research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of anti-10-butyl-10,11,22,23-tetra­hydro-9H,21H-5,8:15,12-bis­(metheno)[1,5,11]tri­aza­cyclo­hexa­decino[1,16-a:5,6-a′]di­indole

crossmark logo

aOsaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan, bOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan, cInstitute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, and dInstitute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga koen, Kasuga, Fukuoka 816-8580, Japan
*Correspondence e-mail: ktani@cc.osaka-kyoiku.ac.jp

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 17 March 2022; accepted 25 March 2022; online 5 April 2022)

The title compound, C33H33N3, is a carbazolophane, which is a cyclo­phane composed of two carbazole fragments. It has a planar chirality but crystallizes as a racemate in the space group P[\overline{1}]. The mol­ecule adopts an anti-configuration, in which two carbazole fragments are partially overlapped. Both carbazole ring systems are slightly bent, with the C atoms at 3-positions showing the largest deviations from the mean planes. The dihedral angle between two carbazole fragments is 5.19 (3)°, allowing an intra­molecular slipped ππ inter­action [CgCg = 3.2514 (8) Å]. In the crystal, the mol­ecules are linked via inter­molecular C—H⋯N hydrogen bonds and C—H⋯π inter­actions into a network sheet parallel to the ab plane. The mol­ecules of different sheets form other C—H⋯π inter­actions, thus forming a three-dimensional network.

1. Chemical context

Carbazole is characterized not only as a mol­ecule with electron-donating properties, but also as an emissive heteroaromatic chromophore (Wex et al., 2017[Wex, B. & Kaafarani, B. R. (2017). J. Mater. Chem. C. 5, 8622-8653.]), so carbazole derivatives have attracted much attention for the construction of photofunctional devices such as solar cells (Gratia et al., 2015[Gratia, P., Magomedov, A., Malinauskas, T., Daskeviciene, M., Abate, A., Ahmad, S., Grätzel, M., Getautis, V. & Nazeeruddin, M. K. (2015). Angew. Chem. Int. Ed. 54, 11409-11413.]) and organic light-emitting diodes (Kaji et al., 2015[Kaji, H., Suzuki, H., Fukushima, T., Shizu, K., Suzuki, K., Kubo, S., Komino, T., Oiwa, H., Suzuki, F., Wakamiya, A., Murata, Y. & Adachi, C. (2015). Nat. Commun. 6, 8476.]). Poly(N-vinyl­carbazole) is a widely used photoconductive aromatic polymer, in which the formation of two types of excimers, partially overlapped (PO) and fully overlapped (FO) (sandwich) ones, was proposed (Sakai et al., 1996[Sakai, H., Itaya, A., Masuhara, H., Sasaki, K. & Kawata, S. (1996). Polymer, 37, 31-43.]). Our group has reported various carbazolophanes, which are cyclo­phanes composed of two carbazole fragments, as the models of excimers. Among these, aza-bridged carbazolophanes synthesized so far by cyclization reaction are limited to cyanamide bridg­ing (Tani et al., 2001[Tani, K., Tohda, Y., Takemura, H., Ohkita, H., Ito, S. & Yamamoto, M. (2001). Chem. Commun. pp. 1914-1915.], 2007[Tani, K., Yamamoto, S., Kubono, K., Hori, K., Tohda, Y., Takemura, H., Nakamura, Y., Nishimura, J., Benten, H., Ohkita, H., Ito, S. & Yamamoto, M. (2007). Chem. Lett. 36, 460-461.]) and o-nitro­phenyl­sulfonamide bridging (Tani et al., 2020[Tani, K., Imafuku, R., Miyanaga, K., Masaki, M. E., Kato, H., Hori, K., Kubono, K., Taneda, M., Harada, T., Goto, K., Tani, F. & Mori, T. (2020). J. Phys. Chem. A, 124, 2057-2063.]). These bridges act as polar functional groups with the resonance effect. In the aza-bridged carbazolophanes, the PO and FO isomers have been isolated and their distinct difference in fluorescence spectra provided the evidence for existence of two types of excimers (Tani et al., 2001[Tani, K., Tohda, Y., Takemura, H., Ohkita, H., Ito, S. & Yamamoto, M. (2001). Chem. Commun. pp. 1914-1915.]; Ohkita et al., 2002[Ohkita, H., Ito, S., Yamamoto, M., Tohda, Y. & Tani, K. (2002). J. Phys. Chem. A, 106, 2140-2145.]). Recently, optical resolution of aza-bridged PO carbazolophanes and their chiroptical properties, including circularly polarized luminescence, were reported (Tani et al., 2020[Tani, K., Imafuku, R., Miyanaga, K., Masaki, M. E., Kato, H., Hori, K., Kubono, K., Taneda, M., Harada, T., Goto, K., Tani, F. & Mori, T. (2020). J. Phys. Chem. A, 124, 2057-2063.]). However, the solubility of the aza-bridged carbazolophanes in common organic solvents is low, leading to difficulties in examining the solvent effect and in manufacturing photofunctional devices. Therefore, the title compound with an N-linear alkyl group, anti-10-butyl-10,11,22,23-tetra­hydro-9H,21H-5,8:15,12-bis(meth­eno)[1,5,11]tri­aza­cyclo­hexa­dec­ino[1,16-a:5,6-a′]diindole (cyclo­phane nomenclature: anti-3-but­yl-19H,59H-3-aza-1,5(3,9)-dicarbazola­cyclo­octa­phane), having good solubility in organic solvents, is a promising candidate for investigation of the photophysical and chiroptical properties of the carbazole chromophore. Previously, our group reported the EPR spectrum of the title compound, but no other chemical properties were examined because of the very low yield (Saiful et al., 2006[Saiful, I. S. M., Heinze, P., Ohba, Y., Yamauchi, S., Yamamoto, M., Tohda, Y. & Tani, K. (2006). Mol. Phys. 104, 1535-1542.]). Here, the modified synthesis and crystal structure of the title compound are reported.

[Scheme 1]

2. Structural commentary

The title compound has a planar chirality but crystallizes as a racemate in the centrosymmetric space group P[\overline{1}]. The mol­ecular structure of the title compound is shown in Fig. 1[link]. The mol­ecule adopts an anti-configuration, in which two carbazole fragments are partially overlapped with parallel orientation. The two carbazole fragments are slightly bent, with r.m.s. deviations of 0.064 (1) Å for the N1/C4–C15 ring system and 0.062 (1)Å for N2/C16–C27 ring system. In both carbazole fragments, the C atoms at the 3-positions bridged through the di­methyl­ene­amino group show the largest deviations from the mean planes [0.1177 (14) Å for C7 and −0.1082 (14) Å for C19]. The dihedral angle formed by two carbazole fragments is 5.19 (3)°, providing an intra­molecular slipped parallel ππ inter­action [Cg2⋯Cg5 = 3.2514 (8) Å; Cg2 and Cg5 are the centroids of the C4–C9 and C16–C21 rings, respectively; inter-planar distance = 3.0856 (6) Å; slippage = 1.099 Å]. In comparison, in the related PO compounds, the dihedral angles between two carbazole fragments and the centroid–centroid distances are 5.96 (6)° and 3.294 (4) Å for N-cyanamide-bridged [3.3](3,9)carbazolophane (BACKOG; Tani et al., 2001[Tani, K., Tohda, Y., Takemura, H., Ohkita, H., Ito, S. & Yamamoto, M. (2001). Chem. Commun. pp. 1914-1915.]), and 1.28 (7)° and 3.3259 (16) Å for N-o-nitro­phenyl­sulfonamide-bridged [3.3](3,9)carbazolophane (YUKYEL; Tani et al., 2020[Tani, K., Imafuku, R., Miyanaga, K., Masaki, M. E., Kato, H., Hori, K., Kubono, K., Taneda, M., Harada, T., Goto, K., Tani, F. & Mori, T. (2020). J. Phys. Chem. A, 124, 2057-2063.]). The N1⋯N2 distance between the N atoms at the 9-positions of the carbazole ring systems is 3.3776 (17) Å, slightly shorter than those in the above-mentioned related compounds [3.414 (4) and 3.461 (4) Å for the cyanamide-bridged and o-nitro­phenyl­sulfonamide-bridged carbazolophanes, respectively]. The bond angle C31—N3—C32 is 114.56 (11)°, smaller than those in the related compounds [119.9 (2) and 119.0 (3)° for the cyanamide-bridged and o-nitro­phenyl­sulfonamide-bridged carbazolophanes, respectively], that is, the hybridization of N3 atom is closer to sp3 than to sp2, reflecting the difference in the resonance effect of the substituent at the N3 atom.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, mol­ecules are linked by inter­molecular C—H⋯N hydrogen bonds (Fig. 2[link], Table 1[link]), forming a C(9) chain motif running parallel to the b axis. The mol­ecules are further joined into columns along the a-axis direction by pairs of C—H⋯π inter­actions (C30—H30ACg2iii and C31—H31BCg3iv; Cg2 and Cg3 are the centroids of the C4–C9 and N2/C16/C17/C23/C22 rings, respectively; see Fig. 2[link] and Table 1[link]), thus network sheets parallel to the ab plane are observed (Fig. 2[link]). Besides this, the mol­ecules belonging to different sheets are associated via a pair of C—H⋯π inter­actions (C28—H28ACg1ii; Cg1 is the centroid of the C22–C27 ring), forming a centrosymmetric dimer (Fig. 3[link]). Another pair of C—H⋯π inter­actions (C36—H36BCg4v; Cg4 is the centroid of the C10–C15 ring) forms another centrosymmetric dimer (Fig. 3[link]). As a result, a ribbon structure along [[\overline{1}]01] is formed (Fig. 3[link]). Overall, the mol­ecules are cross-linked via inter­molecular C—H⋯N hydrogen bonds and C—H⋯π inter­actions into a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C22–C27, C4–C9, N2/C16/C17/C22/C23 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N3i 0.95 2.56 3.4858 (18) 166
C28—H28ACg1ii 0.99 2.72 3.4144 (15) 128
C30—H30ACg2iii 0.99 2.62 3.5224 (16) 152
C31—H31BCg3iv 0.99 2.83 3.7245 (15) 150
C36—H36BCg4v 0.98 2.99 3.9151 (18) 159
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, -y+1, -z]; (iii) x+1, y, z; (iv) [x-1, y, z+1]; (v) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
A packing diagram of the title compound viewed along the c axis, showing the two-dimensional network. The C—H⋯N hydrogen bonds and C—H⋯π inter­actions are shown as green and black dashed lines, respectively. H atoms not involved in these inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
An excerpt of the crystal packing of the title compound showing the ribbon structure along [[\overline{1}]01]. The C—H⋯π inter­actions are shown as black dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42; May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for compounds containing a carbazole skeleton gave 4473 hits, and for those containing two 3,9-di­methyl­enecarbazole fragments gave 49 hits. Among those, a search for the carbazolophane skeleton gave seven hits. Of these seven compounds, three structures are [3.3](3,9) carbazolophanes, two being PO [3.3](3,9)carbazolophanes with the same skeleton as in the title compound: anti-10-(2-nitro­benzen-1-sulfon­yl)-10,11,22,23-tetra­hydro-9H,21H-5,8:15,12-bis­(metheno)[1,5,11]tri­aza­cyclo­hexa­decino[1,16-a:5,6-a′]-di­indole (N-cyanamide-bridged PO [3.3](3,9)carbazolophane, YUKYEL; Tani et al., 2020[Tani, K., Imafuku, R., Miyanaga, K., Masaki, M. E., Kato, H., Hori, K., Kubono, K., Taneda, M., Harada, T., Goto, K., Tani, F. & Mori, T. (2020). J. Phys. Chem. A, 124, 2057-2063.]) and anti-3-cyano-3-aza-1(9,3),3(3,9)-dicarbazola­cycloocta­phane (N-o-nitro­phenyl­sulfonamide-bridged PO [3.3](3,9)carbazolophane, BACKOG; Tani et al., 2001[Tani, K., Tohda, Y., Takemura, H., Ohkita, H., Ito, S. & Yamamoto, M. (2001). Chem. Commun. pp. 1914-1915.]). One structure is N-cyanamide-bridged FO [3.3](3,9)carbazolophane, syn-3-cyano-3-aza-1(9,3),3(3,9)-dicarbazola­cyclo­octa­phane benzene clathrate (BACKIA; Tani et al., 2001[Tani, K., Tohda, Y., Takemura, H., Ohkita, H., Ito, S. & Yamamoto, M. (2001). Chem. Commun. pp. 1914-1915.]), in which the dihedral angle between two carbazole rings is 8.48 (10)°, and intra­molecular CgCg distances are 3.322 (3) Å for the benzene rings bridged by cyanamide, 3.447 (2) Å for the central pyrrole rings and 3.792 (3) Å for the outer benzene rings. Three of the remaining four structures are PO [m.n](3,9)carbazolophanes; anti-ethenylene and 1,3-xylylene-bridged [2.5](3,9)carbazolophane (VELKON; Kumar et al., 2006[Kumar, G. S., Chinnakali, K., Sekar, K., Rajakumar, P. & Fun, H.-K. (2006). Acta Cryst. E62, o3455-o3456.]), anti-N-cyanamide-bridged [3.4](3,9)carbazolophane (KEYVAM; Tani et al., 2007[Tani, K., Yamamoto, S., Kubono, K., Hori, K., Tohda, Y., Takemura, H., Nakamura, Y., Nishimura, J., Benten, H., Ohkita, H., Ito, S. & Yamamoto, M. (2007). Chem. Lett. 36, 460-461.]) and anti-O-oxa-bridged [3.5](3,9)carbazolophane (KEYVEG; Tani et al., 2007[Tani, K., Yamamoto, S., Kubono, K., Hori, K., Tohda, Y., Takemura, H., Nakamura, Y., Nishimura, J., Benten, H., Ohkita, H., Ito, S. & Yamamoto, M. (2007). Chem. Lett. 36, 460-461.]). In these structures, the dihedral angles between two carbazole ring systems and intra­molecular CgCg distances in the partially overlapped benzene rings are 31.69 (6)° and 3.8062 (15) Å for ethenylene and 1,3-xylylene-bridged [2.5](3,9)carbazolophane; 15.04 (9)° and 3.732 (3) Å for cyanamide-bridged [3.4](3,9)carbazolophane; 24.87 (11)° and 3.901 (3) Å (the average value of two independent mol­ecules) for oxa-bridged [3.5](3,9)carbazolophane. The last of the seven compounds is a FO carbazolophane, syn-cyclo­butane-bridged [2.4](3,9)carbazolophane (GOZGUX; Nakamura et al., 1999[Nakamura, Y., Kaneko, M., Yamanaka, N., Tani, K. & Nishimura, J. (1999). Tetrahedron Lett. 40, 4693-4696.]) in which the dihedral angle between its carbazole fragments is 18.9 (2)°, and intra­molecular CgCg distances are 3.517 Å for the benzene rings bridged by cyanamide, 4.167 Å for the central pyrrole rings and 4.242 Å for the outer benzene rings.

5. Synthesis and crystallization

A solution of 9,9′-(1,3-propanedi­yl)bis­[3-(bromo­meth­yl)-9H-carbazole] (560 mg, 1.00 mmol; Tani, et al., 2001[Tani, K., Tohda, Y., Takemura, H., Ohkita, H., Ito, S. & Yamamoto, M. (2001). Chem. Commun. pp. 1914-1915.]) in di­chloro­methane (100 mL) was added to a 500 mL flask, which contained a mixture of tetra­butyl­ammonium iodide (70.6 mg, 0.191 mmol) and n-butyl­amine (220 mg, 3.01 mmol) in di­chloro­methane (150 mL) and sodium hydroxide (1.00 g, 0.25 mol) in water (10 mL). Then, the flask was filled with argon and was stirred at room temperature for 3 d. The reaction mixtures were washed with water, then dried over anhydrous sodium sulfate. Solvent was removed under reduced pressure, and the residue was purified by silica gel chromatography (Wako-gel C-200, 10 g). Elution from hexa­ne:ethyl acetate (19:1) gave a white solid (41.5 mg, 9%). Elution from hexa­ne:ethyl acetate (10:1) gave mixtures including a syn-configuration (FO isomer), but they were difficult to separate. A part of the title compound was recrystallized from di­chloro­methane:ethanol (1:3) to give a colorless crystal suitable for X-ray diffraction. Melting point: 482–484 K. 1H NMR (CDCl3, 400 MHz) δ = 1.08 (t, J = 7.6 Hz, 3H), 1.57–1.60 (m, 2H),1.78 (quint, J = 7.6 Hz, 2H), 2.81–2.97 (m, 4H), 3.74–3.90 (m, 6H), 4.10–4.17 (m, 2H), 5.34 (d, J = 8.1 Hz, 2H), 6.38 (br, 2H), 7.25-7.30 (m, 2H), 7.46–7.53 (m, 4H), 7.67 (s, 2H), 8.11 (d, J = 7.6 Hz, 2H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were placed in geometrically calculated positions (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C33H33N3
Mr 471.64
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.9106 (3), 10.4468 (4), 15.5735 (5)
α, β, γ (°) 79.988 (3), 77.717 (3), 77.909 (3)
V3) 1218.33 (8)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.58
Crystal size (mm) 0.40 × 0.13 × 0.05
 
Data collection
Diffractometer Rigaku XtaLAB Synergy
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.451, 0.972
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 14067, 4827, 4383
Rint 0.028
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.05
No. of reflections 4827
No. of parameters 326
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.31
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and CrystalStructure (Rigaku, 2019[Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: CrystalStructure (Rigaku, 2019); software used to prepare material for publication: CrystalStructure (Rigaku, 2019).

anti-10-Butyl-10,11,22,23-tetrahydro-9H,21H-5,8:15,12-bis(metheno)[1,5,11]triazacyclohexadecino[1,16-a:5,6-a']diindole top
Crystal data top
C33H33N3Z = 2
Mr = 471.64F(000) = 504.00
Triclinic, P1Dx = 1.286 Mg m3
a = 7.9106 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.4468 (4) ÅCell parameters from 9429 reflections
c = 15.5735 (5) Åθ = 2.9–74.8°
α = 79.988 (3)°µ = 0.58 mm1
β = 77.717 (3)°T = 100 K
γ = 77.909 (3)°Prism, colourless
V = 1218.33 (8) Å30.40 × 0.13 × 0.05 mm
Data collection top
Rigaku XtaLAB Synergy
diffractometer
4383 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.028
ω scansθmax = 75.4°, θmin = 2.9°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
h = 99
Tmin = 0.451, Tmax = 0.972k = 1212
14067 measured reflectionsl = 1915
4827 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.057P)2 + 0.6261P]
where P = (Fo2 + 2Fc2)/3
4827 reflections(Δ/σ)max < 0.001
326 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.31 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.82658 (15)0.71805 (11)0.11798 (7)0.0171 (2)
N21.15258 (15)0.47838 (11)0.18124 (8)0.0188 (2)
N30.49011 (15)0.28118 (11)0.39375 (7)0.0177 (2)
C40.71367 (17)0.63439 (13)0.16544 (8)0.0158 (3)
C50.59504 (17)0.69870 (13)0.23257 (9)0.0160 (3)
C60.48501 (17)0.62693 (13)0.29675 (9)0.0165 (3)
H60.4062790.6689220.3429390.020*
C70.49126 (17)0.49443 (13)0.29271 (9)0.0171 (3)
C80.60034 (18)0.43601 (13)0.22033 (9)0.0178 (3)
H80.5969030.3473370.2151920.021*
C90.71166 (17)0.50366 (13)0.15691 (9)0.0175 (3)
H90.7848750.4627250.1088150.021*
C100.77834 (17)0.83775 (13)0.15155 (9)0.0173 (3)
C110.63514 (17)0.82992 (13)0.22327 (9)0.0174 (3)
C120.56582 (18)0.93710 (13)0.26950 (9)0.0190 (3)
H120.4704340.9322560.3179920.023*
C130.63778 (19)1.05200 (14)0.24394 (10)0.0222 (3)
H130.5923921.1255230.2755870.027*
C140.77841 (18)1.05906 (13)0.17086 (10)0.0213 (3)
H140.8244341.1385520.1531860.026*
C150.85017 (18)0.95296 (14)0.12471 (9)0.0207 (3)
H150.9454490.9580640.0761840.025*
C161.03369 (17)0.44294 (13)0.25712 (9)0.0174 (3)
C171.02490 (17)0.30775 (13)0.26373 (9)0.0175 (3)
C180.89825 (17)0.25347 (13)0.32861 (9)0.0180 (3)
H180.8900670.1631280.3325090.022*
C190.78436 (17)0.33257 (14)0.38739 (9)0.0184 (3)
C200.80863 (18)0.46273 (14)0.38464 (9)0.0196 (3)
H200.7383930.5134230.4287790.024*
C210.93065 (18)0.52035 (14)0.32029 (9)0.0193 (3)
H210.9435920.6090130.3192390.023*
C221.22754 (17)0.36575 (13)0.14118 (9)0.0182 (3)
C231.15213 (17)0.25666 (13)0.19060 (9)0.0171 (3)
C241.20764 (18)0.13269 (14)0.16252 (9)0.0209 (3)
H241.1578450.0593390.1947120.025*
C251.33597 (19)0.11695 (14)0.08733 (10)0.0238 (3)
H251.3745590.0324390.0680950.029*
C261.40972 (18)0.22603 (15)0.03911 (9)0.0226 (3)
H261.4972760.2137680.0124350.027*
C271.35725 (18)0.34962 (14)0.06532 (9)0.0211 (3)
H271.4079040.4223250.0326720.025*
C280.97116 (17)0.68287 (14)0.04623 (9)0.0186 (3)
H28A0.9533350.7463200.0076030.022*
H28B0.9665910.5942280.0334050.022*
C291.15445 (18)0.68108 (14)0.06399 (9)0.0197 (3)
H29A1.1709470.7737510.0582670.024*
H29B1.2418950.6391670.0167490.024*
C301.19716 (18)0.61029 (13)0.15383 (9)0.0198 (3)
H30A1.3247100.6029700.1518350.024*
H30B1.1342370.6664420.1999670.024*
C310.38822 (17)0.41067 (13)0.36585 (9)0.0188 (3)
H31A0.3456450.4592030.4177970.023*
H31B0.2839550.3971180.3452830.023*
C320.62358 (18)0.28555 (14)0.44600 (9)0.0198 (3)
H32A0.6593890.1962760.4775040.024*
H32B0.5717590.3458420.4910460.024*
C330.37437 (18)0.18555 (13)0.43519 (9)0.0205 (3)
H33A0.4497510.0996090.4504720.025*
H33B0.3098150.1735210.3900860.025*
C340.23937 (18)0.21747 (14)0.51833 (9)0.0211 (3)
H34A0.3012000.2214780.5665240.025*
H34B0.1654790.3050360.5055870.025*
C350.1226 (2)0.11267 (15)0.54839 (11)0.0270 (3)
H35A0.0663950.1060490.4986810.032*
H35B0.1972370.0260420.5628740.032*
C360.0194 (2)0.14142 (16)0.62842 (12)0.0321 (4)
H36A0.0910060.2286980.6155740.039*
H36B0.0351820.1400590.6795300.039*
H36C0.0943330.0740690.6418700.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0183 (5)0.0162 (5)0.0162 (5)0.0042 (4)0.0001 (4)0.0030 (4)
N20.0177 (5)0.0184 (6)0.0202 (6)0.0048 (4)0.0022 (4)0.0021 (4)
N30.0188 (6)0.0163 (5)0.0176 (6)0.0054 (4)0.0021 (4)0.0000 (4)
C40.0157 (6)0.0183 (6)0.0136 (6)0.0039 (5)0.0035 (5)0.0006 (5)
C50.0163 (6)0.0163 (6)0.0158 (6)0.0020 (5)0.0044 (5)0.0023 (5)
C60.0157 (6)0.0184 (6)0.0151 (6)0.0018 (5)0.0029 (5)0.0028 (5)
C70.0161 (6)0.0192 (6)0.0165 (6)0.0035 (5)0.0054 (5)0.0001 (5)
C80.0228 (7)0.0151 (6)0.0176 (6)0.0052 (5)0.0075 (5)0.0007 (5)
C90.0196 (6)0.0177 (6)0.0153 (6)0.0024 (5)0.0032 (5)0.0040 (5)
C100.0187 (6)0.0162 (6)0.0170 (6)0.0021 (5)0.0041 (5)0.0026 (5)
C110.0181 (6)0.0182 (6)0.0157 (6)0.0037 (5)0.0042 (5)0.0002 (5)
C120.0194 (6)0.0185 (6)0.0169 (6)0.0011 (5)0.0012 (5)0.0020 (5)
C130.0261 (7)0.0159 (6)0.0242 (7)0.0030 (5)0.0027 (6)0.0053 (5)
C140.0236 (7)0.0148 (6)0.0265 (7)0.0059 (5)0.0050 (6)0.0020 (5)
C150.0216 (7)0.0195 (7)0.0203 (7)0.0061 (5)0.0016 (5)0.0004 (5)
C160.0149 (6)0.0210 (7)0.0168 (6)0.0042 (5)0.0049 (5)0.0005 (5)
C170.0166 (6)0.0181 (6)0.0178 (6)0.0011 (5)0.0054 (5)0.0024 (5)
C180.0181 (6)0.0175 (6)0.0180 (6)0.0028 (5)0.0048 (5)0.0004 (5)
C190.0178 (6)0.0223 (7)0.0152 (6)0.0027 (5)0.0054 (5)0.0005 (5)
C200.0185 (6)0.0243 (7)0.0167 (6)0.0019 (5)0.0042 (5)0.0054 (5)
C210.0201 (6)0.0194 (7)0.0201 (7)0.0033 (5)0.0061 (5)0.0043 (5)
C220.0157 (6)0.0194 (6)0.0198 (7)0.0027 (5)0.0044 (5)0.0026 (5)
C230.0146 (6)0.0207 (7)0.0164 (6)0.0037 (5)0.0032 (5)0.0022 (5)
C240.0197 (7)0.0181 (7)0.0235 (7)0.0027 (5)0.0034 (5)0.0003 (5)
C250.0217 (7)0.0212 (7)0.0262 (7)0.0001 (5)0.0021 (6)0.0050 (6)
C260.0153 (6)0.0298 (8)0.0201 (7)0.0015 (5)0.0003 (5)0.0033 (6)
C270.0162 (6)0.0260 (7)0.0209 (7)0.0070 (5)0.0021 (5)0.0002 (5)
C280.0197 (7)0.0211 (7)0.0149 (6)0.0044 (5)0.0002 (5)0.0047 (5)
C290.0188 (6)0.0195 (6)0.0197 (7)0.0048 (5)0.0003 (5)0.0022 (5)
C300.0197 (6)0.0189 (7)0.0231 (7)0.0077 (5)0.0052 (5)0.0018 (5)
C310.0176 (6)0.0185 (6)0.0196 (7)0.0032 (5)0.0031 (5)0.0009 (5)
C320.0200 (7)0.0220 (7)0.0160 (6)0.0027 (5)0.0023 (5)0.0013 (5)
C330.0231 (7)0.0166 (6)0.0212 (7)0.0061 (5)0.0005 (5)0.0020 (5)
C340.0224 (7)0.0183 (7)0.0213 (7)0.0056 (5)0.0005 (5)0.0018 (5)
C350.0272 (7)0.0226 (7)0.0292 (8)0.0096 (6)0.0018 (6)0.0006 (6)
C360.0242 (8)0.0263 (8)0.0407 (9)0.0070 (6)0.0067 (7)0.0031 (7)
Geometric parameters (Å, º) top
N1—C101.3875 (17)C20—C211.3858 (19)
N1—C41.3891 (17)C20—H200.9500
N1—C281.4542 (17)C21—H210.9500
N2—C221.3895 (18)C22—C271.3993 (19)
N2—C161.3925 (17)C22—C231.4253 (19)
N2—C301.4630 (17)C23—C241.3923 (19)
N3—C311.4684 (17)C24—C251.386 (2)
N3—C331.4698 (17)C24—H240.9500
N3—C321.4756 (17)C25—C261.413 (2)
C4—C91.3986 (18)C25—H250.9500
C4—C51.4098 (18)C26—C271.376 (2)
C5—C61.4005 (18)C26—H260.9500
C5—C111.4472 (18)C27—H270.9500
C6—C71.3866 (19)C28—C291.5286 (19)
C6—H60.9500C28—H28A0.9900
C7—C81.4115 (19)C28—H28B0.9900
C7—C311.5115 (18)C29—C301.5347 (19)
C8—C91.3778 (19)C29—H29A0.9900
C8—H80.9500C29—H29B0.9900
C9—H90.9500C30—H30A0.9900
C10—C151.3988 (19)C30—H30B0.9900
C10—C111.4164 (18)C31—H31A0.9900
C11—C121.3884 (19)C31—H31B0.9900
C12—C131.3954 (19)C32—H32A0.9900
C12—H120.9500C32—H32B0.9900
C13—C141.416 (2)C33—C341.5299 (19)
C13—H130.9500C33—H33A0.9900
C14—C151.381 (2)C33—H33B0.9900
C14—H140.9500C34—C351.5271 (19)
C15—H150.9500C34—H34A0.9900
C16—C211.3948 (19)C34—H34B0.9900
C16—C171.4133 (19)C35—C361.516 (2)
C17—C181.3980 (19)C35—H35A0.9900
C17—C231.4468 (18)C35—H35B0.9900
C18—C191.3902 (19)C36—H36A0.9800
C18—H180.9500C36—H36B0.9800
C19—C201.405 (2)C36—H36C0.9800
C19—C321.5179 (18)
C10—N1—C4108.38 (11)C22—C23—C17106.30 (12)
C10—N1—C28126.84 (11)C25—C24—C23119.59 (13)
C4—N1—C28124.78 (11)C25—C24—H24120.2
C22—N2—C16108.10 (11)C23—C24—H24120.2
C22—N2—C30127.04 (11)C24—C25—C26120.31 (13)
C16—N2—C30124.72 (11)C24—C25—H25119.8
C31—N3—C33111.29 (10)C26—C25—H25119.8
C31—N3—C32114.56 (11)C27—C26—C25121.32 (13)
C33—N3—C32113.55 (11)C27—C26—H26119.3
N1—C4—C9129.49 (12)C25—C26—H26119.3
N1—C4—C5109.42 (11)C26—C27—C22118.46 (13)
C9—C4—C5121.02 (12)C26—C27—H27120.8
C6—C5—C4119.43 (12)C22—C27—H27120.8
C6—C5—C11133.58 (12)N1—C28—C29115.26 (11)
C4—C5—C11106.48 (11)N1—C28—H28A108.5
C7—C6—C5119.85 (12)C29—C28—H28A108.5
C7—C6—H6120.1N1—C28—H28B108.5
C5—C6—H6120.1C29—C28—H28B108.5
C6—C7—C8119.25 (12)H28A—C28—H28B107.5
C6—C7—C31121.17 (12)C28—C29—C30117.30 (11)
C8—C7—C31119.55 (12)C28—C29—H29A108.0
C9—C8—C7122.01 (12)C30—C29—H29A108.0
C9—C8—H8119.0C28—C29—H29B108.0
C7—C8—H8119.0C30—C29—H29B108.0
C8—C9—C4118.03 (12)H29A—C29—H29B107.2
C8—C9—H9121.0N2—C30—C29116.16 (11)
C4—C9—H9121.0N2—C30—H30A108.2
N1—C10—C15129.63 (12)C29—C30—H30A108.2
N1—C10—C11109.09 (12)N2—C30—H30B108.2
C15—C10—C11121.29 (12)C29—C30—H30B108.2
C12—C11—C10119.92 (12)H30A—C30—H30B107.4
C12—C11—C5133.47 (13)N3—C31—C7113.67 (11)
C10—C11—C5106.59 (12)N3—C31—H31A108.8
C11—C12—C13119.27 (13)C7—C31—H31A108.8
C11—C12—H12120.4N3—C31—H31B108.8
C13—C12—H12120.4C7—C31—H31B108.8
C12—C13—C14120.02 (13)H31A—C31—H31B107.7
C12—C13—H13120.0N3—C32—C19111.50 (11)
C14—C13—H13120.0N3—C32—H32A109.3
C15—C14—C13121.47 (13)C19—C32—H32A109.3
C15—C14—H14119.3N3—C32—H32B109.3
C13—C14—H14119.3C19—C32—H32B109.3
C14—C15—C10118.00 (13)H32A—C32—H32B108.0
C14—C15—H15121.0N3—C33—C34117.93 (11)
C10—C15—H15121.0N3—C33—H33A107.8
N2—C16—C21129.47 (13)C34—C33—H33A107.8
N2—C16—C17109.55 (12)N3—C33—H33B107.8
C21—C16—C17120.97 (12)C34—C33—H33B107.8
C18—C17—C16119.87 (12)H33A—C33—H33B107.2
C18—C17—C23133.27 (13)C35—C34—C33110.75 (12)
C16—C17—C23106.64 (12)C35—C34—H34A109.5
C19—C18—C17119.56 (13)C33—C34—H34A109.5
C19—C18—H18120.2C35—C34—H34B109.5
C17—C18—H18120.2C33—C34—H34B109.5
C18—C19—C20118.91 (13)H34A—C34—H34B108.1
C18—C19—C32120.73 (12)C36—C35—C34113.48 (13)
C20—C19—C32119.96 (12)C36—C35—H35A108.9
C21—C20—C19122.81 (13)C34—C35—H35A108.9
C21—C20—H20118.6C36—C35—H35B108.9
C19—C20—H20118.6C34—C35—H35B108.9
C20—C21—C16117.33 (13)H35A—C35—H35B107.7
C20—C21—H21121.3C35—C36—H36A109.5
C16—C21—H21121.3C35—C36—H36B109.5
N2—C22—C27129.80 (13)H36A—C36—H36B109.5
N2—C22—C23109.31 (12)C35—C36—H36C109.5
C27—C22—C23120.88 (13)H36A—C36—H36C109.5
C24—C23—C22119.43 (12)H36B—C36—H36C109.5
C24—C23—C17134.27 (13)
C10—N1—C4—C9178.96 (13)C23—C17—C18—C19175.18 (13)
C28—N1—C4—C90.4 (2)C17—C18—C19—C205.06 (19)
C10—N1—C4—C52.13 (14)C17—C18—C19—C32167.69 (12)
C28—N1—C4—C5177.18 (12)C18—C19—C20—C216.4 (2)
N1—C4—C5—C6171.01 (11)C32—C19—C20—C21166.42 (12)
C9—C4—C5—C66.13 (19)C19—C20—C21—C160.9 (2)
N1—C4—C5—C111.85 (14)N2—C16—C21—C20173.16 (13)
C9—C4—C5—C11178.99 (12)C17—C16—C21—C205.76 (19)
C4—C5—C6—C71.25 (19)C16—N2—C22—C27177.87 (13)
C11—C5—C6—C7171.78 (13)C30—N2—C22—C272.0 (2)
C5—C6—C7—C84.24 (19)C16—N2—C22—C231.67 (14)
C5—C6—C7—C31173.68 (11)C30—N2—C22—C23177.56 (12)
C6—C7—C8—C95.2 (2)N2—C22—C23—C24179.96 (12)
C31—C7—C8—C9172.75 (12)C27—C22—C23—C240.45 (19)
C7—C8—C9—C40.45 (19)N2—C22—C23—C170.28 (14)
N1—C4—C9—C8171.28 (12)C27—C22—C23—C17179.87 (12)
C5—C4—C9—C85.22 (19)C18—C17—C23—C247.3 (3)
C4—N1—C10—C15178.79 (13)C16—C17—C23—C24178.31 (14)
C28—N1—C10—C151.9 (2)C18—C17—C23—C22172.30 (14)
C4—N1—C10—C111.55 (14)C16—C17—C23—C222.08 (14)
C28—N1—C10—C11177.74 (12)C22—C23—C24—C250.4 (2)
N1—C10—C11—C12178.38 (12)C17—C23—C24—C25179.95 (14)
C15—C10—C11—C121.3 (2)C23—C24—C25—C260.3 (2)
N1—C10—C11—C50.40 (14)C24—C25—C26—C270.2 (2)
C15—C10—C11—C5179.91 (12)C25—C26—C27—C220.3 (2)
C6—C5—C11—C128.0 (3)N2—C22—C27—C26179.90 (13)
C4—C5—C11—C12179.42 (14)C23—C22—C27—C260.4 (2)
C6—C5—C11—C10170.53 (14)C10—N1—C28—C2963.32 (17)
C4—C5—C11—C100.87 (14)C4—N1—C28—C29115.87 (14)
C10—C11—C12—C130.5 (2)N1—C28—C29—C3046.67 (17)
C5—C11—C12—C13178.94 (14)C22—N2—C30—C2966.13 (17)
C11—C12—C13—C140.8 (2)C16—N2—C30—C29118.63 (14)
C12—C13—C14—C151.5 (2)C28—C29—C30—N248.00 (17)
C13—C14—C15—C100.8 (2)C33—N3—C31—C7156.62 (11)
N1—C10—C15—C14178.98 (13)C32—N3—C31—C772.88 (14)
C11—C10—C15—C140.6 (2)C6—C7—C31—N3134.49 (13)
C22—N2—C16—C21177.94 (13)C8—C7—C31—N343.42 (17)
C30—N2—C16—C211.9 (2)C31—N3—C32—C1976.51 (14)
C22—N2—C16—C173.04 (14)C33—N3—C32—C19154.11 (11)
C30—N2—C16—C17179.04 (11)C18—C19—C32—N369.92 (16)
N2—C16—C17—C18172.11 (11)C20—C19—C32—N3102.75 (14)
C21—C16—C17—C187.01 (19)C31—N3—C33—C3459.87 (16)
N2—C16—C17—C233.17 (14)C32—N3—C33—C3471.15 (15)
C21—C16—C17—C23177.71 (12)N3—C33—C34—C35176.03 (12)
C16—C17—C18—C191.39 (19)C33—C34—C35—C36177.56 (13)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C22–C27, C4–C9, N2/C16/C17/C22/C23 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13···N3i0.952.563.4858 (18)166
C28—H28A···Cg1ii0.992.723.4144 (15)128
C30—H30A···Cg2iii0.992.623.5224 (16)152
C31—H31B···Cg3iv0.992.833.7245 (15)150
C36—H36B···Cg4v0.982.993.9151 (18)159
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x1, y, z+1; (v) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: the Japan Science and Technology Agency's Core Research for Evolutional Science and Technology (grant No. JPMJCR2001); Network Joint Research Center for Materials and Devices (grant No. 20211332); JSPS KAKENHI (grant No. JP20K05565).

References

First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGratia, P., Magomedov, A., Malinauskas, T., Daskeviciene, M., Abate, A., Ahmad, S., Grätzel, M., Getautis, V. & Nazeeruddin, M. K. (2015). Angew. Chem. Int. Ed. 54, 11409–11413.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaji, H., Suzuki, H., Fukushima, T., Shizu, K., Suzuki, K., Kubo, S., Komino, T., Oiwa, H., Suzuki, F., Wakamiya, A., Murata, Y. & Adachi, C. (2015). Nat. Commun. 6, 8476.  Web of Science CrossRef PubMed Google Scholar
First citationKumar, G. S., Chinnakali, K., Sekar, K., Rajakumar, P. & Fun, H.-K. (2006). Acta Cryst. E62, o3455–o3456.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakamura, Y., Kaneko, M., Yamanaka, N., Tani, K. & Nishimura, J. (1999). Tetrahedron Lett. 40, 4693–4696.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhkita, H., Ito, S., Yamamoto, M., Tohda, Y. & Tani, K. (2002). J. Phys. Chem. A, 106, 2140–2145.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaiful, I. S. M., Heinze, P., Ohba, Y., Yamauchi, S., Yamamoto, M., Tohda, Y. & Tani, K. (2006). Mol. Phys. 104, 1535–1542.  Web of Science CrossRef CAS Google Scholar
First citationSakai, H., Itaya, A., Masuhara, H., Sasaki, K. & Kawata, S. (1996). Polymer, 37, 31–43.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTani, K., Imafuku, R., Miyanaga, K., Masaki, M. E., Kato, H., Hori, K., Kubono, K., Taneda, M., Harada, T., Goto, K., Tani, F. & Mori, T. (2020). J. Phys. Chem. A, 124, 2057–2063.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTani, K., Tohda, Y., Takemura, H., Ohkita, H., Ito, S. & Yamamoto, M. (2001). Chem. Commun. pp. 1914–1915.  Web of Science CSD CrossRef Google Scholar
First citationTani, K., Yamamoto, S., Kubono, K., Hori, K., Tohda, Y., Takemura, H., Nakamura, Y., Nishimura, J., Benten, H., Ohkita, H., Ito, S. & Yamamoto, M. (2007). Chem. Lett. 36, 460–461.  Web of Science CSD CrossRef CAS Google Scholar
First citationWex, B. & Kaafarani, B. R. (2017). J. Mater. Chem. C. 5, 8622–8653.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds