research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-(tert-butyl­amino)-3-mesitylpropan-2-ol hemi­hydrate

crossmark logo

a"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, bDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az 1148, Baku, Azerbaijan, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and fAcad. Sci. Republ. Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biol Inst, 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by J. Reibenspies, Texas A & M University, USA (Received 21 March 2022; accepted 21 April 2022; online 28 April 2022)

The title compound, 2C16H27NO·H2O, crystallizes in the monoclinic P21/c space group with two independent mol­ecules (A and B) in the asymmetric unit. In the crystal, mol­ecules A and B are linked through the water mol­ecules by inter­molecular O—H⋯O and O—H⋯N hydrogen bonds, producing chains along the b-axis direction. These chains are linked with neighboring chains parallel to the (103) plane via C—H⋯π inter­actions, generating ribbons along the b-axis direction. The stability of the mol­ecular packaging is ensured by van der Waals inter­actions between the ribbons. According to the Hirshfeld surface study, H⋯H inter­actions are the most significant contributors to the crystal packing (80.3% for mol­ecule A and 84.8% for mol­ecule B).

1. Chemical context

Amine group-containing compounds are of great inter­est in the fields of organic synthesis, catalysis, material science and medicinal chemistry (Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]; Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628-633.]). In particular, the β-amino alcohol moiety is the predominant structural motif in a series of natural and synthetic biologically active mol­ecules (Lee & Kang, 2004[Lee, H.-S. & Kang, S. H. (2004). Synlett, pp. 1673-1685.]). Amino alcohol derivatives are currently being studied for their anti­microbial, anti­fungal, anti­oxidant, cytotoxic, enzyme inhibitory and other important biological activities, which have been well documented in recent works (Baker et al., 2021[Baker, J. R., Russell, C. C., Gilbert, J., McCluskey, A. & Sakoff, J. A. (2021). Med. Chem. 12, 929-942.]; Estolano-Cobián et al., 2020[Estolano-Cobián, A., Noriega-Iribe, E., Díaz-Rubio, L., Padrón, J. M., Brito-Perea, M., Cornejo-Bravo, J. M., Chávez, D., Rivera, R. R., Quintana-Melgoza, J. M., Cruz-Reyes, J. & Córdova-Guerrero, I. (2020). Med. Chem. Res. 29, 1986-1999.]; Tafelska-Kaczmarek et al., 2020[Tafelska-Kaczmarek, A., Kołodziejska, R., Kwit, M., Stasiak, B., Wypij, M. & Golinska, P. (2020). Materials, 13, 4080.]).

[Scheme 1]

In this study, in the framework of ongoing structural studies (Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Krist. New Cryst. Struct. 234, 1183-1185.]; Aliyeva et al., 2011[Aliyeva, K. N., Maharramov, A. M., Allahverdiyev, M. A., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o2293.]; Mamedov et al., 2022[Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291-296.]), we report the crystal structure and Hirshfeld surface analysis of the title compound, 1-(tert-butyl­amino)-3-mesitylpropan-2-ol hemihydrate.

2. Structural commentary

The title compound (Fig. 1[link]) contains the two independent mol­ecules (mol­ecule A containing atom N1 and mol­ecule B containing N2) in the asymmetric unit. As shown in Fig. 2[link] (r.m.s. deviation = 0.006 Å), while the 1,2,3,5-tetra­methyl­benzene parts of mol­ecules A and B are overlapped, their 2-(tert-butyl­amino)­ethan-1-ol moieties do not overlap, but rather are oriented in opposite directions. Atoms C2 in mol­ecule A and C18 in mol­ecule B have opposite chiralities. The chirality about the C2 atom is R and that about C18, S. The values of the geometric parameters of mol­ecules A and B are normal and compatible with those of the related compounds mentioned in the Database survey section.

[Figure 1]
Figure 1
View of the two independent mol­ecules, A and B, in the asymmetric unit of the title compound, with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. For clarity, the minor components of disorder in mol­ecule B are omitted.
[Figure 2]
Figure 2
Overlay image of the two independent mol­ecules (A and B) in the asymmetric unit of the title compound. Both the major and minor components of disorder in mol­ecule B are shown. Color code: carbon (gray), hydrogen (white), nitro­gen (blue) and oxygen (red).

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules A and B are linked through the water mol­ecules by inter­molecular O—H⋯O and O—H⋯N hydrogen bonds (Table 1[link]; Figs. 3[link] and 4[link]), forming chains along the b-axis direction. These chains are linked by C—H⋯π inter­actions with neighboring chains parallel to the (103) plane, forming ribbons along the b-axis direction (Table 1[link]; Figs. 5[link] and 6[link]). The stability of the mol­ecular packing is ensured by van der Waals inter­actions between the ribbons.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the benzene ring (C4–C9) of mol­ecule A.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3 0.91 (2) 1.82 (2) 2.725 (5) 173 (2)
O1—H1O⋯O3′ 0.91 (2) 1.82 (2) 2.697 (6) 161 (2)
O2—H2O⋯N1 0.91 (2) 1.83 (2) 2.7273 (13) 168.0 (19)
O3—H3C⋯O2i 0.95 (2) 1.83 (2) 2.753 (3) 162 (2)
O3′—H3C⋯O2i 0.92 (2) 1.83 (2) 2.685 (4) 153 (2)
O3—H3D⋯N2 0.98 (3) 1.87 (3) 2.827 (3) 164 (2)
O3′—H3D⋯N2 1.07 (3) 1.87 (3) 2.875 (5) 155 (2)
C11—H11BCg2ii 0.98 2.90 3.7613 (17) 147
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A view of the inter­molecular O—H⋯O and O—H⋯N inter­actions along the a axis in the crystal structure of the title compound. For clarity, H atoms not involved in hydrogen bonding and the minor disorder components in mol­ecule B are omitted.
[Figure 4]
Figure 4
A view of the inter­molecular O—H⋯O and O—H⋯N inter­actions along the b axis in the crystal structure of the title compound. For clarity, H atoms not involved in hydrogen bonding and the minor disorder components in mol­ecule B are omitted.
[Figure 5]
Figure 5
A view of the inter­molecular O—H⋯O and O—H⋯N inter­actions and C—H⋯π inter­actions along the a axis in the crystal structure of the title compound. For clarity, H atoms not involved in hydrogen bonding and the minor disorder components in mol­ecule B are omitted.
[Figure 6]
Figure 6
A view of the inter­molecular O—H⋯O and O—H⋯N inter­actions and C—H⋯π inter­actions along the b axis in the crystal structure of the title compound. For clarity, H atoms not involved in hydrogen bonding and the minor disorder components in mol­ecule B are omitted.

Hirshfeld surfaces were generated for both independent mol­ecules using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net]). The dnorm mappings for mol­ecules A and B were performed in the ranges −0.6784 to 1.2952 a.u. and −0.6765 to 1.3828 a.u., respectively. The O—H⋯O and O—H⋯N inter­actions are indicated by red areas on the Hirshfeld surfaces (Fig. 7[link]a,b for A and Fig. 7[link]c,d for B).

[Figure 7]
Figure 7
Front (a) and back (b) views of the three-dimensional Hirshfeld surface for mol­ecule A. Front (c) and back (d) views of the three-dimensional Hirshfeld surface for mol­ecule B. Some inter­molecular O—H⋯O and O—H⋯N inter­actions are shown.

Fingerprint plots (Fig. 8[link]) reveal that while H⋯H inter­actions (80.3% for mol­ecule A and 84.8% for mol­ecule B) make the largest contributions to surface contacts (Tables 1[link] and 2[link]), C⋯H/H⋯C contacts (13.0% for mol­ecule A and 9.1% for mol­ecule B) are also important. Other, less notable linkages are O⋯H/H⋯O (5.7% contribution for mol­ecule A and 4.3% for mol­ecule B) and N⋯H/H⋯N (1.0% for mol­ecule A and 1.8% for mol­ecule B). The surroundings of mol­ecules A and B are very similar, as can be observed from the comparison of the supplied data.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
O2⋯H3C 1.83 x, 1 + y, z
H2O⋯N1 1.83 x, y, z
N2⋯H3D 1.87 x, y, z
H26C⋯H15B 2.58 1 − x, 2 − y, 1 − z
*H31D⋯H17B 2.34 x, − 1 + y, z
*H32B⋯*H30E 2.50 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
H24⋯H3B 2.39 −1 + x, y, z
H26B⋯H15C 2.58 1 − x, 1 − y, 1 − z
*H30C⋯C10 3.00 x, −1 + y, z
*H31B⋯H6 2.44 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
*H32D⋯H11C 2.48 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
H1O⋯*O3′ 1.82 x, y, z
H1O⋯H1B 2.46 x, −1 + y, z
C9⋯H11B 2.84 2 − x, [{1\over 2}] + y, [{1\over 2}] − z
H16C⋯*O3′ 2.89 x, 1 + y, z
The prefix * denotes atoms of the disordered parts of the mol­ecules.
[Figure 8]
Figure 8
The two-dimensional fingerprint plots for mol­ecules A and B of the title compound showing (a) all inter­actions, and delineated into (b) H⋯H and (c) C⋯H/H⋯C inter­actions. The dĩ and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

Two related compounds were found in a search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), viz. 1-methyl­amino-3-(2,4,6-tri­methyl­phen­yl)propan-2-ol (ULIMUY; Maharramov et al., 2011a[Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011a). Acta Cryst. E67, o784.]) and 3-[2-hy­droxy-3-(2,4,6-tri­methyl­phen­yl)prop­yl]-3-methyl-1-phenyl­thio­urea (URAPOT; Maharramov et al., 2011b[Maharramov, A. M., Khalilov, A. N., Sadikhova, N. D., Gurbanov, A. V. & Ng, S. W. (2011b). Acta Cryst. E67, o1087.]).

In ULIMUY, the methyl­amino­propyl chain adopts an extended zigzag conformation and the N atom shows a trigonal coordination. The N atom acts as hydrogen-bond acceptor to the hy­droxy group of an adjacent mol­ecule to generate a helical chain running along the b-axis of the monoclinic unit cell.

In URAPOT, the four-atoms N—C(=S)—N unit is planar (r.m.s. deviation of 0.005 Å); the phenyl ring connected to one of the two flanking N atoms is twisted out of this plane by 28.6 (1)°. The propyl chain connected to the other N atom bears a hy­droxy substituent; this serves as hydrogen-bond donor and acceptor to the double-bonded S atom of an inversion-related mol­ecule, generating a hydrogen-bonded dimer.

5. Synthesis and crystallization

The title compound was synthesized using our previously reported procedure (Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761-11773.]), and colorless crystals were obtained upon recrystallization from an ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Carbon-bound H atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å; Uiso(H) = 1.2 or 1.5Ueq(C)] and were included in the refinement in the riding-model approximation. The hy­droxy and amino H atoms were located in a difference Fourier map, and were freely refined [O1—H1O = 0.91 (2) Å, O2—H2O = 0.91 (2) Å, N1—H1N = 0.922 (16) Å and N2—H2N = 0.922 (18) Å]. In mol­ecule B, the methyl groups of the 2-methyl­propane moiety are disordered over two sets of sites with an occupancy ratio of 0.65 (3):0.35 (3). The water mol­ecule is disordered over two positions with an occupancy ratio of 0.59 (3):0.41 (3). The two H atoms of the water mol­ecule were found in a difference-Fourier map and freely refined [O3—H3C = 0.95 (2) Å, O3—H3D = 0.98 (3) Å, O3′—H3C = 0.92 (2) Å and O3′—H3D = 1.07 (3) Å]. The anisotropic displacement parameters of the O3 and O3′ atoms of the disordered water mol­ecule were restrained to be equal (SIMU). SADI and DFIX commands were used for the treatment of the disordered methyl groups of the 2-methyl­propane moiety of mol­ecule B.

Table 3
Experimental details

Crystal data
Chemical formula 2C16H27NO·H2O
Mr 516.79
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.06508 (16), 5.81242 (6), 41.7384 (5)
β (°) 93.3315 (11)
V3) 3164.25 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.53
Crystal size (mm) 0.36 × 0.12 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.])
Tmin, Tmax 0.805, 0.941
No. of measured, independent and observed [I > 2σ(I)] reflections 40427, 6866, 6251
Rint 0.041
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 1.09
No. of reflections 6866
No. of parameters 411
No. of restraints 21
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.20
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

1-(tert-Butylamino)-3-(2,4,6-trimethylphenyl)propan-2-ol hemihydrate top
Crystal data top
2C16H27NO·H2OF(000) = 1144
Mr = 516.79Dx = 1.085 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 13.06508 (16) ÅCell parameters from 22446 reflections
b = 5.81242 (6) Åθ = 2.2–79.1°
c = 41.7384 (5) ŵ = 0.53 mm1
β = 93.3315 (11)°T = 100 K
V = 3164.25 (6) Å3Plate, colourless
Z = 40.36 × 0.12 × 0.06 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
6251 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.041
φ and ω scansθmax = 79.7°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1616
Tmin = 0.805, Tmax = 0.941k = 67
40427 measured reflectionsl = 5352
6866 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.9632P]
where P = (Fo2 + 2Fc2)/3
6866 reflections(Δ/σ)max = 0.001
411 parametersΔρmax = 0.19 e Å3
21 restraintsΔρmin = 0.20 e Å3
Special details top

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.83664 (7)0.63481 (14)0.38179 (2)0.02938 (18)
H1O0.7755 (17)0.562 (4)0.3786 (5)0.068 (6)*
N10.75396 (7)0.93228 (16)0.42788 (2)0.02387 (19)
H1N0.7600 (11)0.774 (3)0.4290 (3)0.031 (4)*
C10.82855 (8)1.01229 (19)0.40524 (3)0.0256 (2)
H1A0.89890.99690.41520.031*
H1B0.81631.17690.40030.031*
C20.81900 (8)0.87226 (18)0.37442 (3)0.0252 (2)
H20.74810.89050.36440.030*
C30.89639 (9)0.9587 (2)0.35095 (3)0.0293 (2)
H3A0.88701.12660.34810.035*
H3B0.96650.93340.36060.035*
C40.88794 (9)0.8449 (2)0.31835 (3)0.0291 (2)
C50.81775 (9)0.9285 (2)0.29442 (3)0.0325 (3)
C60.81180 (9)0.8239 (2)0.26423 (3)0.0360 (3)
H60.76420.88170.24810.043*
C70.87307 (10)0.6384 (2)0.25699 (3)0.0363 (3)
C80.94234 (10)0.5581 (2)0.28094 (3)0.0359 (3)
H80.98510.43140.27640.043*
C90.95115 (9)0.6570 (2)0.31138 (3)0.0322 (3)
C100.74982 (11)1.1329 (2)0.30008 (3)0.0393 (3)
H10A0.70971.10340.31880.059*
H10B0.70331.15800.28110.059*
H10C0.79241.27000.30400.059*
C110.86603 (12)0.5272 (3)0.22430 (3)0.0462 (3)
H11A0.83620.37320.22590.069*
H11B0.93480.51500.21620.069*
H11C0.82250.62100.20950.069*
C121.03108 (10)0.5649 (3)0.33569 (3)0.0400 (3)
H12A1.06200.42560.32720.060*
H12B0.99870.52790.35570.060*
H12C1.08430.68140.34000.060*
C130.76617 (8)1.02608 (19)0.46103 (3)0.0247 (2)
C140.86787 (9)0.9562 (2)0.47850 (3)0.0336 (3)
H14A0.87260.78800.47940.050*
H14B0.87101.01820.50040.050*
H14C0.92501.01760.46690.050*
C150.67782 (9)0.9273 (2)0.47916 (3)0.0288 (2)
H15A0.61250.98470.46950.043*
H15B0.68530.97480.50170.043*
H15C0.67900.75890.47790.043*
C160.75688 (10)1.2882 (2)0.45967 (3)0.0306 (2)
H16A0.81511.35220.44880.046*
H16B0.75681.34970.48150.046*
H16C0.69281.33060.44780.046*
O20.57184 (6)1.06462 (16)0.39828 (2)0.0352 (2)
H2O0.6278 (15)1.004 (3)0.4093 (5)0.062 (5)*
N20.50806 (8)0.78162 (18)0.34494 (2)0.0306 (2)
H2N0.5598 (13)0.887 (3)0.3424 (4)0.047 (4)*
C170.43655 (8)0.8875 (2)0.36627 (3)0.0283 (2)
H17A0.37460.79010.36710.034*
H17B0.41511.03990.35770.034*
C180.48579 (8)0.91565 (19)0.39983 (3)0.0264 (2)
H180.50960.76200.40810.032*
C190.41002 (9)1.01744 (19)0.42282 (3)0.0271 (2)
H19A0.44651.04140.44400.032*
H19B0.38761.17020.41460.032*
C200.31558 (8)0.87209 (19)0.42747 (2)0.0244 (2)
C210.32295 (8)0.67813 (19)0.44783 (2)0.0246 (2)
C220.23623 (9)0.5454 (2)0.45241 (3)0.0269 (2)
H220.24240.41390.46590.032*
C230.14096 (9)0.5996 (2)0.43785 (3)0.0286 (2)
C240.13486 (8)0.7904 (2)0.41774 (3)0.0287 (2)
H240.07040.82980.40750.034*
C250.21998 (9)0.92618 (19)0.41200 (3)0.0264 (2)
C260.42242 (9)0.6101 (2)0.46563 (3)0.0288 (2)
H26A0.47270.56670.45020.043*
H26B0.41030.47930.47970.043*
H26C0.44880.74030.47850.043*
C270.04768 (9)0.4554 (2)0.44353 (3)0.0369 (3)
H27A0.02400.48880.46490.055*
H27B0.06540.29200.44220.055*
H27C0.00700.49170.42720.055*
C280.20503 (9)1.1238 (2)0.38851 (3)0.0317 (2)
H28A0.23941.26130.39740.047*
H28B0.13161.15490.38470.047*
H28C0.23441.08280.36820.047*
C290.46433 (9)0.7090 (2)0.31290 (3)0.0363 (3)
C300.5508 (4)0.5955 (11)0.29559 (17)0.074 (2)0.65 (3)
H30A0.60910.70130.29520.111*0.65 (3)
H30B0.52660.55830.27350.111*0.65 (3)
H30C0.57220.45400.30690.111*0.65 (3)
C310.3778 (4)0.5356 (8)0.31656 (15)0.0441 (12)0.65 (3)
H31A0.39920.42120.33290.066*0.65 (3)
H31B0.36210.45830.29600.066*0.65 (3)
H31C0.31660.61620.32320.066*0.65 (3)
C320.4236 (5)0.9172 (8)0.29385 (14)0.0441 (12)0.65 (3)
H32A0.37000.99270.30550.066*0.65 (3)
H32B0.39500.86680.27280.066*0.65 (3)
H32C0.47971.02580.29100.066*0.65 (3)
C30'0.5561 (7)0.632 (3)0.2945 (2)0.071 (4)0.35 (3)
H30D0.59670.76640.28910.107*0.35 (3)
H30E0.53170.55290.27480.107*0.35 (3)
H30F0.59870.52650.30790.107*0.35 (3)
C31'0.3957 (13)0.503 (2)0.3189 (3)0.088 (5)0.35 (3)
H31D0.43730.37730.32850.132*0.35 (3)
H31E0.36250.45080.29850.132*0.35 (3)
H31F0.34320.54720.33360.132*0.35 (3)
C32'0.4036 (12)0.891 (2)0.2936 (3)0.044 (2)0.35 (3)
H32D0.34570.94260.30570.066*0.35 (3)
H32E0.37790.82590.27310.066*0.35 (3)
H32F0.44821.02280.28970.066*0.35 (3)
O30.6489 (2)0.4428 (10)0.3681 (3)0.0388 (14)0.59 (3)
O3'0.6420 (5)0.4819 (13)0.3828 (5)0.044 (3)0.41 (3)
H3C0.6156 (16)0.335 (4)0.3812 (5)0.072 (6)*
H3D0.5940 (18)0.556 (4)0.3639 (6)0.083 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0295 (4)0.0246 (4)0.0344 (4)0.0009 (3)0.0046 (3)0.0014 (3)
N10.0240 (4)0.0230 (4)0.0249 (4)0.0032 (3)0.0039 (3)0.0005 (3)
C10.0234 (5)0.0268 (5)0.0270 (5)0.0030 (4)0.0039 (4)0.0010 (4)
C20.0232 (5)0.0250 (5)0.0277 (5)0.0005 (4)0.0038 (4)0.0019 (4)
C30.0270 (5)0.0315 (6)0.0300 (6)0.0026 (4)0.0063 (4)0.0010 (5)
C40.0259 (5)0.0331 (6)0.0290 (5)0.0024 (4)0.0086 (4)0.0021 (4)
C50.0287 (6)0.0386 (6)0.0312 (6)0.0008 (5)0.0095 (4)0.0042 (5)
C60.0307 (6)0.0487 (7)0.0291 (6)0.0007 (5)0.0058 (5)0.0030 (5)
C70.0313 (6)0.0458 (7)0.0327 (6)0.0048 (5)0.0099 (5)0.0035 (5)
C80.0301 (6)0.0398 (7)0.0388 (6)0.0019 (5)0.0105 (5)0.0044 (5)
C90.0257 (5)0.0375 (6)0.0342 (6)0.0003 (5)0.0081 (4)0.0004 (5)
C100.0409 (7)0.0437 (7)0.0341 (6)0.0098 (6)0.0088 (5)0.0077 (5)
C110.0438 (7)0.0593 (9)0.0363 (7)0.0035 (7)0.0082 (6)0.0105 (6)
C120.0322 (6)0.0471 (7)0.0408 (7)0.0089 (5)0.0036 (5)0.0019 (6)
C130.0251 (5)0.0251 (5)0.0240 (5)0.0023 (4)0.0009 (4)0.0000 (4)
C140.0292 (6)0.0405 (6)0.0305 (6)0.0014 (5)0.0024 (4)0.0030 (5)
C150.0311 (6)0.0297 (5)0.0260 (5)0.0032 (4)0.0046 (4)0.0002 (4)
C160.0377 (6)0.0258 (5)0.0285 (5)0.0035 (5)0.0028 (5)0.0026 (4)
O20.0249 (4)0.0390 (5)0.0412 (5)0.0096 (3)0.0023 (3)0.0157 (4)
N20.0274 (5)0.0342 (5)0.0307 (5)0.0032 (4)0.0048 (4)0.0018 (4)
C170.0247 (5)0.0339 (6)0.0266 (5)0.0012 (4)0.0028 (4)0.0027 (4)
C180.0229 (5)0.0273 (5)0.0288 (5)0.0046 (4)0.0006 (4)0.0058 (4)
C190.0286 (5)0.0265 (5)0.0258 (5)0.0043 (4)0.0010 (4)0.0008 (4)
C200.0252 (5)0.0267 (5)0.0215 (5)0.0001 (4)0.0027 (4)0.0021 (4)
C210.0240 (5)0.0284 (5)0.0215 (5)0.0006 (4)0.0025 (4)0.0016 (4)
C220.0275 (5)0.0298 (5)0.0236 (5)0.0016 (4)0.0037 (4)0.0012 (4)
C230.0240 (5)0.0356 (6)0.0266 (5)0.0022 (4)0.0045 (4)0.0027 (4)
C240.0221 (5)0.0373 (6)0.0268 (5)0.0034 (4)0.0013 (4)0.0024 (5)
C250.0279 (5)0.0288 (5)0.0227 (5)0.0029 (4)0.0024 (4)0.0023 (4)
C260.0263 (5)0.0319 (6)0.0278 (5)0.0016 (4)0.0005 (4)0.0050 (4)
C270.0267 (6)0.0455 (7)0.0389 (6)0.0052 (5)0.0048 (5)0.0025 (5)
C280.0305 (6)0.0341 (6)0.0303 (6)0.0058 (5)0.0007 (4)0.0033 (5)
C290.0402 (7)0.0371 (6)0.0319 (6)0.0003 (5)0.0058 (5)0.0048 (5)
C300.049 (3)0.105 (4)0.071 (4)0.004 (3)0.024 (3)0.038 (3)
C310.055 (2)0.0376 (16)0.0394 (19)0.0078 (15)0.0027 (13)0.0046 (13)
C320.055 (2)0.052 (2)0.0242 (16)0.0116 (16)0.0053 (14)0.0028 (14)
C30'0.087 (8)0.087 (6)0.038 (5)0.049 (5)0.008 (4)0.029 (4)
C31'0.147 (11)0.053 (5)0.060 (5)0.052 (6)0.023 (7)0.003 (4)
C32'0.044 (4)0.044 (3)0.041 (4)0.004 (3)0.012 (3)0.005 (3)
O30.0282 (9)0.0331 (13)0.055 (3)0.0023 (7)0.0027 (11)0.0153 (17)
O3'0.0310 (15)0.0302 (17)0.068 (7)0.0053 (12)0.011 (2)0.016 (3)
Geometric parameters (Å, º) top
O1—C21.4298 (13)C18—C191.5367 (16)
O1—H1O0.91 (2)C18—H181.0000
N1—C11.4718 (13)C19—C201.5171 (15)
N1—C131.4872 (14)C19—H19A0.9900
N1—H1N0.922 (16)C19—H19B0.9900
C1—C21.5211 (15)C20—C251.4079 (15)
C1—H1A0.9900C20—C211.4118 (15)
C1—H1B0.9900C21—C221.3930 (15)
C2—C31.5330 (15)C21—C261.5115 (15)
C2—H21.0000C22—C231.3892 (16)
C3—C41.5117 (16)C22—H220.9500
C3—H3A0.9900C23—C241.3899 (17)
C3—H3B0.9900C23—C271.5094 (16)
C4—C51.4030 (17)C24—C251.3958 (16)
C4—C91.4096 (17)C24—H240.9500
C5—C61.3972 (18)C25—C281.5151 (16)
C5—C101.5097 (18)C26—H26A0.9800
C6—C71.3863 (19)C26—H26B0.9800
C6—H60.9500C26—H26C0.9800
C7—C81.3896 (19)C27—H27A0.9800
C7—C111.5081 (18)C27—H27B0.9800
C8—C91.3930 (18)C27—H27C0.9800
C8—H80.9500C28—H28A0.9800
C9—C121.5112 (18)C28—H28B0.9800
C10—H10A0.9800C28—H28C0.9800
C10—H10B0.9800C29—C32'1.525 (3)
C10—H10C0.9800C29—C301.526 (2)
C11—H11A0.9800C29—C31'1.527 (3)
C11—H11B0.9800C29—C321.527 (2)
C11—H11C0.9800C29—C30'1.528 (3)
C12—H12A0.9800C29—C311.529 (2)
C12—H12B0.9800C30—H30A0.9800
C12—H12C0.9800C30—H30B0.9800
C13—C151.5284 (15)C30—H30C0.9800
C13—C161.5289 (16)C31—H31A0.9800
C13—C141.5328 (15)C31—H31B0.9800
C14—H14A0.9800C31—H31C0.9800
C14—H14B0.9800C32—H32A0.9800
C14—H14C0.9800C32—H32B0.9800
C15—H15A0.9800C32—H32C0.9800
C15—H15B0.9800C30'—H30D0.9800
C15—H15C0.9800C30'—H30E0.9800
C16—H16A0.9800C30'—H30F0.9800
C16—H16B0.9800C31'—H31D0.9800
C16—H16C0.9800C31'—H31E0.9800
O2—C181.4235 (13)C31'—H31F0.9800
O2—H2O0.91 (2)C32'—H32D0.9800
N2—C171.4631 (15)C32'—H32E0.9800
N2—C291.4846 (16)C32'—H32F0.9800
N2—H2N0.922 (18)O3—H3C0.95 (2)
C17—C181.5158 (16)O3—H3D0.98 (3)
C17—H17A0.9900O3'—H3C0.92 (2)
C17—H17B0.9900O3'—H3D1.07 (3)
C2—O1—H1O106.9 (13)O2—C18—H18109.1
C1—N1—C13116.25 (8)C17—C18—H18109.1
C1—N1—H1N106.8 (9)C19—C18—H18109.1
C13—N1—H1N108.2 (9)C20—C19—C18115.06 (9)
N1—C1—C2110.42 (9)C20—C19—H19A108.5
N1—C1—H1A109.6C18—C19—H19A108.5
C2—C1—H1A109.6C20—C19—H19B108.5
N1—C1—H1B109.6C18—C19—H19B108.5
C2—C1—H1B109.6H19A—C19—H19B107.5
H1A—C1—H1B108.1C25—C20—C21118.82 (10)
O1—C2—C1109.29 (9)C25—C20—C19121.57 (10)
O1—C2—C3110.48 (9)C21—C20—C19119.61 (10)
C1—C2—C3109.88 (9)C22—C21—C20119.82 (10)
O1—C2—H2109.1C22—C21—C26118.08 (10)
C1—C2—H2109.1C20—C21—C26122.09 (10)
C3—C2—H2109.1C23—C22—C21121.98 (11)
C4—C3—C2114.54 (9)C23—C22—H22119.0
C4—C3—H3A108.6C21—C22—H22119.0
C2—C3—H3A108.6C22—C23—C24117.61 (10)
C4—C3—H3B108.6C22—C23—C27121.08 (11)
C2—C3—H3B108.6C24—C23—C27121.30 (11)
H3A—C3—H3B107.6C23—C24—C25122.45 (10)
C5—C4—C9119.21 (11)C23—C24—H24118.8
C5—C4—C3119.98 (11)C25—C24—H24118.8
C9—C4—C3120.79 (11)C24—C25—C20119.30 (10)
C6—C5—C4119.40 (11)C24—C25—C28117.76 (10)
C6—C5—C10118.77 (11)C20—C25—C28122.93 (10)
C4—C5—C10121.81 (11)C21—C26—H26A109.5
C7—C6—C5122.16 (12)C21—C26—H26B109.5
C7—C6—H6118.9H26A—C26—H26B109.5
C5—C6—H6118.9C21—C26—H26C109.5
C6—C7—C8117.70 (12)H26A—C26—H26C109.5
C6—C7—C11121.66 (12)H26B—C26—H26C109.5
C8—C7—C11120.64 (12)C23—C27—H27A109.5
C7—C8—C9122.21 (12)C23—C27—H27B109.5
C7—C8—H8118.9H27A—C27—H27B109.5
C9—C8—H8118.9C23—C27—H27C109.5
C8—C9—C4119.31 (11)H27A—C27—H27C109.5
C8—C9—C12118.91 (11)H27B—C27—H27C109.5
C4—C9—C12121.74 (11)C25—C28—H28A109.5
C5—C10—H10A109.5C25—C28—H28B109.5
C5—C10—H10B109.5H28A—C28—H28B109.5
H10A—C10—H10B109.5C25—C28—H28C109.5
C5—C10—H10C109.5H28A—C28—H28C109.5
H10A—C10—H10C109.5H28B—C28—H28C109.5
H10B—C10—H10C109.5N2—C29—C32'116.0 (6)
C7—C11—H11A109.5N2—C29—C30107.0 (3)
C7—C11—H11B109.5N2—C29—C31'106.0 (6)
H11A—C11—H11B109.5C32'—C29—C31'109.9 (3)
C7—C11—H11C109.5N2—C29—C32110.3 (3)
H11A—C11—H11C109.5C30—C29—C32109.9 (2)
H11B—C11—H11C109.5N2—C29—C30'105.3 (5)
C9—C12—H12A109.5C32'—C29—C30'109.8 (3)
C9—C12—H12B109.5C31'—C29—C30'109.7 (3)
H12A—C12—H12B109.5N2—C29—C31110.2 (3)
C9—C12—H12C109.5C30—C29—C31109.6 (2)
H12A—C12—H12C109.5C32—C29—C31109.7 (2)
H12B—C12—H12C109.5C29—C30—H30A109.5
N1—C13—C15106.23 (8)C29—C30—H30B109.5
N1—C13—C16109.07 (9)H30A—C30—H30B109.5
C15—C13—C16109.40 (9)C29—C30—H30C109.5
N1—C13—C14112.86 (9)H30A—C30—H30C109.5
C15—C13—C14108.89 (9)H30B—C30—H30C109.5
C16—C13—C14110.27 (10)C29—C31—H31A109.5
C13—C14—H14A109.5C29—C31—H31B109.5
C13—C14—H14B109.5H31A—C31—H31B109.5
H14A—C14—H14B109.5C29—C31—H31C109.5
C13—C14—H14C109.5H31A—C31—H31C109.5
H14A—C14—H14C109.5H31B—C31—H31C109.5
H14B—C14—H14C109.5C29—C32—H32A109.5
C13—C15—H15A109.5C29—C32—H32B109.5
C13—C15—H15B109.5H32A—C32—H32B109.5
H15A—C15—H15B109.5C29—C32—H32C109.5
C13—C15—H15C109.5H32A—C32—H32C109.5
H15A—C15—H15C109.5H32B—C32—H32C109.5
H15B—C15—H15C109.5C29—C30'—H30D109.5
C13—C16—H16A109.5C29—C30'—H30E109.5
C13—C16—H16B109.5H30D—C30'—H30E109.5
H16A—C16—H16B109.5C29—C30'—H30F109.5
C13—C16—H16C109.5H30D—C30'—H30F109.5
H16A—C16—H16C109.5H30E—C30'—H30F109.5
H16B—C16—H16C109.5C29—C31'—H31D109.5
C18—O2—H2O110.6 (13)C29—C31'—H31E109.5
C17—N2—C29116.22 (9)H31D—C31'—H31E109.5
C17—N2—H2N106.8 (11)C29—C31'—H31F109.5
C29—N2—H2N109.4 (11)H31D—C31'—H31F109.5
N2—C17—C18110.86 (9)H31E—C31'—H31F109.5
N2—C17—H17A109.5C29—C32'—H32D109.5
C18—C17—H17A109.5C29—C32'—H32E109.5
N2—C17—H17B109.5H32D—C32'—H32E109.5
C18—C17—H17B109.5C29—C32'—H32F109.5
H17A—C17—H17B108.1H32D—C32'—H32F109.5
O2—C18—C17108.52 (9)H32E—C32'—H32F109.5
O2—C18—C19109.47 (9)H3C—O3—H3D100.9 (19)
C17—C18—C19111.38 (9)H3C—O3'—H3D97 (2)
C13—N1—C1—C2169.98 (9)N2—C17—C18—C19177.64 (9)
N1—C1—C2—O159.13 (11)O2—C18—C19—C20178.38 (9)
N1—C1—C2—C3179.49 (9)C17—C18—C19—C2061.61 (12)
O1—C2—C3—C464.12 (12)C18—C19—C20—C25102.29 (12)
C1—C2—C3—C4175.21 (10)C18—C19—C20—C2177.93 (13)
C2—C3—C4—C585.11 (13)C25—C20—C21—C220.39 (16)
C2—C3—C4—C995.98 (13)C19—C20—C21—C22179.39 (10)
C9—C4—C5—C60.10 (17)C25—C20—C21—C26179.24 (10)
C3—C4—C5—C6179.03 (11)C19—C20—C21—C260.55 (16)
C9—C4—C5—C10178.41 (11)C20—C21—C22—C231.02 (17)
C3—C4—C5—C100.52 (17)C26—C21—C22—C23177.87 (10)
C4—C5—C6—C70.16 (19)C21—C22—C23—C241.29 (17)
C10—C5—C6—C7178.71 (12)C21—C22—C23—C27179.10 (11)
C5—C6—C7—C80.30 (19)C22—C23—C24—C250.17 (17)
C5—C6—C7—C11179.92 (12)C27—C23—C24—C25179.78 (11)
C6—C7—C8—C90.20 (19)C23—C24—C25—C201.20 (17)
C11—C7—C8—C9179.81 (12)C23—C24—C25—C28177.42 (11)
C7—C8—C9—C40.05 (19)C21—C20—C25—C241.46 (16)
C7—C8—C9—C12177.80 (12)C19—C20—C25—C24178.32 (10)
C5—C4—C9—C80.20 (17)C21—C20—C25—C28177.09 (10)
C3—C4—C9—C8179.12 (11)C19—C20—C25—C283.13 (16)
C5—C4—C9—C12177.59 (11)C17—N2—C29—C32'52.0 (7)
C3—C4—C9—C121.33 (17)C17—N2—C29—C30177.7 (3)
C1—N1—C13—C15177.41 (9)C17—N2—C29—C31'70.2 (8)
C1—N1—C13—C1659.59 (12)C17—N2—C29—C3262.7 (3)
C1—N1—C13—C1463.33 (12)C17—N2—C29—C30'173.6 (6)
C29—N2—C17—C18170.22 (10)C17—N2—C29—C3158.6 (3)
N2—C17—C18—O261.79 (12)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the benzene ring (C4–C9) of molecule A.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.91 (2)1.82 (2)2.725 (5)173 (2)
O1—H1O···O30.91 (2)1.82 (2)2.697 (6)161 (2)
O2—H2O···N10.91 (2)1.83 (2)2.7273 (13)168.0 (19)
O3—H3C···O2i0.95 (2)1.83 (2)2.753 (3)162 (2)
O3—H3C···O2i0.92 (2)1.83 (2)2.685 (4)153 (2)
O3—H3D···N20.98 (3)1.87 (3)2.827 (3)164 (2)
O3—H3D···N21.07 (3)1.87 (3)2.875 (5)155 (2)
C11—H11B···Cg2ii0.982.903.7613 (17)147
Symmetry codes: (i) x, y1, z; (ii) x+2, y1/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
O2···H3C1.83x, 1 + y, z
H2O···N11.83x, y, z
N2···H3D1.87x, y, z
H26C···H15B2.581 - x, 2 - y, 1 - z
*H31D···H17B2.34x, - 1 + y, z
*H32B···*H30E2.501 - x, 1/2 + y, 1/2 - z
H24···H3B2.39-1 + x, y, z
H26B···H15C2.581 - x, 1 - y, 1 - z
*H30C···C103.00x, -1 + y, z
*H31B···H62.441 - x, -1/2 + y, 1/2 - z
*H32D···H11C2.481 - x, 1/2 + y, 1/2 - z
H1O···*O3'1.82x, y, z
H1O···H1B2.46x, -1 + y, z
C9···H11B2.842 - x, 1/2 + y, 1/2 - z
H16C···*O3'2.89x, 1 + y, z
The prefix * denotes atoms of the disordered parts of the molecules.
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, ANK, MA and TAT; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, RMR and ANK; resources, AAA, VNK and RMR; supervision, ANK and MA.

Funding information

This work was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].

References

First citationAliyeva, K. N., Maharramov, A. M., Allahverdiyev, M. A., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o2293.  CrossRef IUCr Journals Google Scholar
First citationBaker, J. R., Russell, C. C., Gilbert, J., McCluskey, A. & Sakoff, J. A. (2021). Med. Chem. 12, 929–942.  CAS Google Scholar
First citationEstolano-Cobián, A., Noriega-Iribe, E., Díaz-Rubio, L., Padrón, J. M., Brito-Perea, M., Cornejo-Bravo, J. M., Chávez, D., Rivera, R. R., Quintana-Melgoza, J. M., Cruz-Reyes, J. & Córdova-Guerrero, I. (2020). Med. Chem. Res. 29, 1986–1999.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633.  CrossRef CAS Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761–11773.  CrossRef CAS Google Scholar
First citationLee, H.-S. & Kang, S. H. (2004). Synlett, pp. 1673–1685.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011a). Acta Cryst. E67, o784.  CrossRef IUCr Journals Google Scholar
First citationMaharramov, A. M., Khalilov, A. N., Sadikhova, N. D., Gurbanov, A. V. & Ng, S. W. (2011b). Acta Cryst. E67, o1087.  CrossRef IUCr Journals Google Scholar
First citationMamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291–296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.  Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Krist. New Cryst. Struct. 234, 1183–1185.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTafelska-Kaczmarek, A., Kołodziejska, R., Kwit, M., Stasiak, B., Wypij, M. & Golinska, P. (2020). Materials, 13, 4080.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds