research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-bromo-N-(propyl­carbamo­yl)benzene­sulfonamide

crossmark logo

aGraduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
*Correspondence e-mail: wildfongp@duq.edu

Edited by J. T. Mague, Tulane University, USA (Received 28 March 2022; accepted 4 April 2022; online 7 April 2022)

The title compound, C10H13BrN2O3S, 1, contains a sulfonyl urea moiety, which possesses potential therapeutic functions (e.g., anti-diabetic and herbicidal). The geometry of 1 is similar to its closely related analogues, chlorpropamide and tolbutamide. This compound crystallizes in the monoclinic space group C2/c, having one mol­ecule in its asymmetric unit. The crystal structure of 1, recorded at 296 K, shows inter­molecular N—H⋯O and C—H⋯O-type infinite hydrogen-bonded chains involving the sulfonyl urea moiety. Hirshfeld surface analysis and the two-dimensional fingerprint plots confirmed hydrogen bonding as the dominant feature in the crystal packing.

1. Chemical context

The title compound, 1, also known as bromo­propamide, is a sulfonyl urea structural analogue, whose chemical structure is shown in the scheme. Compounds containing sulfonyl urea as the structural core have been used extensively for the treatment of Type II diabetes (McLamore et al., 1959[McLamore, W. M., Fanelli, G. M., P'an, S. Y. & Laubach, G. D. (1959). Ann. N. Y. Acad. Sci. 74, 443-448.]), by stimulating insulin secretion from pancreatic β-cells by binding to the ATP-sensitive potassium channel (Proks et al., 2002[Proks, P., Reimann, F., Green, N., Gribble, F. & Ashcroft, F. (2002). Diabetes, 51, S368-S376.]). Additionally, sulfonyl urea structural analogues have shown therapeutic action as herbicides and diuretic agents (Tanwar et al., 2017[Tanwar, D. K., Ratan, A. & Gill, M. S. (2017). Org. Biomol. Chem. 15, 4992-4999.]). Thus, the title compound was synthesized in order to perform biological characterization. The crystal structures of several sulfonyl urea compounds have been reported, especially mol­ecules closely related to 1 that contain the N-carbamoyl­benzene­sulfonamide substructure, all of which have multiple polymorphic forms (Kimura et al., 1999[Kimura, K., Hirayama, F. & Uekama, K. (1999). J. Pharm. Sci. 88, 385-391.]; Drebushchak et al., 2006[Drebushchak, T. N., Chukanov, N. V. & Boldyreva, E. V. (2006). Acta Cryst. E62, o4393-o4395.]; Fedorov et al., 2017[Fedorov, A. Y., Rychkov, D. A., Losev, E. A., Zakharov, B. A., Stare, J. & Boldyreva, E. V. (2017). CrystEngComm, 19, 2243-2252.]). Subtle changes to the mol­ecule have shown drastic effects on its biological activity and also the arrangement of mol­ecules in the crystal structure (Bieszczad et al., 2020[Bieszczad, B., Siwek, A., Wilczek, M., Trzybiński, D., Woźniak, K., Satała, G., Bojarski, A. J. & Mieczkowski, A. (2020). Bioorg. Med. Chem. Lett. 30, Article 127493.]). Thus, it is of inter­est to not only confirm the mol­ecular structure of bromo­propamide, but to also identify its crystal packing relative to other structural analogues.

[Scheme 1]

2. Structural commentary

Bromo­propamide crystallizes in the centrosymmetric and achiral monoclinic space group C2/c, having one mol­ecule in the asymmetric unit (Fig. 1[link]). The Br1—C1 bond length [1.887 (2) Å] is in good agreement with other structures containing a bromo­phenyl moiety (Khamees et al., 2019[Khamees, H. A., Chaluvaiah, K., El-khatatneh, N. A., Swamynayaka, A., Chong, K. H., Dasappa, J. P. & Madegowda, M. (2019). Acta Cryst. E75, 1620-1626.]; Arif Tawfeeq et al., 2019[Arif Tawfeeq, N., Kwong, H. C., Mohamed Tahir, M. I. & Ravoof, T. B. S. A. (2019). Acta Cryst. E75, 774-779.]). The bond length between C1—C2 [1.363 (4) Å], is the shortest among all the bond lengths in the phenyl group, possibly due to the inductive effect of bromine. The brominated phenyl ring is almost perpendicular [C4—S1—N1 = 105.65 (11)°] to the sulfonyl urea n-propyl group, resulting in an L-shaped mol­ecular structure. This is similar to chlorpropamide, a structural analogue of 1 [Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode: BEDMIG10; 105.87°; Drebushchak et al., 2009[Drebushchak, T. N., Chesalov, Y. A. & Boldyreva, E. V. (2009). Acta Cryst. B65, 770-781.]). The sum of the bond angles around N1 and N2 is 360°, indicating sp2 hybridization, caused by the delocalization of the lone electron pair of N1 and N2 into the π bond of the carbonyl group. This is also supported by the trigonal-planar mol­ecular geometry of C7—N1—S1 [123.94 (17)°], C7—N1—H1 (118°), S1—N1—H1 (118°), C7—N2—C8 [123.5 (2)°], C7—N2—H2 (118.3°), and C8—N2—H2 (118.3°). The C7—N2 bond length is 1.319 (3) Å, which is lower than the typical range; however, the values are similar to those in the crystal structures of bromo­propamide analogues, chlorpropamide (1.315 Å; CSD refcode: BEDMIG14; Drebushchak et al., 2009[Drebushchak, T. N., Chesalov, Y. A. & Boldyreva, E. V. (2009). Acta Cryst. B65, 770-781.]) and tolbutamide (1.319 Å; CSD refcode: ZZZPUS13; Drebushchak et al., 2011[Drebushchak, T. N., Pankrushina, N. A. & Boldyreva, E. V. (2011). Dokl. Phys. Chem. 437, 61-64.]). The propyl chain takes the stable trans conformation so as to have a maximum distance of 3.794 Å between N2 and C10, while C10 exhibits rotational disorder, possibly due to the X-ray diffraction experiments being conducted at 296 K. Overall, the crystal structure of 1 showcases bond lengths (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]) and angles typical of the expected ranges.

[Figure 1]
Figure 1
The mol­ecular structure of 4-bromo-N-(propyl­carbamo­yl)benzene­sulfonamide with atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The crystal packing of the title compound is dominated by hydrogen bonding, which is shown in Fig. 2[link]. Geometric details of the hydrogen bonds are listed in Table 1[link]. Inter­molecular N—H⋯O-type hydrogen bonds link the mol­ecules into infinite chains, which stretch along the b-axis direction (Fig. 2[link]). Hydrogen bonding between the H1 and O3 atoms of neighboring mol­ecules have distances of H1⋯O3 = 1.94 Å, N1⋯O3 = 2.791 (3) Å. The strongest of these is N1—H1⋯O3, with an angle of 171.9°, followed in rank-order of strength by the hydrogen-bonds between H2⋯O2 = 2.24 Å, N2⋯O2 = 2.998 (3) Å (angle of 146.8° between N2—H2⋯O2) and H2⋯O3 = 2.642 Å, N2⋯O3 = 3.351 (3) Å (angle of 140.6° between N2—H2⋯O3). Additionally, weak C—H⋯O type hydrogen bonds also help, to some extent, with the mol­ecular packing. The inter­molecular distance between H10C⋯O1 is 2.61 Å; C10⋯O1 is 4.028 Å with an angle of 173.7° between C10—H10C⋯O1. The distances and angles of the C—H⋯O-type hydrogen bond observed in the present structure are within the reported ranges (Desiraju, 1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.]; Gumireddy et al., 2021[Gumireddy, A., DeBoyace, K., Rupprecht, A., Gupta, M., Patel, S., Flaherty, P. T. & Wildfong, P. L. D. (2021). Acta Cryst. E77, 360-365.]). Overall, the atoms involved in hydrogen bonding for bromo­propamide are identical to those in the crystal structure for its analogue chlorpropamide (CSD refcode: BEDMIG10; Drebushchak et al., 2009[Drebushchak, T. N., Chesalov, Y. A. & Boldyreva, E. V. (2009). Acta Cryst. B65, 770-781.]). Fig. 3[link] shows the unit cell of the title compound along the b-axis. It appears that the anti-parallel flanked phenyl rings are stacked. However, a centroid-to-centroid distance of 4.213 (2) Å, which is outside the range of ππ stacking inter­actions (Chulvi et al., 2015[Chulvi, K., Costero, A., Ochando, L. E. & Gaviña, P. (2015). Acta Cryst. E71, o1069-o1070.]; Ahmed et al., 2019[Ahmed, M. N., Arif, M., Jabeen, F., Khan, H. A., Yasin, K. A., Tahir, M. N., Franconetti, A. & Frontera, A. (2019). New J. Chem. 43, 8122-8131.]), supports its absence.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 1.94 2.791 (3) 172
N2—H2⋯O2i 0.86 2.24 2.998 (3) 147
N2—H2⋯O3i 0.86 2.64 3.351 (3) 141
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Infinite hydrogen-bonding involving the sulfonyl urea moiety in 4-bromo-N-(propyl­carbamo­yl)benzene­sulfonamide. Hydrogen bonding between N1—H1⋯O2, N2—H2⋯O2, N2—H2⋯O3, and C10—H10C⋯O1 is shown as green dotted lines. Displacement ellipsoids are drawn at the 30% probability level. Only H atoms involved in hydrogen bonding are shown.
[Figure 3]
Figure 3
The crystal packing in 4-bromo-N-propyl­carbamo­yl)benzene­sulfonamide viewed along the b axis. Anti­parallel stacking of the bromo­phenyl has a centroid-to-centroid distance of 4.213 Å. Displacement ellipsoids are drawn at the 30% probability level. H atoms are not shown for clarity.

4. Hirshfeld surface analysis

Hirshfeld surface analysis was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. University of Western Australia.]; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) mapped over dnorm, which was estimated by the calculations of the external and inter­nal distances to the nearest nucleus and built over a volume of 322.24 Å3 having an area of 304.35 Å2, with scaled color of −0.6347 a.u. (red) to 1.2043 a.u. (blue). The Hirshfeld surface of 1, shown in Fig. 4[link], displays close contacts between N1—H1⋯O3, N2—H2⋯O2, N2—H2⋯O3, and C10—H10C⋯O1, supporting the conclusions about hydrogen-bonding inter­actions. Hirshfeld surfaces and their associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions. The overall two-dimensional fingerprint plot for bromo­propamide (Fig. 5[link]a) and those delineated into major contacts: H⋯H, O⋯H/H⋯O, Br⋯H/H⋯Br, and C⋯H/H⋯C are shown in Fig. 5[link]be. The other contacts have lower contributions, with individual contributions <4.3% and a sum <12.8%. The H⋯H inter­atomic contacts, which appear as a single spike in the center at de = di = 1.1 Å (Fig. 5[link]b), generated 39.4% of the Hirshfeld surface, denoting these contacts have a significant effect on the mol­ecular packing. The O⋯H/H⋯O inter­atomic contacts, which appear as a pair of spikes with tips at de + di ∼1.75 Å (Fig. 5[link]c), represent 25.8% of the total surface and confirms the prominent role of multiple hydrogen bonds in the mol­ecular arrangement within the crystal structure. Br⋯H/H⋯Br and C⋯H/H⋯C contribute 12.2% and 9.8%, respectively, to the Hirshfeld surface. The placement of mol­ecules in the crystal structure of the title compound results in efficient packing, as seen in the Hirshfeld surface analysis, which is further supported by the crystallographic density of 1.626 g cm−3, which is relatively higher than other small mol­ecule organic compounds (Bookwala et al., 2020[Bookwala, M., DeBoyace, K., Buckner, I. S. & Wildfong, P. L. D. (2020). AAPS PharmSciTech, 21, https://doi.org/ 10.1208/s12249-020-1632-4.], 2022[Bookwala, M., Gumireddy, A., Aitken, J. A. & Wildfong, P. L. D. (2022). J. Chem. Crystallogr. 52, 81-88.]).

[Figure 4]
Figure 4
Hirshfeld surface of 4-bromo-N-(propyl­carbamo­yl)benzene­sulfonamide mapped over dnorm, displays close contacts in the crystal. The non-covalent inter­actions indicated by the red spots are labeled.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots of 4-bromo-N-(propyl­carbamo­yl)benzene­sulfonamide with their relative contribution to the Hirshfeld surface. The units of di and de are Å.

5. Database survey

A search in the Cambridge Structural Database (Version 5.41, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds possessing the sulfonyl urea substructure resulted in 178 hits, reinforcing the importance of this scaffold as having potential as an anti-diabetic or diuretic drug, and a herbicide. Of the 178 hits, 82 were distributed among chlorpropamide (deposited structures: 20), tolaza­mide (deposited structures: 40), and tolbutamide (deposited structures: 22), all of which share a close structural relationship to bromo­propamide. The search was then narrowed to identify compounds containing N-(propyl­carbamo­yl)benzene­sulfonamide, which resulted in identification of only chlorpropamide polymorphs, confirming the absence of reported crystal structures for analogues having different halogen substitutions. An exact search for the title compound resulted in zero hits, further supporting the previous claim. Thus, X–ray studies were important to identify, if any, changes in the crystal structure by replacing the peripheral Cl with a Br atom.

6. Synthesis and crystallization

The synthesis of 4-bromo-N-(n-propyl­carbamo­yl)benzene­sulfonamide used in situ formation of n-propyl­iso­cyanate from n-propyl­carbamic chloride with direct capture by 4-bromo­benzene­sulfonamide in the presence of excess potassium carbonate in refluxing toluene (Fig. 6[link]). This is a new methodology to generate sulfonyl ureas in an atom-efficient manner with identical chemical characterization to prior methods proceeding via carbamate (Marshall & Sigal, 1958[Marshall, F. & Sigal, J. M. (1958). J. Org. Chem. 23, 927-929.]) or carbon­ate (Tanwar et al., 2017[Tanwar, D. K., Ratan, A. & Gill, M. S. (2017). Org. Biomol. Chem. 15, 4992-4999.]) inter­mediates. A manuscript describing the optimization of this synthetic strategy is in preparation.

[Figure 6]
Figure 6
Reaction scheme for the synthesis of 4-bromo-N-(propyl­carbamo­yl)benzene­sulfonamide.

n-Propyl­carbamic chloride (labeled 2 in Fig. 6[link]): A solution of triphosgene (2.24 g, 22.62 mMol as phosgene) in 25 mL of di­chloro­methane (DCM) was cooled in a 100 mL round-bottom flask. A solution of tri­ethyl­amine (TEA) (5.6 mL, 40 mMol), n-propyl­amine (labeled 1 in Fig. 6[link]) (1.7 mL, 20.1 mMol) and 10 mL of DCM was added to the triphosgene solution with slow dropwise addition over 15 min maintaining an inter­nal temperature between 278 and 283 K. The cooling bath was removed following addition and the reaction was permitted to stir for an additional 2 h at 296 K. The reaction mixture was cooled in an ice/water bath and then transferred to a 125 mL separatory funnel previously cooled in ice–water. The mixture was then washed with 3 × 5 mL portions of ice-cold water, 2 × 5 mL of ice-cold 0.5 N HCl, 2 × 5 mL portions of ice-cold brine, dried Na2SO4, deca­nted, and the solvent was carefully removed under reduced pressure without heating to theoretical mass. The conversion to n-propyl­carbamic chloride was confirmed with IR absorbance of 1734 cm−1 and afforded 2.5 g (98% of a light yellow oil) and stored at 253 K until use.

4-Bromo­benzene­sulfonamide (labeled 4 in Fig. 6[link]): Synthesized using a variation of the published procedure (Anana et al., 2006[Anana, R., Rao, P. P. N., Chen, Q. H. & Knaus, E. E. (2006). Bioorg. Med. Chem. 14, 5259-5265.]). Concentrated NH4OH (150 mL, 1.10 mol) was charged into a 500 mL three-neck round-bottom flask equipped with an overhead stirrer, thermowell, and condenser. The reaction was then cooled in an ice/water bath to an inter­nal temperature of 283 K. Solid 4-bromo­benzene­sulfonyl chloride (49.9954 g, 0.1957 mol) was added in portions over 5 min. The ice/water bath was removed and the mixture was stirred at room temperature for 15 min and then brought to 308 K for 30 min. After this, the reaction was warmed to reflux for an additional 30 min. The reaction was followed by thin-layer chromatography (TLC) [Rf = 0.69 (labeled 3 in Fig. 6[link]), Rf = 0.54 (labeled 4 in Fig. 6[link]) 1/1 hexa­ne/ethyl acetate (H/EA), short wavelength ultra-violet (SWUV)]. The reaction was cooled to room temperature upon consumption of the starting material and then poured into 200 mL of ice-cold water. This heterogeneous mixture was brought to pH = 1 (pHydrion paper) with 6 N HCl. The precipitated white solid was collected on a #1 Whatman filter paper, pressed dry with a rubber dam, and dried 12 h in a drying pistol (P2O5, 150 mTorr, 383 K) to afford 43.03 g (93.5%) of a white solid. Proton identical with literature (Richardson et al., 2007[Richardson, C. M., Nunns, C. L., Williamson, D. S., Parratt, M. J., Dokurno, P., Howes, R., Borgognoni, J., Drysdale, M. J., Finch, H., Hubbard, R. E., Jackson, P. S., Kierstan, P., Lentzen, G., Moore, J. D., Murray, J. B., Simmonite, H., Surgenor, A. E. & Torrance, C. J. (2007). Bioorg. Med. Chem. Lett. 17, 3880-3885.]), m.p. 434–438 K (m.p. lit: 435 K).

4-Bromo-N-(n-propyl­carbamo­yl)benzene­sulfonamide (labeled 5 in Fig. 6[link]): n-Propyl­carbamic chloride (labeled 2 in Fig. 6[link]), (2.0 g, 15.9 mMol), toluene (15 mL), K2CO3, (2.019 g, 14.6 mMol), and 4-bromo­benzene­sulfonamide (labeled 4 in Fig. 6[link]), (1.4306 g, 6.06 mMol) were added to a dry 100 mL round-bottom flask fitted with a straight condenser and brought to reflux for 30 min. Upon loss of the sulfonamide (TLC: Rf = 0.86, 1/1: H/EA SiO2, SWUV, I2), the heating was stopped, the oil bath was removed, and the reaction was permitted to cool to room temperature. The resulting white suspension was cooled in an ice/water bath and brought to a pH = 1 (pHydrion paper: red) with 6 N HCl. This mixture was extracted with 3 × 10 mL portions of EA, washed [3 × 5 mL 1 N HCl, then 2 × 5 mL NaCl (sat, aq.)], dried Mg2SO4, filtered under vacuum through #1 Whatman filter paper, and then the solvent was removed under reduced pressure to give 2.2 g of a white solid. This material was purified on a SiO2 column (1/1: H/EA SiO2, Rf = 0.66) then recrystallized from toluene to yield, after drying in a drying pistol at 383 K (P2O5, 150 µTorr), 0.87 g (41%) of fine white crystals. 1H NMR was identical to prior synthesis (Tanwar et al., 2017[Tanwar, D. K., Ratan, A. & Gill, M. S. (2017). Org. Biomol. Chem. 15, 4992-4999.]), m.p. 411 K (m.p. lit: 406–408 K).

Crystals obtained from toluene were very small; therefore, they were dissolved in methanol to obtain a supersaturated solution (37.5 mg mL−1). This was placed in a 20 mL scintillation vial, which was covered with Parafilm® and punched with 5 pin holes to allow slow evaporation of methanol at room temperature over several days, until larger single crystals appeared.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (aromatic C—H = 0.93 Å, amide N—H = 0.86 Å methyl­ene C—H = 0.98 Å, and methyl C—H = 0.96 Å) and treated as riding atoms during refinement, with Uiso (H) = 1.2Ueq(aromatic C, amide N, and methyl­ene C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate about their local threefold axes.

Table 2
Experimental details

Crystal data
Chemical formula C10H13BrN2O3S
Mr 321.19
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 21.0939 (12), 9.2520 (6), 15.0283 (10)
β (°) 116.211 (4)
V3) 2631.4 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 3.28
Crystal size (mm) 0.25 × 0.12 × 0.05
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.522, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15567, 2918, 1776
Rint 0.047
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.01
No. of reflections 2918
No. of parameters 155
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.26
Computer programs: SMART and SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and CrystalMaker (Palmer, 2014[Palmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.]).

Supporting information


Computing details top

Data collection: SMART and SAINT (Bruker, 1998); cell refinement: SMART and SAINT (Bruker, 1998); data reduction: SMART and SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2014); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015).

4-Bromo-N-(propylcarbamoyl)benzenesulfonamide top
Crystal data top
C10H13BrN2O3SDx = 1.622 Mg m3
Mr = 321.19Melting point: 411 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.0939 (12) ÅCell parameters from 2918 reflections
b = 9.2520 (6) Åθ = 2.2–27.2°
c = 15.0283 (10) ŵ = 3.28 mm1
β = 116.211 (4)°T = 296 K
V = 2631.4 (3) Å3Rectangular Plate, colorless
Z = 80.25 × 0.12 × 0.05 mm
F(000) = 1296
Data collection top
Bruker SMART APEXII
diffractometer
1776 reflections with I > 2σ(I)
Radiation source: Fine-focus Sealed TubeRint = 0.047
φ and ω Scans scansθmax = 27.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2627
Tmin = 0.522, Tmax = 0.746k = 1111
15567 measured reflectionsl = 1919
2918 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.7765P]
where P = (Fo2 + 2Fc2)/3
2918 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.62045 (2)0.74137 (4)0.56073 (3)0.0982 (2)
S10.33290 (3)0.91269 (7)0.18667 (5)0.0519 (2)
O10.34641 (11)1.0325 (2)0.13838 (14)0.0677 (5)
N10.28060 (11)0.9785 (2)0.23075 (16)0.0525 (6)
H10.2676341.0672060.2179720.063*
C10.53543 (14)0.7926 (3)0.4505 (2)0.0576 (7)
O20.30317 (11)0.7841 (2)0.13234 (14)0.0629 (5)
N20.22679 (11)0.9777 (2)0.33323 (17)0.0579 (6)
H20.2238061.0696900.3238490.069*
C70.25586 (12)0.8997 (3)0.2876 (2)0.0486 (6)
C20.52538 (15)0.9312 (3)0.4162 (2)0.0664 (8)
H2A0.5603521.0002980.4469740.080*
O30.26161 (11)0.76750 (17)0.29256 (16)0.0612 (5)
C30.46344 (14)0.9687 (3)0.3360 (2)0.0599 (7)
H30.4564631.0629470.3121270.072*
C40.41168 (13)0.8659 (3)0.29115 (18)0.0460 (6)
C50.42201 (15)0.7269 (3)0.3267 (2)0.0608 (8)
H50.3868860.6579220.2967060.073*
C60.48436 (15)0.6894 (3)0.4068 (2)0.0658 (8)
H60.4916700.5952590.4309210.079*
C80.19943 (17)0.9163 (4)0.3988 (2)0.0726 (9)
H8A0.2156390.9749240.4583490.087*
H8B0.2188980.8201130.4184270.087*
C90.12066 (19)0.9070 (4)0.3534 (3)0.0960 (12)
H9A0.1039980.8493640.2933700.115*
H9B0.1008191.0031570.3351940.115*
C100.0955 (3)0.8407 (5)0.4230 (4)0.1239 (17)
H10A0.0447870.8369460.3916080.186*
H10B0.1113880.8982070.4821410.186*
H10C0.1141230.7446330.4398960.186*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0584 (2)0.1095 (4)0.0856 (3)0.01372 (19)0.00560 (18)0.0048 (2)
S10.0493 (4)0.0394 (4)0.0605 (4)0.0027 (3)0.0184 (3)0.0051 (3)
O10.0721 (13)0.0571 (12)0.0766 (13)0.0052 (10)0.0354 (11)0.0223 (11)
N10.0505 (12)0.0283 (10)0.0788 (16)0.0045 (10)0.0285 (12)0.0093 (11)
C10.0395 (14)0.070 (2)0.0567 (16)0.0047 (14)0.0149 (13)0.0058 (15)
O20.0633 (11)0.0485 (11)0.0599 (11)0.0019 (10)0.0118 (10)0.0062 (9)
N20.0567 (14)0.0405 (12)0.0777 (16)0.0001 (11)0.0308 (13)0.0032 (12)
C70.0330 (12)0.0342 (14)0.0648 (16)0.0019 (11)0.0091 (12)0.0005 (13)
C20.0507 (16)0.064 (2)0.075 (2)0.0164 (15)0.0188 (15)0.0123 (17)
O30.0663 (13)0.0297 (10)0.0885 (14)0.0019 (9)0.0349 (11)0.0027 (9)
C30.0571 (17)0.0459 (16)0.0736 (19)0.0083 (14)0.0262 (16)0.0022 (15)
C40.0442 (13)0.0360 (14)0.0596 (16)0.0011 (11)0.0245 (12)0.0003 (12)
C50.0492 (16)0.0419 (16)0.0746 (19)0.0030 (13)0.0122 (14)0.0007 (14)
C60.0560 (17)0.0503 (16)0.0736 (19)0.0099 (15)0.0125 (15)0.0091 (16)
C80.077 (2)0.066 (2)0.077 (2)0.0027 (18)0.0361 (18)0.0017 (18)
C90.089 (3)0.084 (3)0.133 (3)0.004 (2)0.066 (3)0.025 (2)
C100.153 (4)0.078 (3)0.201 (5)0.008 (3)0.133 (4)0.013 (3)
Geometric parameters (Å, º) top
Br1—C11.887 (3)C3—C41.378 (4)
S1—O11.4207 (19)C3—H30.9300
S1—O21.4225 (19)C4—C51.372 (3)
S1—N11.634 (2)C5—C61.379 (4)
S1—C41.763 (3)C5—H50.9300
N1—C71.388 (3)C6—H60.9300
N1—H10.8600C8—C91.494 (4)
C1—C21.363 (4)C8—H8A0.9700
C1—C61.371 (4)C8—H8B0.9700
N2—C71.319 (3)C9—C101.498 (5)
N2—C81.460 (4)C9—H9A0.9700
N2—H20.8600C9—H9B0.9700
C7—O31.228 (3)C10—H10A0.9600
C2—C31.374 (4)C10—H10B0.9600
C2—H2A0.9300C10—H10C0.9600
O1—S1—O2119.76 (13)C3—C4—S1119.8 (2)
O1—S1—N1103.90 (12)C4—C5—C6120.1 (3)
O2—S1—N1109.80 (12)C4—C5—H5119.9
O1—S1—C4108.87 (12)C6—C5—H5119.9
O2—S1—C4108.00 (12)C1—C6—C5119.2 (3)
N1—S1—C4105.65 (11)C1—C6—H6120.4
C7—N1—S1123.94 (17)C5—C6—H6120.4
C7—N1—H1118.0N2—C8—C9113.9 (3)
S1—N1—H1118.0N2—C8—H8A108.8
C2—C1—C6121.1 (3)C9—C8—H8A108.8
C2—C1—Br1119.8 (2)N2—C8—H8B108.8
C6—C1—Br1119.1 (2)C9—C8—H8B108.8
C7—N2—C8123.5 (2)H8A—C8—H8B107.7
C7—N2—H2118.3C8—C9—C10111.7 (3)
C8—N2—H2118.3C8—C9—H9A109.3
O3—C7—N2124.7 (3)C10—C9—H9A109.3
O3—C7—N1120.4 (3)C8—C9—H9B109.3
N2—C7—N1114.8 (2)C10—C9—H9B109.3
C1—C2—C3119.8 (3)H9A—C9—H9B107.9
C1—C2—H2A120.1C9—C10—H10A109.5
C3—C2—H2A120.1C9—C10—H10B109.5
C2—C3—C4119.7 (3)H10A—C10—H10B109.5
C2—C3—H3120.1C9—C10—H10C109.5
C4—C3—H3120.1H10A—C10—H10C109.5
C5—C4—C3120.0 (2)H10B—C10—H10C109.5
C5—C4—S1120.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.861.942.791 (3)172
N2—H2···O2i0.862.242.998 (3)147
N2—H2···O3i0.862.643.351 (3)141
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

References

First citationAhmed, M. N., Arif, M., Jabeen, F., Khan, H. A., Yasin, K. A., Tahir, M. N., Franconetti, A. & Frontera, A. (2019). New J. Chem. 43, 8122–8131.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAnana, R., Rao, P. P. N., Chen, Q. H. & Knaus, E. E. (2006). Bioorg. Med. Chem. 14, 5259–5265.  Web of Science CrossRef PubMed CAS Google Scholar
First citationArif Tawfeeq, N., Kwong, H. C., Mohamed Tahir, M. I. & Ravoof, T. B. S. A. (2019). Acta Cryst. E75, 774–779.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBieszczad, B., Siwek, A., Wilczek, M., Trzybiński, D., Woźniak, K., Satała, G., Bojarski, A. J. & Mieczkowski, A. (2020). Bioorg. Med. Chem. Lett. 30, Article 127493.  Web of Science CSD CrossRef Google Scholar
First citationBookwala, M., DeBoyace, K., Buckner, I. S. & Wildfong, P. L. D. (2020). AAPS PharmSciTech, 21, https://doi.org/ 10.1208/s12249-020-1632-4.  Google Scholar
First citationBookwala, M., Gumireddy, A., Aitken, J. A. & Wildfong, P. L. D. (2022). J. Chem. Crystallogr. 52, 81–88.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChulvi, K., Costero, A., Ochando, L. E. & Gaviña, P. (2015). Acta Cryst. E71, o1069–o1070.  CSD CrossRef IUCr Journals Google Scholar
First citationDesiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296.  CrossRef CAS Web of Science Google Scholar
First citationDrebushchak, T. N., Chesalov, Y. A. & Boldyreva, E. V. (2009). Acta Cryst. B65, 770–781.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDrebushchak, T. N., Chukanov, N. V. & Boldyreva, E. V. (2006). Acta Cryst. E62, o4393–o4395.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDrebushchak, T. N., Pankrushina, N. A. & Boldyreva, E. V. (2011). Dokl. Phys. Chem. 437, 61–64.  Web of Science CSD CrossRef CAS Google Scholar
First citationFedorov, A. Y., Rychkov, D. A., Losev, E. A., Zakharov, B. A., Stare, J. & Boldyreva, E. V. (2017). CrystEngComm, 19, 2243–2252.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumireddy, A., DeBoyace, K., Rupprecht, A., Gupta, M., Patel, S., Flaherty, P. T. & Wildfong, P. L. D. (2021). Acta Cryst. E77, 360–365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhamees, H. A., Chaluvaiah, K., El-khatatneh, N. A., Swamynayaka, A., Chong, K. H., Dasappa, J. P. & Madegowda, M. (2019). Acta Cryst. E75, 1620–1626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKimura, K., Hirayama, F. & Uekama, K. (1999). J. Pharm. Sci. 88, 385–391.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMarshall, F. & Sigal, J. M. (1958). J. Org. Chem. 23, 927–929.  CrossRef CAS Web of Science Google Scholar
First citationMcLamore, W. M., Fanelli, G. M., P'an, S. Y. & Laubach, G. D. (1959). Ann. N. Y. Acad. Sci. 74, 443–448.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPalmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.  Google Scholar
First citationProks, P., Reimann, F., Green, N., Gribble, F. & Ashcroft, F. (2002). Diabetes, 51, S368–S376.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRichardson, C. M., Nunns, C. L., Williamson, D. S., Parratt, M. J., Dokurno, P., Howes, R., Borgognoni, J., Drysdale, M. J., Finch, H., Hubbard, R. E., Jackson, P. S., Kierstan, P., Lentzen, G., Moore, J. D., Murray, J. B., Simmonite, H., Surgenor, A. E. & Torrance, C. J. (2007). Bioorg. Med. Chem. Lett. 17, 3880–3885.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanwar, D. K., Ratan, A. & Gill, M. S. (2017). Org. Biomol. Chem. 15, 4992–4999.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds