (6)
C11—C12—C13121.1 (10)C29—C28—I2118.6 (4)
C11—C12—H12119.5C27—C28—I2121.6 (4)
C13—C12—H12119.5C30—C29—C28120.6 (6)
C12—C13—C8123.1 (8)C30—C29—Cl1118.4 (5)
C12—C13—H13118.4C28—C29—Cl1121.0 (5)
C8—C13—H13118.4C31—C30—C29120.1 (6)
C20—C14—C15118.8 (7)C31—C30—Cl2120.3 (5)
C20—C14—C790.1 (6)C29—C30—Cl2119.6 (5)
C15—C14—C7118.3 (6)C30—C31—C32119.8 (6)
C20—C14—H14109.4C30—C31—Cl3120.0 (5)
C15—C14—H14109.4C32—C31—Cl3120.2 (5)
C7—C14—H14109.4C31—C32—C27121.1 (6)
C16—C15—C19116.8 (8)C31—C32—Cl4118.7 (5)
C16—C15—C14118.5 (9)C27—C32—Cl4120.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···Cl2i0.952.693.632 (10)172
Symmetry code: (i) x1/2, y+3/2, z3/2.
 

Funding information

RHG gratefully acknowledges financial support from Webster University in the form of various Faculty Research Grants. EB acknowledges the Missouri State University Provost Incentive Fund for the purchase of the X-ray diffractometer used in this contribution.

References

First citationBarbour, L. J. (2020). J. Appl. Cryst. 53, 1141–1146.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBosch, E., Battle, J. D. & Groeneman, R. H. (2020). Acta Cryst. C76, 557–561.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2014). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDunning, T. J., Unruh, D. K., Bosch, E. & Groeneman, R. H. (2021). Molecules, 26, 3152.  CrossRef PubMed Google Scholar
First citationGan, M.-M., Yu, J.-G., Wang, Y. Y. & Han, Y.-F. (2018). Cryst. Growth Des. 18, 553–565.  Web of Science CrossRef CAS Google Scholar
First citationGilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118–7195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGrobelny, A. L., Rath, N. P. & Groeneman, R. H. (2018). CrystEngComm, 20, 3951–3954.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, Q., Li, W., Mao, Z., Qu, L., Li, Y., Zhang, H., Yu, T., Yang, Z., Zhao, J., Zhang, Y., Aldred, M. P. & Chi, Z. (2019). Nat. Commun. 10, 3074.  CSD CrossRef PubMed Google Scholar
First citationJiang, H., Jia, J., Shkurenko, A., Chen, Z., Adil, K., Belmabkhout, Y., Weselinski, L. J., Assen, A. H., Xue, D.-X., O'Keeffe, M. & Eddaoudi, M. (2018). J. Am. Chem. Soc. 140, 8858–8867.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMondal, B., Captain, B. & Ramamurthy, V. (2011). Photochem. Photobiol. Sci. 10, 891–894.  CSD CrossRef CAS PubMed Google Scholar
First citationOburn, S. M., Santana, C. L., Elacqua, E. & Groeneman, R. H. (2020). CrystEngComm, 22, 4349–4352.  Web of Science CSD CrossRef CAS Google Scholar
First citationReddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222–2234.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinnwell, M. A., Santana, C. L., Bosch, E., MacGillivray, L. R. & Groeneman, R. H. (2020). CrystEngComm, 22, 6780–6782.  CSD CrossRef Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVantomme, G. & Meijer, E. W. (2019). Science, 363, 1396–1397.  CrossRef CAS PubMed Google Scholar
First citationYang, L., Tan, X., Wang, Z. & Zhang, X. (2015). Chem. Rev. 115, 7196–7239.  CrossRef CAS PubMed Google Scholar
First citationYoun, I. S., Kim, D. Y., Cho, W. J., Madridejos, J. M. L., Lee, H. M., Kołaski, M., Lee, J., Baig, C., Shin, S. K., Filatov, M. & Kim, K. S. (2016). J. Phys. Chem. A, 120, 9305–9314.  CrossRef CAS PubMed Google Scholar
First citationZhang, Q., Deng, Y. X., Luo, H. X., Shi, C. Y., Geise, G. M., Feringa, B. L., Tian, H. & Qu, D. H. (2019). J. Am. Chem. Soc. 141, 12804–12814.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds