research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(Benzyl­amino)­carbon­yl]-1-methyl­pyridinium bromide hemihydrate: X-ray diffraction study and Hirshfeld surface analysis

crossmark logo

aFarmak JSC, 63 Kyrylivska str., Kyiv 04080, Ukraine, bDepartment of Organic, Chemistry, National Technical University of Ukraine, 37, Pobedy ave., Kyiv, 03056, Ukraine, cSSI "Institute for Single Crystals" NAS of Ukraine, 60 Nauky ave., Kharkiv, 61001, Ukraine, and dV.N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61022, Ukraine
*Correspondence e-mail: sveta@xray.isc.kharkov.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 October 2021; accepted 6 April 2022; online 12 April 2022)

The hemihydrate of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium bromide, C14H15N2O+·Br·0.5H2O, was studied by single-crystal and powder X-ray diffraction methods. In the asymmetric unit, two organic cations of similar conformation, two bromide anions and one water mol­ecule are present. In the crystal, N—H⋯Br hydrogen bonds link the cations and anions. The formation of a set of inter­molecular C—H⋯Br and C—H⋯π inter­actions result in double chains extending parallel to [011]. A Hirshfeld surface analysis showed high contributions of H⋯H and C⋯H/H⋯C short contacts to the total Hirshfeld surfaces of the cations.

1. Chemical context

The 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium cation (Am+) has been shown to possess anti­viral activity (Buhtiarova et al., 2003[Buhtiarova, T. A., Danilenko, V. P., Homenko, V. S., Shatyrkina, T. V. & Yadlovsky, O. E. (2003). Ukrainian Med. J. 33, 72-74.]; Frolov et al., 2004[Frolov, A. F., Frolov, V. M., Buhtiarova, T. A. & Danilenko, V. P. (2004). Ukrainian Med. J. 39, 69-74.]; Boltz et al., 2018[Boltz, D., Peng, X., Muzzio, M., Dash, P., Thomas, P. G. & Margitich, V. (2018). Antivir. Chem. Chemother. 26, 1-9.]; te Velthuis et al., 2021[Velthuis, A. J. W., te Zubkova, T. G., Shaw, M., Mehle, A., Boltz, D., Gmeinwieser, N., Stammer, H., Milde, J., Müller, L. & Margitich, V. (2021). Antimicrob. Agents Chemother. 65, e02605-20.]). Being charged due to quartenization of the pyridine N atom, this type of cation is more stable than its protonated analogue formed by H-atom transition in the form of an acid–base pair. Halogenide anions can be used as simple counter-ions of the organic cation. In fact, the iodide salt of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium (AmI) is known as a multimodal anti­viral drug and has been studied by single-crystal X-ray diffraction, powder diffraction, IR spectroscopy, and DSC methods (Drebushchak et al., 2017[Drebushchak, T. N., Kryukov, Y. A., Rogova, A. I. & Boldyreva, E. V. (2017). Acta Cryst. E73, 967-970.]). The search for polymorphic modifications, hydrates or solvates is of great importance for the pharmaceutical industry to improve the quality of a drug and to protect intellectual property. However, polymorphic screening performed for the AmI salt did not reveal any other crystalline form.

[Scheme 1]

The 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium bro­mide (AmBr) salt is the closest analogue of AmI. Polymorphic screening for this salt resulted in the crystallization of a hemihydrate. In this communication we present the mol­ecular and crystal structures of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium bromide hemihydrate, (C14H15N2O)+Br·0.5H2O.

2. Structural commentary

The asymmetric unit contains two mol­ecules of the cation (denoted A and B), two bromide anions (A and B) and one water mol­ecule (Fig. 1[link]). The positive charge of the cation is located at the quaternized nitro­gen atom of the pyridine ring. The carbamide group is slightly non-coplanar with the plane of the aromatic ring, as shown by the N2—C7—C4—C3 torsion angles given in Table 1[link]. The non-planarity is caused by steric repulsion between the two constituents as revealed by the amideH2⋯H3pyridine and amideH2⋯C3pyridine short contacts (Table 1[link]) as compared to the van der Waals radii sums (Zefirov, 1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.]) of 2.34 and 2.87 Å, respectively. The cations A and B have similar conformations of the benzyl substituent (Fig. 2[link]). The phenyl fragment of the benzyl substituent is located in an −ac position in relation to the C7—N2 bond and is twisted in relation to the carbamide fragment in both cations A and B, as seen in the C7—N2—C8—C9 and N2—C8—C9—C10 torsion angles (Table 1[link]).

Table 1
Some geometrical characteristics (Å, °) of cations A and B in AmBr hemihydrate

Parameter Cation A Cation B
N1—C2 1.343 (6) 1.323 (7)
N1—C6 1.330 (7) 1.329 (7)
N2—C7—C4—C3 17.1 (7) −1.4 (9)
C7—N2—C8—C9 −102.6 (6) −107.0 (6)
N2—C8—C9—C10 −168.9 (5) −167.4 (5)
H2⋯H3 2.11 2.04
H2⋯C3 2.59 2.54
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, AmBr hemihydrate. Displacement ellipsoids are shown at the 50% probability level. C—H⋯Br and N—H⋯Br hydrogen bonds are indicated by dotted lines.
[Figure 2]
Figure 2
Mol­ecular overlay plot of cations A and B.

3. Supra­molecular features

In the crystal, cations A and B inter­act with the bromide anions by N—H⋯Br hydrogen bonds. In addition, a set of C—H⋯Br and C—H⋯π inter­actions are found in the crystal structure (Table 2[link]). The solvent water mol­ecule forms one C—H⋯O hydrogen bond as a proton acceptor and O—H⋯Br and O—H⋯O hydrogen bonds as a proton donor (Table 2[link]). All these hydrogen-bonding inter­actions result in the formation of double chains extending parallel to [011] (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

CgA and CgB are the centroids of the C9A–C14A and C9B–C14B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯Br1A 0.86 2.53 3.339 (5) 158
C3A—H3A⋯Br1A 0.93 2.98 3.814 (5) 150
C2A—H2AA⋯Br1Ai 0.93 2.84 3.725 (6) 159
C1A—H1AA⋯Br1Ai 0.96 2.88 3.784 (6) 157
C6A—H6ACgBii 0.93 2.65 3.510 (7) 154
N2B—H2B⋯Br1B 0.86 2.60 3.419 (5) 159
C3B—H3B⋯Br1B 0.93 2.83 3.753 (5) 175
C6B—H6BCgAiii 0.93 2.71 3.400 (7) 132
O1W—H1WA⋯Br1Biv 0.85 3.03 3.473 (7) 115
C1A—H1AC⋯O1Wv 0.96 2.89 3.794 (10) 157
Symmetry codes: (i) [-x+2, -y+2, -z+2]; (ii) [-x+1, -y+1, -z+2]; (iii) [-x+1, -y+2, -z+1]; (iv) [-x+1, -y+1, -z+1]; (v) x+1, y, z+1.
[Figure 3]
Figure 3
Crystal packing of AmBr hemihydrate in a view along [100]. Hydrogen-bonding inter­actions are shown by dashed lines.

4. Hirshfeld surface analysis

Inter­molecular inter­actions were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots by using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net.]). The Hirshfeld surfaces were calculated separately for cations A and B using a standard high surface resolution, mapped over dnorm (Fig. 4[link]). The red spots corresponding to contacts that are shorter than the van der Waals radii sum of the closest atoms are observed at the hydrogen atom of the amino group and at some phenyl and methyl hydrogen atoms. The two-dimensional fingerprint plots showed the absence of strong hydrogen bonds in the structure under study. To compare inter­molecular inter­actions of different types in a more qu­anti­tative way, their contributions to the total Hirshfeld surfaces were analysed (Fig. 5[link]). The main contribution is provided by H⋯H short contacts (Fig. 5[link]g,h). The contribution of C⋯H/H⋯C short contacts is also significant (Fig. 5[link]i,j). The Br⋯H/H⋯Br and O⋯H/H⋯O inter­actions contribute to the total Hirshfeld surface in the same way (Fig. 5[link]c,d and 5e,f).

[Figure 4]
Figure 4
Hirshfeld surfaces mapped over dnorm for cations A (left) and B (right) in the crystal structure of AmBr hemihydrate.
[Figure 5]
Figure 5
Contributions of inter­actions of different types to the total Hirshfeld surface of cations A and B in the crystal structure of AmBr hemihydrate.

5. Database survey

A search of the Cambridge Structural Database (Version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the structure of the anhydrous AmI salt with an equimolar cation:iodine ratio (refcode BEBFIA; Drebushchak et al., 2017[Drebushchak, T. N., Kryukov, Y. A., Rogova, A. I. & Boldyreva, E. V. (2017). Acta Cryst. E73, 967-970.]). A comparison of the mol­ecular conformation of the cation showed its flexibility due to rotation about the N—Csp3 and Csp3—Car­yl bonds.

6. Powder diffraction characterization

An X-ray powder diffraction pattern of the title compound was registered using a Siemens D500 powder diffractometer (Cu Kα radiation, Bragg–Brentano geometry, curved graphite monochromator on the counter arm, 4 < 2θ < 60°, D2θ = 0.02°). A Rietveld refinement (Fig. 6[link]) on the basis of the obtained pattern was carried out with FullProf and WinPLOTR (Rodriguez-Carvajal & Roisnel, 1998[Rodriguez-Carvajal, J. & Roisnel, T. (1998). International Union of Crystallography Newsletter, 20, 35-36.]) using data of an external standard (NIST SRM1976) for the calculation of the instrumental profile function and the single-crystal data as the structure model for refinement. The main results of the Rietveld refinement are shown in Table 3[link]. On the basis of the Rietveld refinement, the experimental powder X-ray diffraction pattern coincides with the theoretical one calculated from the X-ray single crystal study.

Table 3
Experimental data of the X-ray powder diffraction study performed at 293 K

Crystal system, space group Triclinic, P[\overline{1}]
a (Å) 5.8858 (2)
b (Å) 14.7604 (3)
c (Å) 17.8118 (4)
α (°) 65.819 (1)
β (°) 85.321 (2)
γ (°) 85.402 (1)
V3) 1405.09 (6)
Dx (Mg m−3) 1.499
Refinement  
Rp 0.0359
Rwp 0.0522
Rexp  0.0120
RB 0.0371
RF 0.0171
[Figure 6]
Figure 6
Final Rietveld plots for the title compound. Observed data points are indicated by red circles, the best-fit profile (black upper trace) and the difference pattern (blue lower trace) are shown as solid lines. The vertical green bars correspond to the Bragg reflections.

7. Synthesis and crystallization

4-[(Benzyl­amino)­carbon­yl]-1-methyl­pyridinium iodide (57.7 g, 0.163 mol), silver bromide (33.77 g, 0.180 mol) and 700 ml of water were loaded into a glass flask. The mixture was stirred for 72 h, and the resulting precipitate was filtered off. The solvent was evaporated under reduced pressure. To the precipitate were added 300 ml of aceto­nitrile and refluxed for 2 h. The reaction then was spontaneously cooled to a temperature of 303 K and the precipitate filtered off and rinsed on the filter with 50 ml of cooled aceto­nitrile. The product was dried at 313 K for 12 h. Yield: 14 g of 4-[(benz­yl­amino)­carbon­yl]-1-methyl­pyridinium bromide (28%); colourless crystals.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All of the hydrogen atoms were placed in calculated positions and treated as riding with C—H = 0.96 Å, Uiso(H) = 1.5Ueq for methyl groups and with Car—H = 0.93 Å, Csp2—H = 0.97 Å, Uiso(H) = 1.2Ueq for all other hydrogen atoms.

Table 4
Experimental details

Crystal data
Chemical formula C14H15N2O+·Br·0.5H2O
Mr 316.19
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 5.8891 (4), 14.7565 (10), 17.8090 (11)
α, β, γ (°) 65.773 (6), 85.396 (6), 85.544 (6)
V3) 1405.08 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.92
Crystal size (mm) 0.30 × 0.15 × 0.10
 
Data collection
Diffractometer Xcalibur, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.634, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14465, 4925, 3547
Rint 0.075
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.175, 1.06
No. of reflections 4925
No. of parameters 339
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.12, −0.45
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-[(Benzylamino)carbonyl]-1-methylpyridinium bromide hemihydrate top
Crystal data top
C14H15N2O+·Br·0.5H2OZ = 4
Mr = 316.19F(000) = 644
Triclinic, P1Dx = 1.495 Mg m3
a = 5.8891 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.7565 (10) ÅCell parameters from 4991 reflections
c = 17.8090 (11) Åθ = 3.6–25.4°
α = 65.773 (6)°µ = 2.92 mm1
β = 85.396 (6)°T = 293 K
γ = 85.544 (6)°Plate, colorless
V = 1405.08 (17) Å30.30 × 0.15 × 0.10 mm
Data collection top
Xcalibur, Atlas
diffractometer
4925 independent reflections
Radiation source: Enhance (Mo) X-ray Source3547 reflections with I > 2σ(I)
Detector resolution: 10.3779 pixels mm-1Rint = 0.075
ω scansθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 66
Tmin = 0.634, Tmax = 1.000k = 1617
14465 measured reflectionsl = 2120
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0802P)2 + 0.8154P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4925 reflectionsΔρmax = 1.12 e Å3
339 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.68503 (10)1.06475 (4)0.84634 (4)0.0614 (2)
Br1B0.37067 (11)0.44764 (5)0.67323 (4)0.0621 (2)
O1A0.3136 (7)0.6956 (3)0.9887 (2)0.0611 (11)
N1A0.9794 (7)0.7007 (3)1.1351 (2)0.0438 (10)
N1B0.6285 (7)0.7967 (3)0.3685 (3)0.0496 (11)
N2A0.3986 (7)0.8566 (3)0.9181 (3)0.0493 (11)
H2A0.4867360.9024200.9139090.059*
O1B0.0865 (8)0.8195 (3)0.5244 (3)0.0766 (14)
N2B0.0287 (8)0.6602 (4)0.5982 (3)0.0518 (11)
H2B0.1339710.6144430.6039680.062*
C9B0.1252 (8)0.6264 (4)0.7400 (3)0.0413 (12)
C9A0.2998 (8)0.8874 (4)0.7765 (3)0.0432 (12)
C2A0.9195 (9)0.7968 (4)1.0910 (3)0.0473 (13)
H2AA0.9968260.8463741.0961250.057*
C10B0.2902 (9)0.5848 (4)0.8037 (3)0.0505 (14)
H10B0.4230870.5632520.7927370.061*
C4A0.6308 (8)0.7478 (4)1.0305 (3)0.0406 (12)
C6A0.8719 (9)0.6286 (4)1.1285 (3)0.0440 (12)
H6A0.9153070.5624911.1598010.053*
C7A0.4317 (8)0.7654 (4)0.9765 (3)0.0431 (12)
C14A0.5157 (9)0.8564 (4)0.7586 (3)0.0484 (13)
H14A0.6184780.8292850.8001120.058*
C3A0.7436 (9)0.8223 (4)1.0381 (3)0.0471 (13)
H3A0.7014040.8888391.0078350.057*
C8A0.2168 (9)0.8807 (4)0.8609 (3)0.0516 (14)
H8AA0.1415620.9438150.8553340.062*
H8AB0.1047770.8302270.8838540.062*
C4B0.2677 (9)0.7633 (4)0.4813 (3)0.0435 (12)
C6B0.4700 (10)0.8688 (4)0.3605 (4)0.0576 (15)
H6B0.4817050.9300810.3159030.069*
C13A0.5825 (10)0.8647 (4)0.6799 (4)0.0572 (15)
H13A0.7304280.8450330.6685650.069*
C5A0.6988 (9)0.6501 (4)1.0763 (3)0.0456 (12)
H5A0.6266320.5988731.0716990.055*
C8B0.1697 (9)0.6367 (4)0.6549 (3)0.0517 (14)
H8BA0.2268520.5748980.6588790.062*
H8BB0.2879470.6885920.6326320.062*
C14B0.0695 (9)0.6561 (4)0.7590 (3)0.0495 (13)
H14B0.1821730.6833150.7176050.059*
C10A0.1499 (9)0.9266 (4)0.7139 (3)0.0509 (14)
H10A0.0036020.9486550.7245360.061*
C13B0.1036 (10)0.6469 (4)0.8380 (3)0.0560 (14)
H13B0.2367000.6678650.8493180.067*
C11B0.2587 (10)0.5752 (5)0.8820 (4)0.0600 (16)
H11B0.3707180.5475990.9236130.072*
C1A1.1677 (9)0.6740 (5)1.1928 (3)0.0537 (15)
H1AA1.2507700.7320051.1816690.080*
H1AB1.2686140.6237961.1851870.080*
H1AC1.1048510.6490761.2485520.080*
C12B0.0633 (10)0.6060 (5)0.8998 (4)0.0591 (15)
H12B0.0432850.5994180.9531190.071*
C7B0.0549 (9)0.7494 (4)0.5377 (3)0.0490 (13)
C2B0.6158 (10)0.7092 (4)0.4317 (3)0.0575 (15)
H2BA0.7291270.6597260.4368490.069*
C12A0.4310 (11)0.9020 (5)0.6185 (4)0.0653 (17)
H12A0.4739380.9058760.5658430.078*
C3B0.4378 (10)0.6904 (4)0.4896 (3)0.0540 (14)
H3B0.4314250.6289160.5342000.065*
C5B0.2912 (10)0.8543 (4)0.4166 (3)0.0560 (15)
H5B0.1843730.9061790.4110980.067*
C11A0.2154 (11)0.9334 (5)0.6356 (4)0.0658 (17)
H11A0.1123890.9594710.5940950.079*
C1B0.8149 (11)0.8123 (5)0.3041 (4)0.0697 (18)
H1BA0.7526770.8191840.2537350.105*
H1BB0.9225270.7562960.3217800.105*
H1BC0.8902420.8716000.2950880.105*
O1W0.1099 (12)0.5752 (7)0.4262 (5)0.132 (3)
H1WA0.2220900.5347760.4465760.198*
H1WB0.0544010.5612870.3897610.198*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0648 (4)0.0476 (4)0.0676 (4)0.0142 (3)0.0086 (3)0.0165 (3)
Br1B0.0719 (4)0.0510 (4)0.0559 (4)0.0091 (3)0.0022 (3)0.0133 (3)
O1A0.068 (3)0.049 (2)0.061 (2)0.0199 (19)0.0167 (19)0.0110 (19)
N1A0.050 (2)0.047 (3)0.033 (2)0.0052 (19)0.0020 (17)0.015 (2)
N1B0.056 (3)0.052 (3)0.041 (2)0.016 (2)0.0023 (19)0.018 (2)
N2A0.054 (3)0.045 (3)0.045 (2)0.0116 (19)0.0074 (19)0.011 (2)
O1B0.069 (3)0.059 (3)0.075 (3)0.002 (2)0.018 (2)0.005 (2)
N2B0.058 (3)0.052 (3)0.040 (2)0.003 (2)0.0033 (19)0.015 (2)
C9B0.044 (3)0.038 (3)0.039 (3)0.007 (2)0.002 (2)0.011 (2)
C9A0.046 (3)0.033 (3)0.046 (3)0.007 (2)0.008 (2)0.009 (2)
C2A0.062 (3)0.036 (3)0.043 (3)0.008 (2)0.009 (2)0.012 (2)
C10B0.043 (3)0.054 (4)0.053 (3)0.015 (2)0.007 (2)0.020 (3)
C4A0.049 (3)0.041 (3)0.032 (3)0.007 (2)0.001 (2)0.015 (2)
C6A0.053 (3)0.033 (3)0.039 (3)0.003 (2)0.004 (2)0.008 (2)
C7A0.049 (3)0.045 (3)0.036 (3)0.009 (2)0.002 (2)0.016 (2)
C14A0.048 (3)0.041 (3)0.052 (3)0.002 (2)0.011 (2)0.013 (2)
C3A0.057 (3)0.034 (3)0.048 (3)0.006 (2)0.007 (2)0.013 (2)
C8A0.045 (3)0.051 (4)0.052 (3)0.001 (2)0.011 (2)0.013 (3)
C4B0.054 (3)0.043 (3)0.033 (3)0.005 (2)0.005 (2)0.015 (2)
C6B0.064 (4)0.040 (3)0.054 (3)0.007 (3)0.003 (3)0.005 (3)
C13A0.058 (3)0.051 (4)0.062 (4)0.000 (3)0.004 (3)0.023 (3)
C5A0.057 (3)0.037 (3)0.043 (3)0.012 (2)0.003 (2)0.016 (2)
C8B0.058 (3)0.049 (3)0.043 (3)0.009 (2)0.000 (2)0.012 (3)
C14B0.050 (3)0.043 (3)0.048 (3)0.010 (2)0.005 (2)0.012 (3)
C10A0.043 (3)0.050 (3)0.052 (3)0.001 (2)0.013 (2)0.011 (3)
C13B0.060 (3)0.058 (4)0.055 (4)0.009 (3)0.007 (3)0.025 (3)
C11B0.064 (4)0.063 (4)0.050 (3)0.019 (3)0.018 (3)0.021 (3)
C1A0.047 (3)0.060 (4)0.049 (3)0.000 (3)0.014 (2)0.016 (3)
C12B0.072 (4)0.062 (4)0.046 (3)0.004 (3)0.002 (3)0.025 (3)
C7B0.051 (3)0.051 (4)0.039 (3)0.001 (3)0.003 (2)0.013 (3)
C2B0.065 (4)0.045 (4)0.056 (4)0.000 (3)0.002 (3)0.015 (3)
C12A0.079 (4)0.061 (4)0.061 (4)0.012 (3)0.000 (3)0.029 (3)
C3B0.063 (3)0.045 (3)0.042 (3)0.003 (3)0.004 (2)0.007 (3)
C5B0.058 (3)0.045 (3)0.054 (3)0.001 (3)0.004 (3)0.011 (3)
C11A0.068 (4)0.063 (4)0.062 (4)0.002 (3)0.022 (3)0.019 (3)
C1B0.067 (4)0.072 (5)0.062 (4)0.012 (3)0.019 (3)0.021 (3)
O1W0.103 (5)0.189 (8)0.132 (6)0.013 (5)0.021 (4)0.095 (6)
Geometric parameters (Å, º) top
O1A—C7A1.223 (6)C4B—C5B1.373 (7)
N1A—C6A1.330 (7)C4B—C3B1.382 (7)
N1A—C2A1.343 (6)C4B—C7B1.514 (7)
N1A—C1A1.491 (7)C6B—C5B1.357 (8)
N1B—C2B1.323 (7)C6B—H6B0.9300
N1B—C6B1.329 (7)C13A—C12A1.372 (9)
N1B—C1B1.480 (7)C13A—H13A0.9300
N2A—C7A1.332 (6)C5A—H5A0.9300
N2A—C8A1.459 (7)C8B—H8BA0.9700
N2A—H2A0.8600C8B—H8BB0.9700
O1B—C7B1.231 (6)C14B—C13B1.386 (8)
N2B—C7B1.326 (7)C14B—H14B0.9300
N2B—C8B1.446 (7)C10A—C11A1.382 (8)
N2B—H2B0.8600C10A—H10A0.9300
C9B—C14B1.373 (7)C13B—C12B1.384 (8)
C9B—C10B1.397 (7)C13B—H13B0.9300
C9B—C8B1.502 (7)C11B—C12B1.375 (9)
C9A—C14A1.376 (7)C11B—H11B0.9300
C9A—C10A1.381 (7)C1A—H1AA0.9600
C9A—C8A1.507 (8)C1A—H1AB0.9600
C2A—C3A1.381 (8)C1A—H1AC0.9600
C2A—H2AA0.9300C12B—H12B0.9300
C10B—C11B1.370 (8)C2B—C3B1.370 (8)
C10B—H10B0.9300C2B—H2BA0.9300
C4A—C5A1.379 (7)C12A—C11A1.372 (9)
C4A—C3A1.385 (7)C12A—H12A0.9300
C4A—C7A1.515 (7)C3B—H3B0.9300
C6A—C5A1.365 (8)C5B—H5B0.9300
C6A—H6A0.9300C11A—H11A0.9300
C14A—C13A1.383 (8)C1B—H1BA0.9600
C14A—H14A0.9300C1B—H1BB0.9600
C3A—H3A0.9300C1B—H1BC0.9600
C8A—H8AA0.9700O1W—H1WA0.8506
C8A—H8AB0.9700O1W—H1WB0.8502
C6A—N1A—C2A120.9 (4)C6A—C5A—H5A120.0
C6A—N1A—C1A119.3 (4)C4A—C5A—H5A120.0
C2A—N1A—C1A119.9 (5)N2B—C8B—C9B114.0 (5)
C2B—N1B—C6B120.5 (5)N2B—C8B—H8BA108.8
C2B—N1B—C1B119.4 (5)C9B—C8B—H8BA108.8
C6B—N1B—C1B120.0 (5)N2B—C8B—H8BB108.8
C7A—N2A—C8A121.7 (5)C9B—C8B—H8BB108.8
C7A—N2A—H2A119.1H8BA—C8B—H8BB107.6
C8A—N2A—H2A119.1C9B—C14B—C13B122.1 (5)
C7B—N2B—C8B122.7 (5)C9B—C14B—H14B119.0
C7B—N2B—H2B118.6C13B—C14B—H14B119.0
C8B—N2B—H2B118.6C9A—C10A—C11A120.6 (5)
C14B—C9B—C10B117.7 (5)C9A—C10A—H10A119.7
C14B—C9B—C8B123.6 (4)C11A—C10A—H10A119.7
C10B—C9B—C8B118.7 (5)C12B—C13B—C14B119.1 (6)
C14A—C9A—C10A118.3 (5)C12B—C13B—H13B120.5
C14A—C9A—C8A123.7 (4)C14B—C13B—H13B120.5
C10A—C9A—C8A118.0 (5)C10B—C11B—C12B120.7 (5)
N1A—C2A—C3A120.4 (5)C10B—C11B—H11B119.7
N1A—C2A—H2AA119.8C12B—C11B—H11B119.7
C3A—C2A—H2AA119.8N1A—C1A—H1AA109.5
C11B—C10B—C9B120.8 (5)N1A—C1A—H1AB109.5
C11B—C10B—H10B119.6H1AA—C1A—H1AB109.5
C9B—C10B—H10B119.6N1A—C1A—H1AC109.5
C5A—C4A—C3A118.6 (5)H1AA—C1A—H1AC109.5
C5A—C4A—C7A116.8 (5)H1AB—C1A—H1AC109.5
C3A—C4A—C7A124.7 (5)C11B—C12B—C13B119.7 (6)
N1A—C6A—C5A120.9 (5)C11B—C12B—H12B120.2
N1A—C6A—H6A119.5C13B—C12B—H12B120.2
C5A—C6A—H6A119.5O1B—C7B—N2B123.4 (5)
O1A—C7A—N2A124.3 (5)O1B—C7B—C4B119.2 (5)
O1A—C7A—C4A118.4 (5)N2B—C7B—C4B117.4 (5)
N2A—C7A—C4A117.2 (5)N1B—C2B—C3B120.8 (5)
C9A—C14A—C13A121.1 (5)N1B—C2B—H2BA119.6
C9A—C14A—H14A119.4C3B—C2B—H2BA119.6
C13A—C14A—H14A119.4C13A—C12A—C11A119.2 (6)
C2A—C3A—C4A119.3 (5)C13A—C12A—H12A120.4
C2A—C3A—H3A120.4C11A—C12A—H12A120.4
C4A—C3A—H3A120.4C2B—C3B—C4B119.6 (5)
N2A—C8A—C9A113.5 (4)C2B—C3B—H3B120.2
N2A—C8A—H8AA108.9C4B—C3B—H3B120.2
C9A—C8A—H8AA108.9C6B—C5B—C4B120.2 (5)
N2A—C8A—H8AB108.9C6B—C5B—H5B119.9
C9A—C8A—H8AB108.9C4B—C5B—H5B119.9
H8AA—C8A—H8AB107.7C12A—C11A—C10A120.6 (5)
C5B—C4B—C3B117.8 (5)C12A—C11A—H11A119.7
C5B—C4B—C7B117.6 (5)C10A—C11A—H11A119.7
C3B—C4B—C7B124.6 (5)N1B—C1B—H1BA109.5
N1B—C6B—C5B121.0 (5)N1B—C1B—H1BB109.5
N1B—C6B—H6B119.5H1BA—C1B—H1BB109.5
C5B—C6B—H6B119.5N1B—C1B—H1BC109.5
C12A—C13A—C14A120.2 (6)H1BA—C1B—H1BC109.5
C12A—C13A—H13A119.9H1BB—C1B—H1BC109.5
C14A—C13A—H13A119.9H1WA—O1W—H1WB109.4
C6A—C5A—C4A120.0 (5)
C6A—N1A—C2A—C3A0.3 (8)C14B—C9B—C8B—N2B12.8 (8)
C1A—N1A—C2A—C3A179.3 (5)C10B—C9B—C8B—N2B167.4 (5)
C14B—C9B—C10B—C11B0.7 (8)C10B—C9B—C14B—C13B0.7 (8)
C8B—C9B—C10B—C11B179.0 (6)C8B—C9B—C14B—C13B179.0 (5)
C2A—N1A—C6A—C5A0.4 (8)C14A—C9A—C10A—C11A0.6 (8)
C1A—N1A—C6A—C5A180.0 (5)C8A—C9A—C10A—C11A179.1 (6)
C8A—N2A—C7A—O1A1.5 (8)C9B—C14B—C13B—C12B0.3 (9)
C8A—N2A—C7A—C4A177.9 (5)C9B—C10B—C11B—C12B0.3 (10)
C5A—C4A—C7A—O1A15.0 (7)C10B—C11B—C12B—C13B0.1 (10)
C3A—C4A—C7A—O1A163.5 (5)C14B—C13B—C12B—C11B0.1 (9)
C5A—C4A—C7A—N2A164.4 (5)C8B—N2B—C7B—O1B0.2 (9)
C3A—C4A—C7A—N2A17.1 (7)C8B—N2B—C7B—C4B178.4 (5)
C10A—C9A—C14A—C13A0.5 (8)C5B—C4B—C7B—O1B0.9 (8)
C8A—C9A—C14A—C13A179.8 (6)C3B—C4B—C7B—O1B179.7 (6)
N1A—C2A—C3A—C4A0.5 (8)C5B—C4B—C7B—N2B177.4 (5)
C5A—C4A—C3A—C2A0.1 (8)C3B—C4B—C7B—N2B1.4 (9)
C7A—C4A—C3A—C2A178.4 (5)C6B—N1B—C2B—C3B0.9 (9)
C7A—N2A—C8A—C9A102.6 (6)C1B—N1B—C2B—C3B176.0 (6)
C14A—C9A—C8A—N2A11.4 (8)C14A—C13A—C12A—C11A1.9 (10)
C10A—C9A—C8A—N2A168.9 (5)N1B—C2B—C3B—C4B0.9 (10)
C2B—N1B—C6B—C5B0.3 (9)C5B—C4B—C3B—C2B3.1 (9)
C1B—N1B—C6B—C5B176.6 (6)C7B—C4B—C3B—C2B175.6 (6)
C9A—C14A—C13A—C12A1.8 (9)N1B—C6B—C5B—C4B2.0 (10)
N1A—C6A—C5A—C4A1.0 (8)C3B—C4B—C5B—C6B3.7 (9)
C3A—C4A—C5A—C6A0.8 (8)C7B—C4B—C5B—C6B175.1 (6)
C7A—C4A—C5A—C6A177.8 (5)C13A—C12A—C11A—C10A0.8 (10)
C7B—N2B—C8B—C9B107.0 (6)C9A—C10A—C11A—C12A0.5 (10)
Hydrogen-bond geometry (Å, º) top
CgA and CgB are the centroids of the C9A–C14A and C9B–C14B rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2A—H2A···Br1A0.862.533.339 (5)158
C3A—H3A···Br1A0.932.983.814 (5)150
C2A—H2AA···Br1Ai0.932.843.725 (6)159
C1A—H1AA···Br1Ai0.962.883.784 (6)157
C6A—H6A···CgBii0.932.653.510 (7)154
N2B—H2B···Br1B0.862.603.419 (5)159
C3B—H3B···Br1B0.932.833.753 (5)175
C6B—H6B···CgAiii0.932.713.400 (7)132
O1W—H1WA···Br1Biv0.853.033.473 (7)115
C1A—H1AC···O1Wv0.962.893.794 (10)157
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z+1.
Some geometrical characteristics (Å, °) of cations A and B in AmBr hemihydrate top
ParameterCation ACation B
N1—C21.343 (6)1.323 (7)
N1—C61.330 (7)1.329 (7)
N2—C7—C4—C317.1 (7)-1.4 (9)
C7—N2—C8—C9-102.6 (6)-107.0 (6)
N2—C8—C9—C10-168.9 (5)-167.4 (5)
H2···H32.112.04
H2···C32.592.54
Experimental data of the X-ray powder diffraction study performed at 293 K top
Crystal system, space groupTriclinic, P1
a (Å)5.8858 (2)
b (Å)14.7604 (3)
c (Å)17.8118 (4)
α (°)65.819 (1)
β (°)85.321 (2)
γ (°)85.402 (1)
V3)1405.09 (6)
Dx (Mg m–3)1.499
Refinement
Rp0.0359
Rwp0.0522
Rexp0.0120
RB0.0371
RF0.0171
 

Acknowledgements

The authors are grateful to Farmak JSC for support.

Funding information

Funding for this research was provided by: National Academy of Sciences of Ukraine (grant No. 0120U102660).

References

First citationBoltz, D., Peng, X., Muzzio, M., Dash, P., Thomas, P. G. & Margitich, V. (2018). Antivir. Chem. Chemother. 26, 1–9.  CrossRef Google Scholar
First citationBuhtiarova, T. A., Danilenko, V. P., Homenko, V. S., Shatyrkina, T. V. & Yadlovsky, O. E. (2003). Ukrainian Med. J. 33, 72–74.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrebushchak, T. N., Kryukov, Y. A., Rogova, A. I. & Boldyreva, E. V. (2017). Acta Cryst. E73, 967–970.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFrolov, A. F., Frolov, V. M., Buhtiarova, T. A. & Danilenko, V. P. (2004). Ukrainian Med. J. 39, 69–74.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRodriguez-Carvajal, J. & Roisnel, T. (1998). International Union of Crystallography Newsletter, 20, 35–36.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net.  Google Scholar
First citationVelthuis, A. J. W., te Zubkova, T. G., Shaw, M., Mehle, A., Boltz, D., Gmeinwieser, N., Stammer, H., Milde, J., Müller, L. & Margitich, V. (2021). Antimicrob. Agents Chemother. 65, e02605–20.  Web of Science PubMed Google Scholar
First citationZefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds