research communications
Syntheses, crystal structures and Hirshfeld surface analyses of bis(2-mercaptobenzimidazole)bromo- and iodocopper(I) complexes
aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90112, Thailand, bDivision of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla, University, Hat Yai, Songkhla 90112, Thailand, and cDivision of Physical Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90112, Thailand
*Correspondence e-mail: weena.a@psu.ac.th
The title complexes, bromidobis(2,3-dihydro-1H-1,3-benzodiazole-2-thione)copper(I), [CuBr(C7H6N2S)2] (1), and bis(2,3-dihydro-1H-1,3-benzodiazole-2-thione)iodidocopper(I) acetone monosolvate, [CuI(C7H6N2S)2]·CH3COCH3 (2), were prepared by the reaction of copper(I) bromide/iodide with 2-mercaptobenzimidazole. Both complexes have mononuclear structures with the copper atom coordinated by two 2-mercaptobenzimidazole molecules via their S atoms and one halide atom in an approximate trigonal–planar arrangement. In their extended structures, N—H⋯S hydrogen bonds and π–π contacts are found in both complexes; as a result of the acetone solvent molecule in (2), N—H⋯O contacts are also observed. Hirshfeld surface analyses were carried out to aid in the visualization of these interactions, which showed that H⋯H contacts contribute 34.6% for (1) and 34.1% for (2) to the overall surface, followed by contributions from H⋯S/S⋯H, H⋯C/C⋯H and C⋯C contacts, respectively. As expected, H⋯O/O⋯H contacts are observed only in (2). The IR and 1H and 13C NMR spectra of (1) and (2) are described.
Keywords: 2-mercaptobenzimidazole; copper; crystal structure.
1. Chemical context
2-Mercaptobenzimidazole (C7H6N2S; bimztH2) has many uses including as an antioxidant to prevent rubber deterioration (Moldovan & Alexandrescu, 2002), an absorbant of mercury from industrial waste water in the form of 2-mercaptobenzimidazole-clay (Manohar et al., 2002), as a modifier of electrode surfaces to increase the efficiency of electrochemical analysis (Berchmans et al., 2000), as an intermediate in the production of the anti-inflammatory drug lanzoprazole (Wongwattana, 2004) and as a Cu corrosion inhibitor (Finšgar, 2013).
The preparation of bimztH2 involves the reaction between o-phenylenediamine and potassium ethyl xanthate in an ethanol–water mixture followed by reaction with acetic acid and water at 333–343 K (Vanallan & Deacon, 1971). The structure of bimztH2 exhibits between its thione and thiol forms (Rout et al., 1984) as shown in the scheme below.
We now describe the syntheses and crystal structures of bimztH2 complexes with copper(I) halides, CuX (X = Br, I). It may be noted that the S atom of the ligand is a and therefore favoured to form a coordinate bond with a such as copper(I). Hirshfeld surface analyses were performed to gain further insight into the intermolecular interactions in these structures.
2. Structural commentary
The mononuclear structures of [Cu(bimztH2)2Br] (1) and [Cu(bimztH2)2I]·CH3COCH3 (2) are depicted in Fig. 1. Both complexes crystallize in the monoclinic system, P21/c. The copper ions adopt distorted trigonal–planar coordination geometries with one Cu—X bond (X = Br, I) and two Cu—S bonds, the lengths of which lie between 2.2189 (15) and 2.5479 (7) Å, being close to those found in complexes with a trigonal–planar geometry such as [Cu2(mimtH)5]2+ (Atkinson et al., 1985) and [Cu(SC6H5)3]2− (Coucouvanis et al., 1980). When comparing (1) and (2), the bond angles are distorted from the ideal values of 120° with greater distortion in (2) resulting from the presence of the acetone solvent molecule and an N4—H4A⋯O1 hydrogen bond. The acetone molecules in (2) result in weaker C=S bonds as supported by IR and 13C NMR data (vide infra). Both complexes feature a pair of intramolecular N—H⋯X hydrogen bonds as listed in Tables 1 and 2 for (1) and (2), respectively.
|
3. Supramolecular features
The supramolecular assemblies in (1) and (2) (Tables 1 and 2) feature pairwise N—H⋯S hydrogen bonds, generating a graph-set R22(8) pattern with N1⋯S1i = 3.384 (4) Å for (1) and N2⋯S1i = 3.331 (4) Å for (2) [symmetry code: (i) −x + 1, −y + 1, −z + 1 for (1) and −x − 1, −y + 1, −z + 1 for (2)]. The acetone solvent molecule in (2) leads to the formation of an N4—H4A⋯O1 hydrogen bond with N4⋯O1 = 2.840 (5) Å. The intra- and intermolecular hydrogen-bond contacts of (1) and (2) are shown in Figs. 2 and 3, respectively. In addition, aromatic π–π stacking contacts are observed between adjacent imidazole rings (Cg1: N1/C1/N2/C7/C2 and Cg2: N3/C8/N4/C14/C9) and phenyl rings (Cg3: C2–C7 and Cg4: C9–C14) of neighbouring complex molecules. The π–π interactions in the packing of (1) occur between Cg1–Cg3 (set 1) and Cg2–Cg4 (set 2) as inter-digitated [100] stacks with a minimum centroid–centroid separation of 3.566 (3) Å (Fig. 4), while in the packing of (2) (Fig. 5), corresponding Cg2–Cg4 interactions occur, which also leads to [100] stacks [minimum centroid–centroid separation = 3.608 (3) Å].
4. Hirshfeld surface analysis
The Hirshfeld surface (HS) analyses (HS mapped over dnorm are shown in Fig. 6) and de and di fingerprint plots (Figs. 7 and 8) were generated using Crystal Explorer 17.5 (Turner et al., 2017). The red spots indicate the donors and acceptors of the hydrogen bonds, appearing close to H1A and S1 of the N1—H1A⋯S1 bond for (1) and close to H2A⋯S1 of the N2A-–H2A⋯S1 bond for (2). In addition, a red spot is found between H4A and O1 of the acetone solvent molecule for (2). The fingerprint plots for (1) show that the principal intermolecular contacts are H⋯H at 34.6% (Fig. 7b), H⋯S /S⋯H at 16.4% (Fig. 7c), H⋯C/C⋯H at 13.3% (Fig. 7d) and C⋯C contacts at 7.2% (Fig. 7e). For complex (2), the principal contacts are H⋯H at 34.1% (Fig. 8b), H⋯C/C⋯H at 16.9% (Fig. 8c), H⋯S / S⋯H at 12.1% (Fig. 8d) and C⋯C contacts at 4.3% (Fig. 8e) followed by H⋯O contacts at 3.5% (Fig. 8f). As can be seen, H⋯H contacts predominate in both complexes, followed by H⋯S/S⋯H contacts for (1) and H⋯C/C⋯H contacts for (2). However, the C⋯C contacts differ significantly (by 3.7%) indicating that the π–π intermolecular interactions in (1) are stronger than in (2).
5. Database survey
2-Mercaptobenzimidazole has been found to form a complex with Pt, the bond formation being via the sulfur atom only with a square-planar geometry [Cambridge Structural Database (Groom et al., 2016) refcode GURMOV; Jolley et al., 2001]. In the case of the CoII complex, two sulfur atoms are bonded with the metal atom in a tetrahedral coordination geometry (refcode ZOKYAZ; Ravikumar et al., 1995). CuI complexes with 2-mercaptobenzimidazole derivatives have been investigated as a model of copper proteins (refcodes QORGUZ, QORHAG and QORHEK; Balamurugan et al., 2001). A series of polynuclear clusters containing NiII and CoII (refcodes FOPVEN, FOPVIR and FOPXOZ; Han et al., 2015) of this ligand have been synthesized and the of an NiII complex (FOPVEN) has been reported. The photophysical properties of the rigid structure of a hexanuclear CuI complex of 2-mercaptobenzimidazole constructed by S bridges has been studied (refcode COPNUT; Singh et al., 2017).
6. Synthesis, crystallization and chracterization
[Cu(bimztH2)2Br] (1)
A mass of 0.19 g (1.2 mmol) of bimztH2 was placed in 30 ml of acetone at 318 K and stirred until completely dissolved to form a colourless solution. CuBr (0.09 g; 0.6 mmol) was added followed by further stirring for about 15 min to obtain a yellow solution, which was refluxed for 120 min at 353 K to become turbid with a light-yellow colour and then filtered. The colourless filtrate was left at room temperature for 3 days to form transparent needles and then filtered by vacuum suction to obtain 0.16 g of (1) (58% yield, m.p. 518–523 K). Elemental analysis (%): found (calculated); C = 38.32 (37.86), H = 2.78 (2.73), N = 12.17 (12.62), S = 14.71 (14.45).
[Cu(bimztH2)2I]·CH3COCH3 (2)
The same procedure for (1) was followed except that 0.060 g of CuI (1.6 mmol) replaced the CuBr and 0.21 g of colourless needles of (2) were recovered (73%, yield, m.p. 518–523 K). Elemental analysis (%); found (calculated): C = 38.32 (37.86), H = 2.78 (2.73), N = 12.17 (12.62), S = 14.71 (14.45).
FT–IR spectra
Suzuki (1962) proposed that features in thioamide IR spectra could be assigned to band I at 1395–1570 cm−1 arising from the N—H deformation and C—N stretching; band II at 1270–1420 cm−1 from C—N stretching, N—H deformation and C—H bending, band III at 940–1140 cm−1 from C—N and C=S stretching and band IV at 680–860 cm−1 due to C=S stretching (compare Jolley et al., 2001). Additionally, Raper et al. (1988) studied absorption bands of thioamide in the complex prepared from bimzH2 and copper(II) perchlorate and found them at 1470 cm−1 (band I), 1360 cm−1 (band II), 1180 cm−1 (band III) and 740 cm−1 (band IV) compared with those of the free ligand at 1468 cm−1, 1357 cm−1, 1181 cm−1 and 744 + 713 cm−1, respectively. The broad absorption band at 3155 cm−1 is due to N—H stretching, which moves to a higher wavenumber and splits into two upon complexation.
For all our complexes, the FT–IR spectrum indicates the shift of bands I and II to a higher wavenumber, similar to the behaviour of N—H stretching due to the coordination through the sulfur atom and resulting charge transfer from N to S, which makes the N—H and C—N bonds stronger (Aslanidis et al., 2002). Band III of thioamide for all complexes shifts to a lower wavenumber but this is hard to quantify because this area also covers C—N stretching. Band IV for C=S stretching changes significantly from 744 and 713 cm−1 in the free ligand to 734 cm−1 in the complex, reflecting copper–sulfur coordination. A change also occurs for the C—S bending mode at 602 cm−1 of C—S bending to lower wavenumber, corresponding with previous work (Raper et al., 1988). In the case of [Cu(bimztH2)2I]·CH3COCH3, the absorption bands at 1688 and 1384 cm−1 were found (figure not shown). After heating at 383 K for 10 minutes, these bands disappeared. Therefore these are due to C=O stretching and C—H bending, respectively, indicating the presence of acetone in the compound. IR data are summarized in Table 3.
|
1H NMR and 13C NMR spectra
1H NMR data for the ligand and (1) and (2) are listed in Table 4. The at 13.28 ppm (br, s) belongs to two groups of N—H protons. The ratio of integration reveals that the two protons have the same environment. The ratio of N—H and aromatic protons is 1:2 without the signal of the S—H proton, indicating that both ligand and complex contain thione in DMSO-d6 (Isab et al., 2003). Furthermore, the ligand exhibits chemical shifts around 7.49 ppm due to four methane protons on an aromatic benzene ring at positions H4, H7, H5, and H6, which change upon complex formation. The 13C NMR spectra of the ligand and complexes (Table 5) reveal seven carbon signals, including that of the thiocarbonyl group at 168.34 ppm, four carbon atoms in the aromatic ring at 109.75 and 122.59 ppm for C4,7 and C5,6, respectively, and two quarternary carbon atoms at 132.48 ppm. In the complex, C2 and C8,9 have upfield chemical shifts due to more electron shielding. The coordination via sulfur causes C=S to be weaker as well as the electron density to change from nitrogen to C2, whereas C4,7 and C5,6 have downfield chemical shifts due to the to C8,9, corresponding with the work of Isab et al. (2003). For (2), the carbonyl signal at 206.64 ppm and methane carbon at 30.86 ppm indicate the presence of acetone in the compound.
|
|
7. Refinement
Crystal data, data collection and structure . All H atoms of (1) were clearly resolved in difference-density maps and all H-atom parameters were freely refined. For (2), the carbon-bound H atoms were placed in calculated locations with C—H = 0.93–0.96 Å and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The H-atom positions of the amide groups of (2) were found in difference maps and refined with N—H distances restained to 0.85 (2) and 0.86 (2) Å.
details are summarized in Table 6Supporting information
https://doi.org/10.1107/S2056989022004224/hb7984sup1.cif
contains datablocks 1, 2, global. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989022004224/hb79841sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989022004224/hb79842sup3.hkl
For both structures, data collection: SMART (Bruker, 2003); cell
SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and pubICIF (Westrip, 2010).[CuBr(C7H5N2S)2] | F(000) = 880 |
Mr = 443.85 | Dx = 1.871 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 4.1549 (4) Å | Cell parameters from 2031 reflections |
b = 28.708 (3) Å | θ = 2.6–21.8° |
c = 13.2735 (13) Å | µ = 4.19 mm−1 |
β = 95.564 (2)° | T = 293 K |
V = 1575.8 (3) Å3 | Needle, colourless |
Z = 4 | 0.46 × 0.05 × 0.04 mm |
Bruker CCD area detector diffractometer | 2750 independent reflections |
Radiation source: fine-focus sealed tube | 2200 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Frames, each covering 0.3 ° in ω scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −4→4 |
Tmin = 0.713, Tmax = 1.000 | k = −34→33 |
11218 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.093 | All H-atom parameters refined |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0446P)2 + 0.5475P] where P = (Fo2 + 2Fc2)/3 |
2750 reflections | (Δ/σ)max < 0.001 |
247 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.35082 (11) | 0.31949 (2) | 0.29213 (3) | 0.04740 (17) | |
Cu1 | 0.35888 (16) | 0.34728 (2) | 0.46565 (5) | 0.0570 (2) | |
S1 | 0.5237 (3) | 0.42049 (4) | 0.50112 (9) | 0.0489 (3) | |
N1 | 0.7906 (10) | 0.48624 (13) | 0.3871 (3) | 0.0439 (10) | |
C1 | 0.7004 (10) | 0.44151 (14) | 0.4012 (3) | 0.0399 (10) | |
S2 | 0.1419 (4) | 0.30563 (5) | 0.58260 (10) | 0.0688 (4) | |
N2 | 0.7887 (9) | 0.41786 (13) | 0.3211 (3) | 0.0414 (9) | |
C2 | 0.9318 (10) | 0.49139 (15) | 0.2975 (3) | 0.0407 (10) | |
N3 | −0.1802 (11) | 0.22338 (14) | 0.5747 (3) | 0.0527 (11) | |
C3 | 1.0529 (12) | 0.52902 (17) | 0.2500 (4) | 0.0545 (13) | |
N4 | −0.0687 (9) | 0.24669 (13) | 0.4289 (3) | 0.0444 (9) | |
C4 | 1.1761 (13) | 0.52084 (19) | 0.1592 (4) | 0.0595 (14) | |
C5 | 1.1740 (12) | 0.47661 (19) | 0.1173 (4) | 0.0572 (13) | |
C6 | 1.0519 (12) | 0.43907 (19) | 0.1639 (4) | 0.0528 (12) | |
C7 | 0.9299 (10) | 0.44709 (15) | 0.2558 (3) | 0.0395 (10) | |
C8 | −0.0348 (11) | 0.25789 (15) | 0.5269 (3) | 0.0463 (11) | |
C9 | −0.3156 (10) | 0.19077 (14) | 0.5067 (3) | 0.0393 (10) | |
C10 | −0.4919 (13) | 0.15060 (17) | 0.5169 (4) | 0.0530 (13) | |
C11 | −0.5958 (13) | 0.12685 (18) | 0.4308 (4) | 0.0560 (13) | |
C12 | −0.5244 (14) | 0.14225 (19) | 0.3371 (4) | 0.0623 (14) | |
C13 | −0.3471 (14) | 0.18181 (19) | 0.3265 (4) | 0.0610 (14) | |
C14 | −0.2427 (10) | 0.20588 (15) | 0.4124 (3) | 0.0411 (10) | |
H1A | 0.734 (10) | 0.5041 (15) | 0.417 (3) | 0.032 (13)* | |
H2A | 0.764 (10) | 0.3900 (16) | 0.310 (3) | 0.049 (14)* | |
H3 | 1.054 (10) | 0.5568 (15) | 0.282 (3) | 0.045 (12)* | |
H3A | −0.203 (10) | 0.2208 (15) | 0.631 (3) | 0.038 (14)* | |
H4 | 1.259 (12) | 0.5470 (17) | 0.126 (4) | 0.069 (16)* | |
H4A | 0.008 (9) | 0.2643 (14) | 0.387 (3) | 0.033 (11)* | |
H5 | 1.263 (12) | 0.4737 (16) | 0.057 (4) | 0.062 (15)* | |
H6 | 1.045 (12) | 0.4107 (18) | 0.139 (4) | 0.073 (17)* | |
H10 | −0.542 (11) | 0.1438 (16) | 0.573 (4) | 0.051 (14)* | |
H11 | −0.727 (13) | 0.0991 (19) | 0.436 (4) | 0.082 (18)* | |
H12 | −0.591 (11) | 0.1243 (17) | 0.284 (4) | 0.065 (16)* | |
H13 | −0.285 (11) | 0.1901 (16) | 0.269 (4) | 0.052 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0583 (3) | 0.0418 (3) | 0.0432 (3) | −0.0072 (2) | 0.0106 (2) | −0.0012 (2) |
Cu1 | 0.0745 (5) | 0.0403 (3) | 0.0586 (4) | −0.0038 (3) | 0.0192 (3) | −0.0036 (3) |
S1 | 0.0628 (8) | 0.0383 (6) | 0.0469 (7) | 0.0016 (5) | 0.0115 (6) | −0.0075 (5) |
N1 | 0.050 (2) | 0.030 (2) | 0.051 (3) | 0.0076 (18) | 0.0024 (19) | −0.0082 (19) |
C1 | 0.035 (2) | 0.033 (2) | 0.049 (3) | 0.0086 (19) | −0.0047 (19) | −0.006 (2) |
S2 | 0.1016 (11) | 0.0582 (8) | 0.0498 (8) | −0.0207 (8) | 0.0242 (7) | −0.0117 (6) |
N2 | 0.050 (2) | 0.028 (2) | 0.047 (2) | 0.0024 (17) | 0.0089 (17) | −0.0078 (17) |
C2 | 0.039 (2) | 0.037 (2) | 0.045 (3) | 0.0032 (19) | −0.002 (2) | −0.001 (2) |
N3 | 0.077 (3) | 0.046 (2) | 0.037 (3) | −0.001 (2) | 0.022 (2) | 0.006 (2) |
C3 | 0.062 (3) | 0.035 (3) | 0.064 (3) | −0.002 (2) | −0.005 (3) | 0.001 (2) |
N4 | 0.055 (2) | 0.044 (2) | 0.035 (2) | −0.0042 (19) | 0.0065 (18) | 0.0093 (18) |
C4 | 0.058 (3) | 0.058 (3) | 0.063 (4) | −0.009 (3) | 0.003 (3) | 0.015 (3) |
C5 | 0.049 (3) | 0.069 (4) | 0.055 (3) | 0.002 (3) | 0.011 (3) | 0.001 (3) |
C6 | 0.053 (3) | 0.048 (3) | 0.058 (3) | 0.003 (2) | 0.008 (2) | −0.005 (3) |
C7 | 0.035 (2) | 0.038 (2) | 0.045 (3) | 0.0021 (18) | 0.0008 (19) | −0.003 (2) |
C8 | 0.053 (3) | 0.042 (3) | 0.046 (3) | 0.009 (2) | 0.012 (2) | 0.007 (2) |
C9 | 0.042 (2) | 0.038 (2) | 0.039 (2) | 0.0065 (19) | 0.0125 (19) | 0.0053 (19) |
C10 | 0.062 (3) | 0.049 (3) | 0.052 (3) | 0.001 (2) | 0.028 (3) | 0.012 (3) |
C11 | 0.060 (3) | 0.040 (3) | 0.068 (4) | −0.002 (2) | 0.012 (3) | 0.004 (3) |
C12 | 0.075 (4) | 0.053 (3) | 0.057 (4) | −0.011 (3) | −0.003 (3) | −0.001 (3) |
C13 | 0.079 (4) | 0.063 (4) | 0.041 (3) | −0.010 (3) | 0.003 (3) | 0.009 (3) |
C14 | 0.043 (3) | 0.042 (3) | 0.038 (3) | 0.004 (2) | 0.004 (2) | 0.004 (2) |
Br1—Cu1 | 2.4346 (8) | N4—C14 | 1.383 (6) |
Cu1—S2 | 2.2189 (15) | N4—H4A | 0.84 (4) |
Cu1—S1 | 2.2464 (13) | C4—C5 | 1.386 (7) |
S1—C1 | 1.688 (5) | C4—H4 | 0.95 (5) |
N1—C1 | 1.356 (6) | C5—C6 | 1.364 (7) |
N1—C2 | 1.384 (6) | C5—H5 | 0.92 (5) |
N1—H1A | 0.70 (4) | C6—C7 | 1.386 (6) |
C1—N2 | 1.342 (5) | C6—H6 | 0.88 (5) |
S2—C8 | 1.691 (5) | C9—C10 | 1.380 (6) |
N2—C7 | 1.378 (5) | C9—C14 | 1.386 (6) |
N2—H2A | 0.82 (4) | C10—C11 | 1.365 (7) |
C2—C3 | 1.371 (6) | C10—H10 | 0.82 (5) |
C2—C7 | 1.387 (6) | C11—C12 | 1.378 (7) |
N3—C8 | 1.350 (6) | C11—H11 | 0.97 (5) |
N3—C9 | 1.381 (6) | C12—C13 | 1.368 (7) |
N3—H3A | 0.76 (4) | C12—H12 | 0.90 (5) |
C3—C4 | 1.374 (7) | C13—C14 | 1.367 (7) |
C3—H3 | 0.90 (4) | C13—H13 | 0.86 (4) |
N4—C8 | 1.334 (6) | ||
S2—Cu1—S1 | 119.59 (5) | C6—C5—H5 | 121 (3) |
S2—Cu1—Br1 | 121.07 (4) | C4—C5—H5 | 117 (3) |
S1—Cu1—Br1 | 118.74 (4) | C5—C6—C7 | 116.8 (5) |
C1—S1—Cu1 | 108.47 (15) | C5—C6—H6 | 124 (3) |
C1—N1—C2 | 111.5 (4) | C7—C6—H6 | 119 (3) |
C1—N1—H1A | 120 (4) | N2—C7—C6 | 131.9 (4) |
C2—N1—H1A | 127 (4) | N2—C7—C2 | 107.1 (4) |
N2—C1—N1 | 105.6 (4) | C6—C7—C2 | 121.0 (4) |
N2—C1—S1 | 127.9 (3) | N4—C8—N3 | 105.8 (4) |
N1—C1—S1 | 126.5 (3) | N4—C8—S2 | 128.4 (3) |
C8—S2—Cu1 | 108.64 (16) | N3—C8—S2 | 125.8 (4) |
C1—N2—C7 | 110.9 (4) | C10—C9—N3 | 133.5 (4) |
C1—N2—H2A | 127 (3) | C10—C9—C14 | 121.0 (4) |
C7—N2—H2A | 122 (3) | N3—C9—C14 | 105.5 (4) |
C3—C2—N1 | 133.2 (4) | C11—C10—C9 | 117.6 (5) |
C3—C2—C7 | 121.8 (4) | C11—C10—H10 | 124 (3) |
N1—C2—C7 | 105.0 (4) | C9—C10—H10 | 118 (3) |
C8—N3—C9 | 111.3 (4) | C10—C11—C12 | 121.1 (5) |
C8—N3—H3A | 129 (3) | C10—C11—H11 | 119 (3) |
C9—N3—H3A | 119 (3) | C12—C11—H11 | 120 (3) |
C2—C3—C4 | 117.0 (5) | C13—C12—C11 | 121.6 (6) |
C2—C3—H3 | 118 (3) | C13—C12—H12 | 121 (3) |
C4—C3—H3 | 125 (3) | C11—C12—H12 | 117 (3) |
C8—N4—C14 | 111.2 (4) | C14—C13—C12 | 117.7 (5) |
C8—N4—H4A | 120 (3) | C14—C13—H13 | 120 (3) |
C14—N4—H4A | 129 (3) | C12—C13—H13 | 122 (3) |
C3—C4—C5 | 121.3 (5) | C13—C14—N4 | 132.8 (4) |
C3—C4—H4 | 117 (3) | C13—C14—C9 | 121.0 (4) |
C5—C4—H4 | 122 (3) | N4—C14—C9 | 106.2 (4) |
C6—C5—C4 | 122.0 (5) | ||
C2—N1—C1—N2 | 0.9 (5) | C14—N4—C8—N3 | 1.7 (5) |
C2—N1—C1—S1 | 179.3 (3) | C14—N4—C8—S2 | −176.8 (3) |
Cu1—S1—C1—N2 | −11.7 (4) | C9—N3—C8—N4 | −1.8 (5) |
Cu1—S1—C1—N1 | 170.2 (3) | C9—N3—C8—S2 | 176.7 (3) |
N1—C1—N2—C7 | −0.8 (5) | Cu1—S2—C8—N4 | −4.7 (5) |
S1—C1—N2—C7 | −179.2 (3) | Cu1—S2—C8—N3 | 177.1 (4) |
C1—N1—C2—C3 | 178.4 (5) | C8—N3—C9—C10 | −178.4 (5) |
C1—N1—C2—C7 | −0.7 (5) | C8—N3—C9—C14 | 1.2 (5) |
N1—C2—C3—C4 | −179.6 (5) | N3—C9—C10—C11 | 178.5 (5) |
C7—C2—C3—C4 | −0.7 (7) | C14—C9—C10—C11 | −1.1 (7) |
C2—C3—C4—C5 | 0.7 (8) | C9—C10—C11—C12 | 0.6 (8) |
C3—C4—C5—C6 | −0.3 (8) | C10—C11—C12—C13 | 0.0 (9) |
C4—C5—C6—C7 | −0.2 (8) | C11—C12—C13—C14 | −0.2 (9) |
C1—N2—C7—C6 | −178.7 (5) | C12—C13—C14—N4 | −178.5 (5) |
C1—N2—C7—C2 | 0.4 (5) | C12—C13—C14—C9 | −0.3 (7) |
C5—C6—C7—N2 | 179.3 (5) | C8—N4—C14—C13 | 177.4 (5) |
C5—C6—C7—C2 | 0.3 (7) | C8—N4—C14—C9 | −1.0 (5) |
C3—C2—C7—N2 | −179.0 (4) | C10—C9—C14—C13 | 0.9 (7) |
N1—C2—C7—N2 | 0.2 (4) | N3—C9—C14—C13 | −178.7 (4) |
C3—C2—C7—C6 | 0.2 (7) | C10—C9—C14—N4 | 179.5 (4) |
N1—C2—C7—C6 | 179.4 (4) | N3—C9—C14—N4 | −0.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.70 (4) | 2.69 (4) | 3.384 (4) | 170 (5) |
N2—H2A···Br1 | 0.82 (4) | 2.65 (4) | 3.361 (4) | 146 (4) |
N4—H4A···Br1 | 0.84 (4) | 2.54 (4) | 3.364 (4) | 166 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
[CuI(C7H6N2S)2]·C3H6O | F(000) = 1080 |
Mr = 548.91 | Dx = 1.787 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 4.5154 (3) Å | Cell parameters from 5872 reflections |
b = 22.2157 (15) Å | θ = 2.2–26.6° |
c = 20.4062 (14) Å | µ = 2.80 mm−1 |
β = 94.818 (1)° | T = 293 K |
V = 2039.8 (2) Å3 | Needle, colourless |
Z = 4 | 0.38 × 0.14 × 0.08 mm |
Bruker CCD area detector diffractometer | 3597 independent reflections |
Radiation source: fine-focus sealed tube | 3200 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Frames, each covering 0.3 ° in ω scans | θmax = 25.0°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −5→5 |
Tmin = 0.749, Tmax = 1.000 | k = −26→26 |
14555 measured reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: mixed |
wR(F2) = 0.089 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0315P)2 + 4.5225P] where P = (Fo2 + 2Fc2)/3 |
3597 reflections | (Δ/σ)max = 0.002 |
247 parameters | Δρmax = 1.14 e Å−3 |
4 restraints | Δρmin = −0.90 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.2323 (2) | 0.42788 (3) | 0.63559 (3) | 0.0789 (2) | |
I1 | 0.34973 (7) | 0.31632 (2) | 0.65076 (2) | 0.06112 (13) | |
S1 | −0.1755 (4) | 0.45699 (6) | 0.57174 (7) | 0.0838 (5) | |
S2 | 0.3444 (3) | 0.50247 (5) | 0.70750 (6) | 0.0518 (3) | |
N1 | −0.1238 (9) | 0.35326 (17) | 0.50250 (18) | 0.0544 (9) | |
N2 | −0.4365 (10) | 0.41666 (16) | 0.45551 (19) | 0.0555 (10) | |
N3 | 0.7524 (8) | 0.42258 (15) | 0.76321 (17) | 0.0454 (8) | |
N4 | 0.6946 (8) | 0.50239 (16) | 0.82129 (18) | 0.0483 (8) | |
C1 | −0.2443 (12) | 0.4079 (2) | 0.5087 (2) | 0.0548 (11) | |
C2 | −0.2433 (10) | 0.32568 (19) | 0.4450 (2) | 0.0476 (10) | |
C3 | −0.1898 (11) | 0.2710 (2) | 0.4161 (2) | 0.0557 (11) | |
H3 | −0.054352 | 0.243569 | 0.435797 | 0.067* | |
C4 | −0.3470 (11) | 0.2590 (2) | 0.3568 (2) | 0.0592 (12) | |
H4 | −0.316081 | 0.222687 | 0.335867 | 0.071* | |
C5 | −0.5483 (12) | 0.2993 (2) | 0.3277 (2) | 0.0610 (13) | |
H5 | −0.651343 | 0.289205 | 0.287859 | 0.073* | |
C6 | −0.6020 (12) | 0.3539 (2) | 0.3555 (2) | 0.0579 (12) | |
H6 | −0.737871 | 0.381133 | 0.335589 | 0.070* | |
C7 | −0.4427 (10) | 0.36649 (18) | 0.4150 (2) | 0.0479 (10) | |
C8 | 0.6017 (9) | 0.47473 (18) | 0.7644 (2) | 0.0442 (10) | |
C9 | 0.9438 (9) | 0.41641 (18) | 0.8198 (2) | 0.0438 (9) | |
C10 | 1.1416 (10) | 0.3719 (2) | 0.8413 (2) | 0.0541 (11) | |
H10 | 1.170348 | 0.337767 | 0.816134 | 0.065* | |
C11 | 1.2951 (11) | 0.3804 (2) | 0.9021 (3) | 0.0619 (13) | |
H11 | 1.428668 | 0.351140 | 0.918471 | 0.074* | |
C12 | 1.2554 (11) | 0.4315 (2) | 0.9394 (2) | 0.0620 (13) | |
H12 | 1.362526 | 0.435638 | 0.980133 | 0.074* | |
C13 | 1.0610 (10) | 0.4761 (2) | 0.9175 (2) | 0.0550 (11) | |
H13 | 1.035593 | 0.510598 | 0.942271 | 0.066* | |
C14 | 0.9046 (9) | 0.46766 (19) | 0.8569 (2) | 0.0458 (10) | |
C15 | 0.1969 (15) | 0.6773 (3) | 0.9353 (3) | 0.0795 (17) | |
H15A | 0.041024 | 0.704543 | 0.919993 | 0.119* | |
H15B | 0.126452 | 0.650874 | 0.967768 | 0.119* | |
H15C | 0.363937 | 0.699853 | 0.954390 | 0.119* | |
C16 | 0.2888 (11) | 0.6414 (2) | 0.8792 (2) | 0.0553 (11) | |
C17 | 0.1359 (14) | 0.6534 (3) | 0.8138 (3) | 0.0797 (16) | |
H17A | −0.010436 | 0.684287 | 0.817434 | 0.120* | |
H17B | 0.278159 | 0.666406 | 0.784409 | 0.120* | |
H17C | 0.040343 | 0.617277 | 0.797060 | 0.120* | |
O1 | 0.4835 (9) | 0.60411 (17) | 0.88765 (19) | 0.0792 (11) | |
H1A | −0.007 (11) | 0.339 (3) | 0.534 (2) | 0.095* | |
H2A | −0.543 (12) | 0.4484 (18) | 0.449 (3) | 0.095* | |
H3A | 0.733 (14) | 0.398 (2) | 0.731 (2) | 0.095* | |
H4A | 0.617 (13) | 0.5354 (16) | 0.832 (3) | 0.095* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.1375 (7) | 0.0464 (4) | 0.0480 (3) | 0.0166 (4) | −0.0207 (4) | −0.0050 (3) |
I1 | 0.0590 (2) | 0.03985 (18) | 0.0816 (3) | 0.00121 (13) | −0.01114 (16) | −0.00181 (14) |
S1 | 0.1445 (14) | 0.0479 (7) | 0.0528 (7) | 0.0360 (8) | −0.0277 (8) | −0.0143 (6) |
S2 | 0.0627 (7) | 0.0405 (6) | 0.0517 (6) | 0.0037 (5) | 0.0028 (5) | −0.0012 (5) |
N1 | 0.077 (3) | 0.040 (2) | 0.045 (2) | 0.0109 (19) | −0.0036 (19) | −0.0014 (16) |
N2 | 0.078 (3) | 0.039 (2) | 0.049 (2) | 0.0103 (19) | −0.0031 (19) | −0.0006 (17) |
N3 | 0.049 (2) | 0.0382 (19) | 0.050 (2) | 0.0005 (16) | 0.0054 (16) | −0.0060 (15) |
N4 | 0.057 (2) | 0.039 (2) | 0.049 (2) | 0.0016 (17) | 0.0093 (17) | −0.0059 (17) |
C1 | 0.083 (3) | 0.039 (2) | 0.042 (2) | 0.009 (2) | 0.001 (2) | −0.0012 (19) |
C2 | 0.061 (3) | 0.040 (2) | 0.043 (2) | −0.003 (2) | 0.012 (2) | 0.0001 (18) |
C3 | 0.066 (3) | 0.041 (2) | 0.062 (3) | 0.004 (2) | 0.014 (2) | −0.005 (2) |
C4 | 0.077 (3) | 0.044 (3) | 0.059 (3) | −0.011 (2) | 0.018 (3) | −0.014 (2) |
C5 | 0.078 (3) | 0.055 (3) | 0.050 (3) | −0.018 (3) | 0.006 (2) | −0.007 (2) |
C6 | 0.072 (3) | 0.049 (3) | 0.051 (3) | −0.008 (2) | −0.002 (2) | 0.004 (2) |
C7 | 0.064 (3) | 0.037 (2) | 0.043 (2) | −0.004 (2) | 0.010 (2) | 0.0021 (18) |
C8 | 0.045 (2) | 0.040 (2) | 0.049 (2) | −0.0065 (18) | 0.0120 (19) | −0.0023 (18) |
C9 | 0.043 (2) | 0.042 (2) | 0.047 (2) | −0.0049 (18) | 0.0097 (18) | −0.0012 (18) |
C10 | 0.055 (3) | 0.049 (3) | 0.060 (3) | 0.002 (2) | 0.010 (2) | −0.004 (2) |
C11 | 0.058 (3) | 0.063 (3) | 0.065 (3) | 0.009 (2) | 0.005 (2) | 0.007 (2) |
C12 | 0.060 (3) | 0.077 (3) | 0.049 (3) | −0.002 (3) | 0.003 (2) | −0.001 (2) |
C13 | 0.060 (3) | 0.057 (3) | 0.048 (3) | −0.003 (2) | 0.009 (2) | −0.008 (2) |
C14 | 0.045 (2) | 0.043 (2) | 0.051 (2) | −0.0016 (19) | 0.0104 (19) | −0.0014 (19) |
C15 | 0.100 (4) | 0.072 (4) | 0.067 (3) | 0.025 (3) | 0.007 (3) | −0.006 (3) |
C16 | 0.063 (3) | 0.046 (3) | 0.057 (3) | 0.001 (2) | 0.007 (2) | −0.004 (2) |
C17 | 0.088 (4) | 0.088 (4) | 0.064 (3) | 0.006 (3) | 0.006 (3) | 0.001 (3) |
O1 | 0.094 (3) | 0.065 (2) | 0.077 (2) | 0.029 (2) | −0.002 (2) | −0.0166 (19) |
Cu1—S2 | 2.2430 (13) | C5—C6 | 1.369 (7) |
Cu1—S1 | 2.2594 (17) | C5—H5 | 0.9300 |
Cu1—I1 | 2.5479 (7) | C6—C7 | 1.386 (6) |
S1—C1 | 1.696 (4) | C6—H6 | 0.9300 |
S2—C8 | 1.689 (4) | C9—C10 | 1.380 (6) |
N1—C1 | 1.341 (6) | C9—C14 | 1.387 (6) |
N1—C2 | 1.391 (6) | C10—C11 | 1.383 (7) |
N1—H1A | 0.86 (2) | C10—H10 | 0.9300 |
N2—C1 | 1.345 (6) | C11—C12 | 1.386 (7) |
N2—C7 | 1.387 (5) | C11—H11 | 0.9300 |
N2—H2A | 0.86 (2) | C12—C13 | 1.374 (7) |
N3—C8 | 1.345 (5) | C12—H12 | 0.9300 |
N3—C9 | 1.390 (5) | C13—C14 | 1.384 (6) |
N3—H3A | 0.85 (2) | C13—H13 | 0.9300 |
N4—C8 | 1.348 (5) | C15—C16 | 1.484 (7) |
N4—C14 | 1.381 (6) | C15—H15A | 0.9600 |
N4—H4A | 0.85 (2) | C15—H15B | 0.9600 |
C2—C3 | 1.381 (6) | C15—H15C | 0.9600 |
C2—C7 | 1.384 (6) | C16—O1 | 1.209 (6) |
C3—C4 | 1.376 (7) | C16—C17 | 1.474 (7) |
C3—H3 | 0.9300 | C17—H17A | 0.9600 |
C4—C5 | 1.375 (7) | C17—H17B | 0.9600 |
C4—H4 | 0.9300 | C17—H17C | 0.9600 |
S2—Cu1—S1 | 107.10 (5) | N2—C7—C6 | 131.8 (4) |
S2—Cu1—I1 | 127.30 (4) | N3—C8—N4 | 106.7 (4) |
S1—Cu1—I1 | 119.98 (5) | N3—C8—S2 | 128.4 (3) |
C1—S1—Cu1 | 110.01 (18) | N4—C8—S2 | 124.9 (3) |
C8—S2—Cu1 | 106.54 (15) | C10—C9—C14 | 121.6 (4) |
C1—N1—C2 | 110.3 (4) | C10—C9—N3 | 132.5 (4) |
C1—N1—H1A | 120 (4) | C14—C9—N3 | 105.9 (4) |
C2—N1—H1A | 129 (4) | C9—C10—C11 | 116.6 (4) |
C1—N2—C7 | 110.1 (4) | C9—C10—H10 | 121.7 |
C1—N2—H2A | 124 (4) | C11—C10—H10 | 121.7 |
C7—N2—H2A | 126 (4) | C10—C11—C12 | 121.8 (5) |
C8—N3—C9 | 110.5 (3) | C10—C11—H11 | 119.1 |
C8—N3—H3A | 123 (4) | C12—C11—H11 | 119.1 |
C9—N3—H3A | 126 (4) | C13—C12—C11 | 121.3 (5) |
C8—N4—C14 | 110.4 (4) | C13—C12—H12 | 119.3 |
C8—N4—H4A | 121 (4) | C11—C12—H12 | 119.3 |
C14—N4—H4A | 128 (4) | C12—C13—C14 | 117.2 (4) |
N1—C1—N2 | 107.1 (4) | C12—C13—H13 | 121.4 |
N1—C1—S1 | 127.1 (4) | C14—C13—H13 | 121.4 |
N2—C1—S1 | 125.7 (3) | N4—C14—C13 | 132.1 (4) |
C3—C2—C7 | 121.2 (4) | N4—C14—C9 | 106.6 (4) |
C3—C2—N1 | 132.7 (4) | C13—C14—C9 | 121.4 (4) |
C7—C2—N1 | 106.1 (4) | C16—C15—H15A | 109.5 |
C4—C3—C2 | 116.7 (5) | C16—C15—H15B | 109.5 |
C4—C3—H3 | 121.7 | H15A—C15—H15B | 109.5 |
C2—C3—H3 | 121.7 | C16—C15—H15C | 109.5 |
C5—C4—C3 | 121.9 (4) | H15A—C15—H15C | 109.5 |
C5—C4—H4 | 119.1 | H15B—C15—H15C | 109.5 |
C3—C4—H4 | 119.1 | O1—C16—C17 | 122.2 (5) |
C6—C5—C4 | 122.1 (5) | O1—C16—C15 | 120.4 (5) |
C6—C5—H5 | 119.0 | C17—C16—C15 | 117.4 (5) |
C4—C5—H5 | 119.0 | C16—C17—H17A | 109.5 |
C5—C6—C7 | 116.4 (5) | C16—C17—H17B | 109.5 |
C5—C6—H6 | 121.8 | H17A—C17—H17B | 109.5 |
C7—C6—H6 | 121.8 | C16—C17—H17C | 109.5 |
C2—C7—N2 | 106.4 (4) | H17A—C17—H17C | 109.5 |
C2—C7—C6 | 121.7 (4) | H17B—C17—H17C | 109.5 |
C2—N1—C1—N2 | −1.0 (6) | C9—N3—C8—N4 | 0.1 (5) |
C2—N1—C1—S1 | 178.0 (4) | C9—N3—C8—S2 | −179.9 (3) |
C7—N2—C1—N1 | 0.9 (6) | C14—N4—C8—N3 | −0.3 (5) |
C7—N2—C1—S1 | −178.2 (4) | C14—N4—C8—S2 | 179.6 (3) |
Cu1—S1—C1—N1 | 13.2 (5) | Cu1—S2—C8—N3 | 10.3 (4) |
Cu1—S1—C1—N2 | −168.0 (4) | Cu1—S2—C8—N4 | −169.7 (3) |
C1—N1—C2—C3 | 178.4 (5) | C8—N3—C9—C10 | −180.0 (5) |
C1—N1—C2—C7 | 0.8 (5) | C8—N3—C9—C14 | 0.2 (5) |
C7—C2—C3—C4 | −0.8 (7) | C14—C9—C10—C11 | 1.0 (7) |
N1—C2—C3—C4 | −178.1 (5) | N3—C9—C10—C11 | −178.8 (4) |
C2—C3—C4—C5 | −0.2 (7) | C9—C10—C11—C12 | −0.7 (7) |
C3—C4—C5—C6 | 0.8 (8) | C10—C11—C12—C13 | −0.1 (8) |
C4—C5—C6—C7 | −0.2 (7) | C11—C12—C13—C14 | 0.6 (7) |
C3—C2—C7—N2 | −178.2 (4) | C8—N4—C14—C13 | −179.3 (5) |
N1—C2—C7—N2 | −0.3 (5) | C8—N4—C14—C9 | 0.4 (5) |
C3—C2—C7—C6 | 1.4 (7) | C12—C13—C14—N4 | 179.3 (5) |
N1—C2—C7—C6 | 179.3 (4) | C12—C13—C14—C9 | −0.3 (7) |
C1—N2—C7—C2 | −0.4 (5) | C10—C9—C14—N4 | 179.8 (4) |
C1—N2—C7—C6 | −179.9 (5) | N3—C9—C14—N4 | −0.4 (4) |
C5—C6—C7—C2 | −0.8 (7) | C10—C9—C14—C13 | −0.5 (7) |
C5—C6—C7—N2 | 178.6 (5) | N3—C9—C14—C13 | 179.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···I1 | 0.86 (2) | 2.81 (2) | 3.649 (4) | 167 (6) |
N2—H2A···S1i | 0.86 (2) | 2.47 (2) | 3.331 (4) | 176 (6) |
N3—H3A···I1 | 0.85 (2) | 2.91 (4) | 3.666 (3) | 148 (5) |
N4—H4A···O1 | 0.85 (2) | 2.02 (3) | 2.840 (5) | 161 (6) |
C15—H15A···I1ii | 0.96 | 3.31 | 4.240 (6) | 165 |
Symmetry codes: (i) −x−1, −y+1, −z+1; (ii) −x, y+1/2, −z+3/2. |
Compound | ν(N—H) | Thioamide band I | Thioamide band II | Thioamide band III | Thioamide band IV | δ (C═S) |
bimztH2 | 3155 | 1468 | 1357 | 1181 | 744, 713 | 602 |
(1) | 3201, 3383 | 1470 | 1360 | 1180 | 734 | 598 |
(2) | 3202, 3385 | 1470 | 1361 | 1175 | 734 | 598 |
Compound | H4, H7 | H5, H6 | N—H |
bimztH2 | 7.49 (4H, m) | 7.49 (4H, m) | 13.28 (br, s) |
(1) | 7.26 (2H, dd, J = 6.3 Hz) | 7.19 (2H, dd, J = 5.5 Hz) | 12.87 (br, s) |
(2) | 7.58 (2H, s) | 7.58 (2H, s) | 13.57 (br, s) |
Compound | C2 (C═S) | C4,7 (CH) | C5,6 (CH) | C8,9 (C) |
bimztH2 | 168.34 | 109.75 | 122.59 | 132.48 |
(1) | 165.11 | 110.35 | 123.06 | 132.06 |
(2) | 164.10 | 110.65 | 123.29 | 131.96 |
Footnotes
‡IUCr13360.
Funding information
The authors thank the Department of Chemistry, Faculty of Science and Graduate School, Prince of Songkla University, for a scholarship. We are also grateful to the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education, the Department of Chemistry and the Graduate school, Prince of Songkla University, for supporting the characterization of single-crystal analysis.
References
Aslanidis, P., Cox, P. J., Karagiannidis, P., Hadjikakou, S. & Antoniadis, C. D. (2002). Eur. J. Inorg. Chem. pp. 2216–2222. CrossRef Google Scholar
Atkinson, E. R., Raper, E. S., Gardiner, D. J., Dawes, H. M., Walker, N. P. C. & Jackson, A. R. W. (1985). Inorg. Chim. Acta, 100, 285–291. CSD CrossRef CAS Google Scholar
Balamurugan, R., Palaniandavar, M. & Gopalan, R. S. (2001). Inorg. Chem. 40, 2246–2255. Web of Science CSD CrossRef PubMed CAS Google Scholar
Berchmans, S., Arivukkodi, S. & Yegnaraman, V. (2000). Electrochem. Commun. 2, 226–229. CrossRef CAS Google Scholar
Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Coucouvanis, D., Murphy, C. N. & Kanodia, S. (1980). Inorg. Chem. 19, 2993–2998. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Finšgar, M. (2013). Corros. Sci. 72, 82–89. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Han, S.-D., Miao, X.-H., Liu, S.-J. & Bu, X.-H. (2015). Dalton Trans. 44, 560–567. CSD CrossRef PubMed Google Scholar
Isab, A. A., Fettouhi, M., Ahmad, S. & Ouahab, L. (2003). Polyhedron, 22, 1349–1354. CSD CrossRef CAS Google Scholar
Jolley, J., Cross, W. I., Pritchard, R. G., McAuliffe, C. A. & Nolan, K. B. (2001). Inorg. Chim. Acta, 315, 36–43. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Manohar, D. M., Krishnan, K. A. & Anirudhan, T. S. (2002). Water Res. 36, 1609–1619. CrossRef PubMed CAS Google Scholar
Moldovan, Z. & Alexandrescu, L. (2002). Acta Chim. Slov. 49, 909–916. CAS Google Scholar
Raper, E. S., Creighton, J. R., Wilson, J. D., Clegg, W. & Milne, A. (1988). Inorg. Chim. Acta, 149, 265–271. CSD CrossRef CAS Google Scholar
Ravikumar, K., Mohan, K. C., Bidyasagar, M. & Swamy, G. Y. S. K. (1995). J. Chem. Crystallogr. 25, 325–329. CSD CrossRef CAS Google Scholar
Rout, G. C., Seshasayee, M., Aravamudan, G. & Sowrirajan, S. (1984). Polyhedron, 3, 921–927. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, A., Singh, A., Singh, N. & Jang, D. O. (2017). Sens. Actuators B Chem. 243, 372–379. CSD CrossRef CAS Google Scholar
Suzuki, I. (1962). Bull. Chem. Soc. Jpn, 35, 1449–1456. CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Vanallan, J. A. & Deacon, B. D. (1971). Org. Synth. Coll. 30, 56. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wongwattana, P. (2004). Proton pump inhibitors. The Pill Book 3, pp. 1–96, Bangkok: Folk Doctor Press. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.