research communications
Synthesis and anti-10-butyl-10,11,22,23-tetrahydro-9H,21H-5,8:15,12-bis(metheno)[1,5,11]triazacyclohexadecino[1,16-a:5,6-a′]diindole
ofaOsaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan, bOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan, cInstitute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, and dInstitute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga koen, Kasuga, Fukuoka 816-8580, Japan
*Correspondence e-mail: ktani@cc.osaka-kyoiku.ac.jp
The title compound, C33H33N3, is a carbazolophane, which is a cyclophane composed of two carbazole fragments. It has a but crystallizes as a racemate in the P. The molecule adopts an anti-configuration, in which two carbazole fragments are partially overlapped. Both carbazole ring systems are slightly bent, with the C atoms at 3-positions showing the largest deviations from the mean planes. The dihedral angle between two carbazole fragments is 5.19 (3)°, allowing an intramolecular slipped π–π interaction [Cg⋯Cg = 3.2514 (8) Å]. In the crystal, the molecules are linked via intermolecular C—H⋯N hydrogen bonds and C—H⋯π interactions into a network sheet parallel to the ab plane. The molecules of different sheets form other C—H⋯π interactions, thus forming a three-dimensional network.
CCDC reference: 2161895
1. Chemical context
Carbazole is characterized not only as a molecule with electron-donating properties, but also as an emissive heteroaromatic chromophore (Wex et al., 2017), so carbazole derivatives have attracted much attention for the construction of photofunctional devices such as solar cells (Gratia et al., 2015) and organic light-emitting diodes (Kaji et al., 2015). Poly(N-vinylcarbazole) is a widely used photoconductive aromatic polymer, in which the formation of two types of excimers, partially overlapped (PO) and fully overlapped (FO) (sandwich) ones, was proposed (Sakai et al., 1996). Our group has reported various carbazolophanes, which are cyclophanes composed of two carbazole fragments, as the models of excimers. Among these, aza-bridged carbazolophanes synthesized so far by reaction are limited to cyanamide bridging (Tani et al., 2001, 2007) and o-nitrophenylsulfonamide bridging (Tani et al., 2020). These bridges act as polar functional groups with the In the aza-bridged carbazolophanes, the PO and FO isomers have been isolated and their distinct difference in fluorescence spectra provided the evidence for existence of two types of excimers (Tani et al., 2001; Ohkita et al., 2002). Recently, of aza-bridged PO carbazolophanes and their chiroptical properties, including circularly polarized luminescence, were reported (Tani et al., 2020). However, the solubility of the aza-bridged carbazolophanes in common organic solvents is low, leading to difficulties in examining the solvent effect and in manufacturing photofunctional devices. Therefore, the title compound with an N-linear alkyl group, anti-10-butyl-10,11,22,23-tetrahydro-9H,21H-5,8:15,12-bis(metheno)[1,5,11]triazacyclohexadecino[1,16-a:5,6-a′]diindole (cyclophane nomenclature: anti-3-butyl-19H,59H-3-aza-1,5(3,9)-dicarbazolacyclooctaphane), having good solubility in organic solvents, is a promising candidate for investigation of the photophysical and chiroptical properties of the carbazole chromophore. Previously, our group reported the EPR spectrum of the title compound, but no other chemical properties were examined because of the very low yield (Saiful et al., 2006). Here, the modified synthesis and of the title compound are reported.
2. Structural commentary
The title compound has a P. The molecular structure of the title compound is shown in Fig. 1. The molecule adopts an anti-configuration, in which two carbazole fragments are partially overlapped with parallel orientation. The two carbazole fragments are slightly bent, with r.m.s. deviations of 0.064 (1) Å for the N1/C4–C15 ring system and 0.062 (1)Å for N2/C16–C27 ring system. In both carbazole fragments, the C atoms at the 3-positions bridged through the dimethyleneamino group show the largest deviations from the mean planes [0.1177 (14) Å for C7 and −0.1082 (14) Å for C19]. The dihedral angle formed by two carbazole fragments is 5.19 (3)°, providing an intramolecular slipped parallel π–π interaction [Cg2⋯Cg5 = 3.2514 (8) Å; Cg2 and Cg5 are the centroids of the C4–C9 and C16–C21 rings, respectively; inter-planar distance = 3.0856 (6) Å; slippage = 1.099 Å]. In comparison, in the related PO compounds, the dihedral angles between two carbazole fragments and the centroid–centroid distances are 5.96 (6)° and 3.294 (4) Å for N-cyanamide-bridged [3.3](3,9)carbazolophane (BACKOG; Tani et al., 2001), and 1.28 (7)° and 3.3259 (16) Å for N-o-nitrophenylsulfonamide-bridged [3.3](3,9)carbazolophane (YUKYEL; Tani et al., 2020). The N1⋯N2 distance between the N atoms at the 9-positions of the carbazole ring systems is 3.3776 (17) Å, slightly shorter than those in the above-mentioned related compounds [3.414 (4) and 3.461 (4) Å for the cyanamide-bridged and o-nitrophenylsulfonamide-bridged carbazolophanes, respectively]. The bond angle C31—N3—C32 is 114.56 (11)°, smaller than those in the related compounds [119.9 (2) and 119.0 (3)° for the cyanamide-bridged and o-nitrophenylsulfonamide-bridged carbazolophanes, respectively], that is, the of N3 atom is closer to sp3 than to sp2, reflecting the difference in the of the substituent at the N3 atom.
but crystallizes as a racemate in the centrosymmetric3. Supramolecular features
In the crystal, molecules are linked by intermolecular C—H⋯N hydrogen bonds (Fig. 2, Table 1), forming a C(9) chain motif running parallel to the b axis. The molecules are further joined into columns along the a-axis direction by pairs of C—H⋯π interactions (C30—H30A⋯Cg2iii and C31—H31B⋯Cg3iv; Cg2 and Cg3 are the centroids of the C4–C9 and N2/C16/C17/C23/C22 rings, respectively; see Fig. 2 and Table 1), thus network sheets parallel to the ab plane are observed (Fig. 2). Besides this, the molecules belonging to different sheets are associated via a pair of C—H⋯π interactions (C28—H28A⋯Cg1ii; Cg1 is the centroid of the C22–C27 ring), forming a centrosymmetric dimer (Fig. 3). Another pair of C—H⋯π interactions (C36—H36B⋯Cg4v; Cg4 is the centroid of the C10–C15 ring) forms another centrosymmetric dimer (Fig. 3). As a result, a ribbon structure along [01] is formed (Fig. 3). Overall, the molecules are cross-linked via intermolecular C—H⋯N hydrogen bonds and C—H⋯π interactions into a three-dimensional network.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42; May 2021; Groom et al., 2016) using ConQuest (Bruno et al., 2002) for compounds containing a carbazole skeleton gave 4473 hits, and for those containing two 3,9-dimethylenecarbazole fragments gave 49 hits. Among those, a search for the carbazolophane skeleton gave seven hits. Of these seven compounds, three structures are [3.3](3,9) carbazolophanes, two being PO [3.3](3,9)carbazolophanes with the same skeleton as in the title compound: anti-10-(2-nitrobenzen-1-sulfonyl)-10,11,22,23-tetrahydro-9H,21H-5,8:15,12-bis(metheno)[1,5,11]triazacyclohexadecino[1,16-a:5,6-a′]-diindole (N-cyanamide-bridged PO [3.3](3,9)carbazolophane, YUKYEL; Tani et al., 2020) and anti-3-cyano-3-aza-1(9,3),3(3,9)-dicarbazolacyclooctaphane (N-o-nitrophenylsulfonamide-bridged PO [3.3](3,9)carbazolophane, BACKOG; Tani et al., 2001). One structure is N-cyanamide-bridged FO [3.3](3,9)carbazolophane, syn-3-cyano-3-aza-1(9,3),3(3,9)-dicarbazolacyclooctaphane benzene clathrate (BACKIA; Tani et al., 2001), in which the dihedral angle between two carbazole rings is 8.48 (10)°, and intramolecular Cg⋯Cg distances are 3.322 (3) Å for the benzene rings bridged by cyanamide, 3.447 (2) Å for the central pyrrole rings and 3.792 (3) Å for the outer benzene rings. Three of the remaining four structures are PO [m.n](3,9)carbazolophanes; anti-ethenylene and 1,3-xylylene-bridged [2.5](3,9)carbazolophane (VELKON; Kumar et al., 2006), anti-N-cyanamide-bridged [3.4](3,9)carbazolophane (KEYVAM; Tani et al., 2007) and anti-O-oxa-bridged [3.5](3,9)carbazolophane (KEYVEG; Tani et al., 2007). In these structures, the dihedral angles between two carbazole ring systems and intramolecular Cg⋯Cg distances in the partially overlapped benzene rings are 31.69 (6)° and 3.8062 (15) Å for ethenylene and 1,3-xylylene-bridged [2.5](3,9)carbazolophane; 15.04 (9)° and 3.732 (3) Å for cyanamide-bridged [3.4](3,9)carbazolophane; 24.87 (11)° and 3.901 (3) Å (the average value of two independent molecules) for oxa-bridged [3.5](3,9)carbazolophane. The last of the seven compounds is a FO carbazolophane, syn-cyclobutane-bridged [2.4](3,9)carbazolophane (GOZGUX; Nakamura et al., 1999) in which the dihedral angle between its carbazole fragments is 18.9 (2)°, and intramolecular Cg⋯Cg distances are 3.517 Å for the benzene rings bridged by cyanamide, 4.167 Å for the central pyrrole rings and 4.242 Å for the outer benzene rings.
5. Synthesis and crystallization
A solution of 9,9′-(1,3-propanediyl)bis[3-(bromomethyl)-9H-carbazole] (560 mg, 1.00 mmol; Tani, et al., 2001) in dichloromethane (100 mL) was added to a 500 mL flask, which contained a mixture of tetrabutylammonium iodide (70.6 mg, 0.191 mmol) and n-butylamine (220 mg, 3.01 mmol) in dichloromethane (150 mL) and sodium hydroxide (1.00 g, 0.25 mol) in water (10 mL). Then, the flask was filled with argon and was stirred at room temperature for 3 d. The reaction mixtures were washed with water, then dried over anhydrous sodium sulfate. Solvent was removed under reduced pressure, and the residue was purified by silica gel (Wako-gel C-200, 10 g). Elution from hexane:ethyl acetate (19:1) gave a white solid (41.5 mg, 9%). Elution from hexane:ethyl acetate (10:1) gave mixtures including a syn-configuration (FO isomer), but they were difficult to separate. A part of the title compound was recrystallized from dichloromethane:ethanol (1:3) to give a colorless crystal suitable for X-ray diffraction. Melting point: 482–484 K. 1H NMR (CDCl3, 400 MHz) δ = 1.08 (t, J = 7.6 Hz, 3H), 1.57–1.60 (m, 2H),1.78 (quint, J = 7.6 Hz, 2H), 2.81–2.97 (m, 4H), 3.74–3.90 (m, 6H), 4.10–4.17 (m, 2H), 5.34 (d, J = 8.1 Hz, 2H), 6.38 (br, 2H), 7.25-7.30 (m, 2H), 7.46–7.53 (m, 4H), 7.67 (s, 2H), 8.11 (d, J = 7.6 Hz, 2H).
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were placed in geometrically calculated positions (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2161895
https://doi.org/10.1107/S2056989022003383/yk2167sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022003383/yk2167Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: CrystalStructure (Rigaku, 2019); software used to prepare material for publication: CrystalStructure (Rigaku, 2019).C33H33N3 | Z = 2 |
Mr = 471.64 | F(000) = 504.00 |
Triclinic, P1 | Dx = 1.286 Mg m−3 |
a = 7.9106 (3) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 10.4468 (4) Å | Cell parameters from 9429 reflections |
c = 15.5735 (5) Å | θ = 2.9–74.8° |
α = 79.988 (3)° | µ = 0.58 mm−1 |
β = 77.717 (3)° | T = 100 K |
γ = 77.909 (3)° | Prism, colourless |
V = 1218.33 (8) Å3 | 0.40 × 0.13 × 0.05 mm |
Rigaku XtaLAB Synergy diffractometer | 4383 reflections with F2 > 2.0σ(F2) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.028 |
ω scans | θmax = 75.4°, θmin = 2.9° |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | h = −9→9 |
Tmin = 0.451, Tmax = 0.972 | k = −12→12 |
14067 measured reflections | l = −19→15 |
4827 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.057P)2 + 0.6261P] where P = (Fo2 + 2Fc2)/3 |
4827 reflections | (Δ/σ)max < 0.001 |
326 parameters | Δρmax = 0.48 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
N1 | 0.82658 (15) | 0.71805 (11) | 0.11798 (7) | 0.0171 (2) | |
N2 | 1.15258 (15) | 0.47838 (11) | 0.18124 (8) | 0.0188 (2) | |
N3 | 0.49011 (15) | 0.28118 (11) | 0.39375 (7) | 0.0177 (2) | |
C4 | 0.71367 (17) | 0.63439 (13) | 0.16544 (8) | 0.0158 (3) | |
C5 | 0.59504 (17) | 0.69870 (13) | 0.23257 (9) | 0.0160 (3) | |
C6 | 0.48501 (17) | 0.62693 (13) | 0.29675 (9) | 0.0165 (3) | |
H6 | 0.406279 | 0.668922 | 0.342939 | 0.020* | |
C7 | 0.49126 (17) | 0.49443 (13) | 0.29271 (9) | 0.0171 (3) | |
C8 | 0.60034 (18) | 0.43601 (13) | 0.22033 (9) | 0.0178 (3) | |
H8 | 0.596903 | 0.347337 | 0.215192 | 0.021* | |
C9 | 0.71166 (17) | 0.50366 (13) | 0.15691 (9) | 0.0175 (3) | |
H9 | 0.784875 | 0.462725 | 0.108815 | 0.021* | |
C10 | 0.77834 (17) | 0.83775 (13) | 0.15155 (9) | 0.0173 (3) | |
C11 | 0.63514 (17) | 0.82992 (13) | 0.22327 (9) | 0.0174 (3) | |
C12 | 0.56582 (18) | 0.93710 (13) | 0.26950 (9) | 0.0190 (3) | |
H12 | 0.470434 | 0.932256 | 0.317992 | 0.023* | |
C13 | 0.63778 (19) | 1.05200 (14) | 0.24394 (10) | 0.0222 (3) | |
H13 | 0.592392 | 1.125523 | 0.275587 | 0.027* | |
C14 | 0.77841 (18) | 1.05906 (13) | 0.17086 (10) | 0.0213 (3) | |
H14 | 0.824434 | 1.138552 | 0.153186 | 0.026* | |
C15 | 0.85017 (18) | 0.95296 (14) | 0.12471 (9) | 0.0207 (3) | |
H15 | 0.945449 | 0.958064 | 0.076184 | 0.025* | |
C16 | 1.03369 (17) | 0.44294 (13) | 0.25712 (9) | 0.0174 (3) | |
C17 | 1.02490 (17) | 0.30775 (13) | 0.26373 (9) | 0.0175 (3) | |
C18 | 0.89825 (17) | 0.25347 (13) | 0.32861 (9) | 0.0180 (3) | |
H18 | 0.890067 | 0.163128 | 0.332509 | 0.022* | |
C19 | 0.78436 (17) | 0.33257 (14) | 0.38739 (9) | 0.0184 (3) | |
C20 | 0.80863 (18) | 0.46273 (14) | 0.38464 (9) | 0.0196 (3) | |
H20 | 0.738393 | 0.513423 | 0.428779 | 0.024* | |
C21 | 0.93065 (18) | 0.52035 (14) | 0.32029 (9) | 0.0193 (3) | |
H21 | 0.943592 | 0.609013 | 0.319239 | 0.023* | |
C22 | 1.22754 (17) | 0.36575 (13) | 0.14118 (9) | 0.0182 (3) | |
C23 | 1.15213 (17) | 0.25666 (13) | 0.19060 (9) | 0.0171 (3) | |
C24 | 1.20764 (18) | 0.13269 (14) | 0.16252 (9) | 0.0209 (3) | |
H24 | 1.157845 | 0.059339 | 0.194712 | 0.025* | |
C25 | 1.33597 (19) | 0.11695 (14) | 0.08733 (10) | 0.0238 (3) | |
H25 | 1.374559 | 0.032439 | 0.068095 | 0.029* | |
C26 | 1.40972 (18) | 0.22603 (15) | 0.03911 (9) | 0.0226 (3) | |
H26 | 1.497276 | 0.213768 | −0.012435 | 0.027* | |
C27 | 1.35725 (18) | 0.34962 (14) | 0.06532 (9) | 0.0211 (3) | |
H27 | 1.407904 | 0.422325 | 0.032672 | 0.025* | |
C28 | 0.97116 (17) | 0.68287 (14) | 0.04623 (9) | 0.0186 (3) | |
H28A | 0.953335 | 0.746320 | −0.007603 | 0.022* | |
H28B | 0.966591 | 0.594228 | 0.033405 | 0.022* | |
C29 | 1.15445 (18) | 0.68108 (14) | 0.06399 (9) | 0.0197 (3) | |
H29A | 1.170947 | 0.773751 | 0.058267 | 0.024* | |
H29B | 1.241895 | 0.639167 | 0.016749 | 0.024* | |
C30 | 1.19716 (18) | 0.61029 (13) | 0.15383 (9) | 0.0198 (3) | |
H30A | 1.324710 | 0.602970 | 0.151835 | 0.024* | |
H30B | 1.134237 | 0.666442 | 0.199967 | 0.024* | |
C31 | 0.38822 (17) | 0.41067 (13) | 0.36585 (9) | 0.0188 (3) | |
H31A | 0.345645 | 0.459203 | 0.417797 | 0.023* | |
H31B | 0.283955 | 0.397118 | 0.345283 | 0.023* | |
C32 | 0.62358 (18) | 0.28555 (14) | 0.44600 (9) | 0.0198 (3) | |
H32A | 0.659389 | 0.196276 | 0.477504 | 0.024* | |
H32B | 0.571759 | 0.345842 | 0.491046 | 0.024* | |
C33 | 0.37437 (18) | 0.18555 (13) | 0.43519 (9) | 0.0205 (3) | |
H33A | 0.449751 | 0.099609 | 0.450472 | 0.025* | |
H33B | 0.309815 | 0.173521 | 0.390086 | 0.025* | |
C34 | 0.23937 (18) | 0.21747 (14) | 0.51833 (9) | 0.0211 (3) | |
H34A | 0.301200 | 0.221478 | 0.566524 | 0.025* | |
H34B | 0.165479 | 0.305036 | 0.505587 | 0.025* | |
C35 | 0.1226 (2) | 0.11267 (15) | 0.54839 (11) | 0.0270 (3) | |
H35A | 0.066395 | 0.106049 | 0.498681 | 0.032* | |
H35B | 0.197237 | 0.026042 | 0.562874 | 0.032* | |
C36 | −0.0194 (2) | 0.14142 (16) | 0.62842 (12) | 0.0321 (4) | |
H36A | −0.091006 | 0.228698 | 0.615574 | 0.039* | |
H36B | 0.035182 | 0.140059 | 0.679530 | 0.039* | |
H36C | −0.094333 | 0.074069 | 0.641870 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0183 (5) | 0.0162 (5) | 0.0162 (5) | −0.0042 (4) | −0.0001 (4) | −0.0030 (4) |
N2 | 0.0177 (5) | 0.0184 (6) | 0.0202 (6) | −0.0048 (4) | −0.0022 (4) | −0.0021 (4) |
N3 | 0.0188 (6) | 0.0163 (5) | 0.0176 (6) | −0.0054 (4) | −0.0021 (4) | 0.0000 (4) |
C4 | 0.0157 (6) | 0.0183 (6) | 0.0136 (6) | −0.0039 (5) | −0.0035 (5) | −0.0006 (5) |
C5 | 0.0163 (6) | 0.0163 (6) | 0.0158 (6) | −0.0020 (5) | −0.0044 (5) | −0.0023 (5) |
C6 | 0.0157 (6) | 0.0184 (6) | 0.0151 (6) | −0.0018 (5) | −0.0029 (5) | −0.0028 (5) |
C7 | 0.0161 (6) | 0.0192 (6) | 0.0165 (6) | −0.0035 (5) | −0.0054 (5) | −0.0001 (5) |
C8 | 0.0228 (7) | 0.0151 (6) | 0.0176 (6) | −0.0052 (5) | −0.0075 (5) | −0.0007 (5) |
C9 | 0.0196 (6) | 0.0177 (6) | 0.0153 (6) | −0.0024 (5) | −0.0032 (5) | −0.0040 (5) |
C10 | 0.0187 (6) | 0.0162 (6) | 0.0170 (6) | −0.0021 (5) | −0.0041 (5) | −0.0026 (5) |
C11 | 0.0181 (6) | 0.0182 (6) | 0.0157 (6) | −0.0037 (5) | −0.0042 (5) | −0.0002 (5) |
C12 | 0.0194 (6) | 0.0185 (6) | 0.0169 (6) | −0.0011 (5) | −0.0012 (5) | −0.0020 (5) |
C13 | 0.0261 (7) | 0.0159 (6) | 0.0242 (7) | −0.0030 (5) | −0.0027 (6) | −0.0053 (5) |
C14 | 0.0236 (7) | 0.0148 (6) | 0.0265 (7) | −0.0059 (5) | −0.0050 (6) | −0.0020 (5) |
C15 | 0.0216 (7) | 0.0195 (7) | 0.0203 (7) | −0.0061 (5) | −0.0016 (5) | −0.0004 (5) |
C16 | 0.0149 (6) | 0.0210 (7) | 0.0168 (6) | −0.0042 (5) | −0.0049 (5) | −0.0005 (5) |
C17 | 0.0166 (6) | 0.0181 (6) | 0.0178 (6) | −0.0011 (5) | −0.0054 (5) | −0.0024 (5) |
C18 | 0.0181 (6) | 0.0175 (6) | 0.0180 (6) | −0.0028 (5) | −0.0048 (5) | 0.0004 (5) |
C19 | 0.0178 (6) | 0.0223 (7) | 0.0152 (6) | −0.0027 (5) | −0.0054 (5) | −0.0005 (5) |
C20 | 0.0185 (6) | 0.0243 (7) | 0.0167 (6) | −0.0019 (5) | −0.0042 (5) | −0.0054 (5) |
C21 | 0.0201 (6) | 0.0194 (7) | 0.0201 (7) | −0.0033 (5) | −0.0061 (5) | −0.0043 (5) |
C22 | 0.0157 (6) | 0.0194 (6) | 0.0198 (7) | −0.0027 (5) | −0.0044 (5) | −0.0026 (5) |
C23 | 0.0146 (6) | 0.0207 (7) | 0.0164 (6) | −0.0037 (5) | −0.0032 (5) | −0.0022 (5) |
C24 | 0.0197 (7) | 0.0181 (7) | 0.0235 (7) | −0.0027 (5) | −0.0034 (5) | −0.0003 (5) |
C25 | 0.0217 (7) | 0.0212 (7) | 0.0262 (7) | 0.0001 (5) | −0.0021 (6) | −0.0050 (6) |
C26 | 0.0153 (6) | 0.0298 (8) | 0.0201 (7) | −0.0015 (5) | 0.0003 (5) | −0.0033 (6) |
C27 | 0.0162 (6) | 0.0260 (7) | 0.0209 (7) | −0.0070 (5) | −0.0021 (5) | 0.0002 (5) |
C28 | 0.0197 (7) | 0.0211 (7) | 0.0149 (6) | −0.0044 (5) | −0.0002 (5) | −0.0047 (5) |
C29 | 0.0188 (6) | 0.0195 (6) | 0.0197 (7) | −0.0048 (5) | −0.0003 (5) | −0.0022 (5) |
C30 | 0.0197 (6) | 0.0189 (7) | 0.0231 (7) | −0.0077 (5) | −0.0052 (5) | −0.0018 (5) |
C31 | 0.0176 (6) | 0.0185 (6) | 0.0196 (7) | −0.0032 (5) | −0.0031 (5) | −0.0009 (5) |
C32 | 0.0200 (7) | 0.0220 (7) | 0.0160 (6) | −0.0027 (5) | −0.0023 (5) | −0.0013 (5) |
C33 | 0.0231 (7) | 0.0166 (6) | 0.0212 (7) | −0.0061 (5) | −0.0005 (5) | −0.0020 (5) |
C34 | 0.0224 (7) | 0.0183 (7) | 0.0213 (7) | −0.0056 (5) | 0.0005 (5) | −0.0018 (5) |
C35 | 0.0272 (7) | 0.0226 (7) | 0.0292 (8) | −0.0096 (6) | 0.0018 (6) | −0.0006 (6) |
C36 | 0.0242 (8) | 0.0263 (8) | 0.0407 (9) | −0.0070 (6) | 0.0067 (7) | −0.0031 (7) |
N1—C10 | 1.3875 (17) | C20—C21 | 1.3858 (19) |
N1—C4 | 1.3891 (17) | C20—H20 | 0.9500 |
N1—C28 | 1.4542 (17) | C21—H21 | 0.9500 |
N2—C22 | 1.3895 (18) | C22—C27 | 1.3993 (19) |
N2—C16 | 1.3925 (17) | C22—C23 | 1.4253 (19) |
N2—C30 | 1.4630 (17) | C23—C24 | 1.3923 (19) |
N3—C31 | 1.4684 (17) | C24—C25 | 1.386 (2) |
N3—C33 | 1.4698 (17) | C24—H24 | 0.9500 |
N3—C32 | 1.4756 (17) | C25—C26 | 1.413 (2) |
C4—C9 | 1.3986 (18) | C25—H25 | 0.9500 |
C4—C5 | 1.4098 (18) | C26—C27 | 1.376 (2) |
C5—C6 | 1.4005 (18) | C26—H26 | 0.9500 |
C5—C11 | 1.4472 (18) | C27—H27 | 0.9500 |
C6—C7 | 1.3866 (19) | C28—C29 | 1.5286 (19) |
C6—H6 | 0.9500 | C28—H28A | 0.9900 |
C7—C8 | 1.4115 (19) | C28—H28B | 0.9900 |
C7—C31 | 1.5115 (18) | C29—C30 | 1.5347 (19) |
C8—C9 | 1.3778 (19) | C29—H29A | 0.9900 |
C8—H8 | 0.9500 | C29—H29B | 0.9900 |
C9—H9 | 0.9500 | C30—H30A | 0.9900 |
C10—C15 | 1.3988 (19) | C30—H30B | 0.9900 |
C10—C11 | 1.4164 (18) | C31—H31A | 0.9900 |
C11—C12 | 1.3884 (19) | C31—H31B | 0.9900 |
C12—C13 | 1.3954 (19) | C32—H32A | 0.9900 |
C12—H12 | 0.9500 | C32—H32B | 0.9900 |
C13—C14 | 1.416 (2) | C33—C34 | 1.5299 (19) |
C13—H13 | 0.9500 | C33—H33A | 0.9900 |
C14—C15 | 1.381 (2) | C33—H33B | 0.9900 |
C14—H14 | 0.9500 | C34—C35 | 1.5271 (19) |
C15—H15 | 0.9500 | C34—H34A | 0.9900 |
C16—C21 | 1.3948 (19) | C34—H34B | 0.9900 |
C16—C17 | 1.4133 (19) | C35—C36 | 1.516 (2) |
C17—C18 | 1.3980 (19) | C35—H35A | 0.9900 |
C17—C23 | 1.4468 (18) | C35—H35B | 0.9900 |
C18—C19 | 1.3902 (19) | C36—H36A | 0.9800 |
C18—H18 | 0.9500 | C36—H36B | 0.9800 |
C19—C20 | 1.405 (2) | C36—H36C | 0.9800 |
C19—C32 | 1.5179 (18) | ||
C10—N1—C4 | 108.38 (11) | C22—C23—C17 | 106.30 (12) |
C10—N1—C28 | 126.84 (11) | C25—C24—C23 | 119.59 (13) |
C4—N1—C28 | 124.78 (11) | C25—C24—H24 | 120.2 |
C22—N2—C16 | 108.10 (11) | C23—C24—H24 | 120.2 |
C22—N2—C30 | 127.04 (11) | C24—C25—C26 | 120.31 (13) |
C16—N2—C30 | 124.72 (11) | C24—C25—H25 | 119.8 |
C31—N3—C33 | 111.29 (10) | C26—C25—H25 | 119.8 |
C31—N3—C32 | 114.56 (11) | C27—C26—C25 | 121.32 (13) |
C33—N3—C32 | 113.55 (11) | C27—C26—H26 | 119.3 |
N1—C4—C9 | 129.49 (12) | C25—C26—H26 | 119.3 |
N1—C4—C5 | 109.42 (11) | C26—C27—C22 | 118.46 (13) |
C9—C4—C5 | 121.02 (12) | C26—C27—H27 | 120.8 |
C6—C5—C4 | 119.43 (12) | C22—C27—H27 | 120.8 |
C6—C5—C11 | 133.58 (12) | N1—C28—C29 | 115.26 (11) |
C4—C5—C11 | 106.48 (11) | N1—C28—H28A | 108.5 |
C7—C6—C5 | 119.85 (12) | C29—C28—H28A | 108.5 |
C7—C6—H6 | 120.1 | N1—C28—H28B | 108.5 |
C5—C6—H6 | 120.1 | C29—C28—H28B | 108.5 |
C6—C7—C8 | 119.25 (12) | H28A—C28—H28B | 107.5 |
C6—C7—C31 | 121.17 (12) | C28—C29—C30 | 117.30 (11) |
C8—C7—C31 | 119.55 (12) | C28—C29—H29A | 108.0 |
C9—C8—C7 | 122.01 (12) | C30—C29—H29A | 108.0 |
C9—C8—H8 | 119.0 | C28—C29—H29B | 108.0 |
C7—C8—H8 | 119.0 | C30—C29—H29B | 108.0 |
C8—C9—C4 | 118.03 (12) | H29A—C29—H29B | 107.2 |
C8—C9—H9 | 121.0 | N2—C30—C29 | 116.16 (11) |
C4—C9—H9 | 121.0 | N2—C30—H30A | 108.2 |
N1—C10—C15 | 129.63 (12) | C29—C30—H30A | 108.2 |
N1—C10—C11 | 109.09 (12) | N2—C30—H30B | 108.2 |
C15—C10—C11 | 121.29 (12) | C29—C30—H30B | 108.2 |
C12—C11—C10 | 119.92 (12) | H30A—C30—H30B | 107.4 |
C12—C11—C5 | 133.47 (13) | N3—C31—C7 | 113.67 (11) |
C10—C11—C5 | 106.59 (12) | N3—C31—H31A | 108.8 |
C11—C12—C13 | 119.27 (13) | C7—C31—H31A | 108.8 |
C11—C12—H12 | 120.4 | N3—C31—H31B | 108.8 |
C13—C12—H12 | 120.4 | C7—C31—H31B | 108.8 |
C12—C13—C14 | 120.02 (13) | H31A—C31—H31B | 107.7 |
C12—C13—H13 | 120.0 | N3—C32—C19 | 111.50 (11) |
C14—C13—H13 | 120.0 | N3—C32—H32A | 109.3 |
C15—C14—C13 | 121.47 (13) | C19—C32—H32A | 109.3 |
C15—C14—H14 | 119.3 | N3—C32—H32B | 109.3 |
C13—C14—H14 | 119.3 | C19—C32—H32B | 109.3 |
C14—C15—C10 | 118.00 (13) | H32A—C32—H32B | 108.0 |
C14—C15—H15 | 121.0 | N3—C33—C34 | 117.93 (11) |
C10—C15—H15 | 121.0 | N3—C33—H33A | 107.8 |
N2—C16—C21 | 129.47 (13) | C34—C33—H33A | 107.8 |
N2—C16—C17 | 109.55 (12) | N3—C33—H33B | 107.8 |
C21—C16—C17 | 120.97 (12) | C34—C33—H33B | 107.8 |
C18—C17—C16 | 119.87 (12) | H33A—C33—H33B | 107.2 |
C18—C17—C23 | 133.27 (13) | C35—C34—C33 | 110.75 (12) |
C16—C17—C23 | 106.64 (12) | C35—C34—H34A | 109.5 |
C19—C18—C17 | 119.56 (13) | C33—C34—H34A | 109.5 |
C19—C18—H18 | 120.2 | C35—C34—H34B | 109.5 |
C17—C18—H18 | 120.2 | C33—C34—H34B | 109.5 |
C18—C19—C20 | 118.91 (13) | H34A—C34—H34B | 108.1 |
C18—C19—C32 | 120.73 (12) | C36—C35—C34 | 113.48 (13) |
C20—C19—C32 | 119.96 (12) | C36—C35—H35A | 108.9 |
C21—C20—C19 | 122.81 (13) | C34—C35—H35A | 108.9 |
C21—C20—H20 | 118.6 | C36—C35—H35B | 108.9 |
C19—C20—H20 | 118.6 | C34—C35—H35B | 108.9 |
C20—C21—C16 | 117.33 (13) | H35A—C35—H35B | 107.7 |
C20—C21—H21 | 121.3 | C35—C36—H36A | 109.5 |
C16—C21—H21 | 121.3 | C35—C36—H36B | 109.5 |
N2—C22—C27 | 129.80 (13) | H36A—C36—H36B | 109.5 |
N2—C22—C23 | 109.31 (12) | C35—C36—H36C | 109.5 |
C27—C22—C23 | 120.88 (13) | H36A—C36—H36C | 109.5 |
C24—C23—C22 | 119.43 (12) | H36B—C36—H36C | 109.5 |
C24—C23—C17 | 134.27 (13) | ||
C10—N1—C4—C9 | −178.96 (13) | C23—C17—C18—C19 | −175.18 (13) |
C28—N1—C4—C9 | 0.4 (2) | C17—C18—C19—C20 | −5.06 (19) |
C10—N1—C4—C5 | −2.13 (14) | C17—C18—C19—C32 | 167.69 (12) |
C28—N1—C4—C5 | 177.18 (12) | C18—C19—C20—C21 | 6.4 (2) |
N1—C4—C5—C6 | −171.01 (11) | C32—C19—C20—C21 | −166.42 (12) |
C9—C4—C5—C6 | 6.13 (19) | C19—C20—C21—C16 | −0.9 (2) |
N1—C4—C5—C11 | 1.85 (14) | N2—C16—C21—C20 | 173.16 (13) |
C9—C4—C5—C11 | 178.99 (12) | C17—C16—C21—C20 | −5.76 (19) |
C4—C5—C6—C7 | −1.25 (19) | C16—N2—C22—C27 | −177.87 (13) |
C11—C5—C6—C7 | −171.78 (13) | C30—N2—C22—C27 | −2.0 (2) |
C5—C6—C7—C8 | −4.24 (19) | C16—N2—C22—C23 | 1.67 (14) |
C5—C6—C7—C31 | 173.68 (11) | C30—N2—C22—C23 | 177.56 (12) |
C6—C7—C8—C9 | 5.2 (2) | N2—C22—C23—C24 | 179.96 (12) |
C31—C7—C8—C9 | −172.75 (12) | C27—C22—C23—C24 | −0.45 (19) |
C7—C8—C9—C4 | −0.45 (19) | N2—C22—C23—C17 | 0.28 (14) |
N1—C4—C9—C8 | 171.28 (12) | C27—C22—C23—C17 | 179.87 (12) |
C5—C4—C9—C8 | −5.22 (19) | C18—C17—C23—C24 | −7.3 (3) |
C4—N1—C10—C15 | −178.79 (13) | C16—C17—C23—C24 | 178.31 (14) |
C28—N1—C10—C15 | 1.9 (2) | C18—C17—C23—C22 | 172.30 (14) |
C4—N1—C10—C11 | 1.55 (14) | C16—C17—C23—C22 | −2.08 (14) |
C28—N1—C10—C11 | −177.74 (12) | C22—C23—C24—C25 | 0.4 (2) |
N1—C10—C11—C12 | 178.38 (12) | C17—C23—C24—C25 | 179.95 (14) |
C15—C10—C11—C12 | −1.3 (2) | C23—C24—C25—C26 | −0.3 (2) |
N1—C10—C11—C5 | −0.40 (14) | C24—C25—C26—C27 | 0.2 (2) |
C15—C10—C11—C5 | 179.91 (12) | C25—C26—C27—C22 | −0.3 (2) |
C6—C5—C11—C12 | −8.0 (3) | N2—C22—C27—C26 | 179.90 (13) |
C4—C5—C11—C12 | −179.42 (14) | C23—C22—C27—C26 | 0.4 (2) |
C6—C5—C11—C10 | 170.53 (14) | C10—N1—C28—C29 | 63.32 (17) |
C4—C5—C11—C10 | −0.87 (14) | C4—N1—C28—C29 | −115.87 (14) |
C10—C11—C12—C13 | 0.5 (2) | N1—C28—C29—C30 | 46.67 (17) |
C5—C11—C12—C13 | 178.94 (14) | C22—N2—C30—C29 | 66.13 (17) |
C11—C12—C13—C14 | 0.8 (2) | C16—N2—C30—C29 | −118.63 (14) |
C12—C13—C14—C15 | −1.5 (2) | C28—C29—C30—N2 | 48.00 (17) |
C13—C14—C15—C10 | 0.8 (2) | C33—N3—C31—C7 | −156.62 (11) |
N1—C10—C15—C14 | −178.98 (13) | C32—N3—C31—C7 | 72.88 (14) |
C11—C10—C15—C14 | 0.6 (2) | C6—C7—C31—N3 | −134.49 (13) |
C22—N2—C16—C21 | 177.94 (13) | C8—C7—C31—N3 | 43.42 (17) |
C30—N2—C16—C21 | 1.9 (2) | C31—N3—C32—C19 | −76.51 (14) |
C22—N2—C16—C17 | −3.04 (14) | C33—N3—C32—C19 | 154.11 (11) |
C30—N2—C16—C17 | −179.04 (11) | C18—C19—C32—N3 | −69.92 (16) |
N2—C16—C17—C18 | −172.11 (11) | C20—C19—C32—N3 | 102.75 (14) |
C21—C16—C17—C18 | 7.01 (19) | C31—N3—C33—C34 | −59.87 (16) |
N2—C16—C17—C23 | 3.17 (14) | C32—N3—C33—C34 | 71.15 (15) |
C21—C16—C17—C23 | −177.71 (12) | N3—C33—C34—C35 | 176.03 (12) |
C16—C17—C18—C19 | −1.39 (19) | C33—C34—C35—C36 | −177.56 (13) |
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C22–C27, C4–C9, N2/C16/C17/C22/C23 and C10–C15 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···N3i | 0.95 | 2.56 | 3.4858 (18) | 166 |
C28—H28A···Cg1ii | 0.99 | 2.72 | 3.4144 (15) | 128 |
C30—H30A···Cg2iii | 0.99 | 2.62 | 3.5224 (16) | 152 |
C31—H31B···Cg3iv | 0.99 | 2.83 | 3.7245 (15) | 150 |
C36—H36B···Cg4v | 0.98 | 2.99 | 3.9151 (18) | 159 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z; (iii) x+1, y, z; (iv) x−1, y, z+1; (v) −x+1, −y+1, −z+1. |
Funding information
Funding for this research was provided by: the Japan Science and Technology Agency's Core Research for Evolutional Science and Technology (grant No. JPMJCR2001); Network Joint Research Center for Materials and Devices (grant No. 20211332); JSPS KAKENHI (grant No. JP20K05565).
References
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gratia, P., Magomedov, A., Malinauskas, T., Daskeviciene, M., Abate, A., Ahmad, S., Grätzel, M., Getautis, V. & Nazeeruddin, M. K. (2015). Angew. Chem. Int. Ed. 54, 11409–11413. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kaji, H., Suzuki, H., Fukushima, T., Shizu, K., Suzuki, K., Kubo, S., Komino, T., Oiwa, H., Suzuki, F., Wakamiya, A., Murata, Y. & Adachi, C. (2015). Nat. Commun. 6, 8476. Web of Science CrossRef PubMed Google Scholar
Kumar, G. S., Chinnakali, K., Sekar, K., Rajakumar, P. & Fun, H.-K. (2006). Acta Cryst. E62, o3455–o3456. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakamura, Y., Kaneko, M., Yamanaka, N., Tani, K. & Nishimura, J. (1999). Tetrahedron Lett. 40, 4693–4696. Web of Science CSD CrossRef CAS Google Scholar
Ohkita, H., Ito, S., Yamamoto, M., Tohda, Y. & Tani, K. (2002). J. Phys. Chem. A, 106, 2140–2145. Web of Science CrossRef CAS Google Scholar
Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Saiful, I. S. M., Heinze, P., Ohba, Y., Yamauchi, S., Yamamoto, M., Tohda, Y. & Tani, K. (2006). Mol. Phys. 104, 1535–1542. Web of Science CrossRef CAS Google Scholar
Sakai, H., Itaya, A., Masuhara, H., Sasaki, K. & Kawata, S. (1996). Polymer, 37, 31–43. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tani, K., Imafuku, R., Miyanaga, K., Masaki, M. E., Kato, H., Hori, K., Kubono, K., Taneda, M., Harada, T., Goto, K., Tani, F. & Mori, T. (2020). J. Phys. Chem. A, 124, 2057–2063. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tani, K., Tohda, Y., Takemura, H., Ohkita, H., Ito, S. & Yamamoto, M. (2001). Chem. Commun. pp. 1914–1915. Web of Science CSD CrossRef Google Scholar
Tani, K., Yamamoto, S., Kubono, K., Hori, K., Tohda, Y., Takemura, H., Nakamura, Y., Nishimura, J., Benten, H., Ohkita, H., Ito, S. & Yamamoto, M. (2007). Chem. Lett. 36, 460–461. Web of Science CSD CrossRef CAS Google Scholar
Wex, B. & Kaafarani, B. R. (2017). J. Mater. Chem. C. 5, 8622–8653. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.