research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(ammonium) bis­­[penta­aqua­(di­methyl­formamide)­zinc(II)] deca­vanadate tetra­hydrate

crossmark logo

aComenius University in Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia, bCharles University, Department of Inorganic Chemistry, Hlavova 2030, Prague, 128 00, Czech Republic, and cComenius University in Bratislava, Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
*Correspondence e-mail: lukas.krivosudsky@uniba.sk

Edited by C. Schulzke, Universität Greifswald, Germany (Received 3 March 2022; accepted 27 March 2022; online 5 April 2022)

The crystalline product (NH4)2[Zn(C3H7NO)(H2O)5]2[V10O28]·4H2O was success­fully isolated from an H2O/DMF solvent combination by evaporation at ambient temperature. The salt crystallizes in the P21/n space group. Imidazole, initially used in the synthesis but not present in the product, and DMF solvent appear to affect the synthesis and crystallization as structural-directing agents. In the title compound, the complex cation [Zn(H2O)5(DMF)]2+ acts as a counter-ion without being directly coordinated to the deca­vanadate anion. An extensive framework of hydrogen bonds integrates the whole architecture as evidenced by X-ray crystallography. The polyoxometalate [V10O28]6– lies on a center of symmetry while the complex cation [Zn(H2O)5(DMF)]2+ links three adjacent anions through a set of 2 + 2 + 3 hydrogen bonds.

1. Chemical context

Decavanadate anions, HxV10O28(6–x)–, are the major species in equilibrated aqueous vanadate solutions (Rehder, 2015[Rehder, D. (2015). J. Inorg. Biochem. 147, 25-31.]; Gorzsás et al., 2009[Gorzsás, A., Andersson, I. & Pettersson, L. (2009). J. Inorg. Biochem. 103, 517-526.]) at vanadium(V) concentrations above 1 mM in the pH range of ≃2–6 (Schmidt et al., 2001[Schmidt, H., Andersson, I., Rehder, D. & Pettersson, L. (2001). Chem. Eur. J. 7, 251-257.]; Pettersson et al., 1985[Pettersson, L., Hedman, B., Nenner, A. M. & Andersson, I. (1985). Acta Chem. Scand. A, 39, 499-506.]), and are also stabilized in some organic solvents (Slebodnick & Pecoraro, 1998[Slebodnick, C. & Pecoraro, V. L. (1998). Inorg. Chim. Acta, 283, 37-43.]). There are altogether 54 compounds in the CSD (WebCSD, accessed January 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) that contain a deca­vanadate anion and a transition-metal complex cation, either coordinated or as a free counter-ion. Both groups are evenly abundant (27 structures). In our search for conditions under which the deca­vanadate acts as a ligand we focused on Zn2+ complexes that have already shown the ability to act as a counter-ion: (NH4)2[Zn (H2O)6]2[V10O28]·4H2O (Udomvech et al., 2012[Udomvech, A., Kongrat, P., Pakawatchai, C. & Phetmung, H. (2012). Inorg. Chem. Commun. 17, 132-136.]), [Zn(H2O)6]n[{Na2(H2O)6(μ2-H2O)4Zn(H2O)2}V10O28]n·4nH2O (Yerra & Das, 2017[Yerra, S. & Das, S. K. (2017). J. Mol. Struct. 1146, 23-31.]), [Zn3(Htrz)6(H2O)6][V10O28]·10H2O·Htrz (Xu et al., 2012[Xu, W., Jiang, F., Zhou, Y., Xiong, K., Chen, L., Yang, M., Feng, R. & Hong, M. (2012). Dalton Trans. 41, 7737-7745.]), (C4H14N2)2]·[Zn(H2O)6][V10O28]·6H2O (Jin et al., 2018[Jin, K. P., Jiang, H. J., Wang, Y., Zhang, D. P., Mei, J. & Cui, S. H. (2018). J. Clust Sci. 29, 785-792.]), (NH4)2[Zn(H2O)5(NH3CH2CH2COO)]2[V10O28nH2O (Klištincová et al., 2010[Klištincová, L., Rakovský, E. & Schwendt, P. (2010). Transition Met. Chem. 35, 229-236.]); as well as being directly coordinated to deca­vanadate: {[Zn2(H2O)14[V10O28]}·H2ppz (Wang et al., 2008[Wang, L., Sun, X. P., Liu, M. L., Gao, Y. Q., Gu, W. & Liu, X. (2008). J. Clust Sci. 19, 531-542.]), {[Zn(en)2]3[V10O28]}·5H2O (Pang et al., 2012[Pang, H., Meng, X., Ma, H., Liu, B. & Li, S. (2012). Z. Naturforsch. Teil B, 67, 855-859.]), {[Zn(im)2(DMF)2]2[H2V10O28im·DMF (Xu et al., 2012[Xu, W., Jiang, F., Zhou, Y., Xiong, K., Chen, L., Yang, M., Feng, R. & Hong, M. (2012). Dalton Trans. 41, 7737-7745.]), {[Zn3(trz)3(H2O)4(DMF)]2[V10O28]·4H2O}n (Xu et al., 2012[Xu, W., Jiang, F., Zhou, Y., Xiong, K., Chen, L., Yang, M., Feng, R. & Hong, M. (2012). Dalton Trans. 41, 7737-7745.]), [(CH3)4N]2[Zn(H2O)5]2[V10O28]}·5H2O (Huang et al., 2021[Huang, X., Gu, X., Zhang, H., Shen, G., Gong, S., Yang, B., Wang, Y. & Chen, Y. (2021). J. CO2 Util. 45, Article No. 101419.]) and {[Zn(H2O)6][Zn2[V10O28](H2O)10]}·6H2O (Graia et al., 2008[Graia, M., Ksiksi, R. & Driss, A. (2008). J. Chem. Crystallogr. 38, 855-859.]) (im = imidazole, Htrz = 1,2,4-triazole, DMF = N,N′-di­methyl­formamide, en = ethane-1,2-di­amine, ppz = piperazine). Employing zinc(II) centers as part of linker moieties for the construction of polyoxometalate-based metal organic frameworks (POMOFs) comes with an advantage over traditionally used rare metals regarding costs, and sometimes even efficiency. Important applications of POMOFs in materials chemistry include, for instance, photovoltaics (Luo et al., 2012[Luo, X., Li, F., Xu, B., Sun, Z. & Xu, L. (2012). J. Mater. Chem. 22, 15050-15055.]) and hydrogen evolution (Nohra et al., 2011[Nohra, B., El Moll, H., Rodriguez Albelo, L. M., Mialane, P., Marrot, J., Mellot-Draznieks, C., O'Keeffe, M., Ngo Biboum, R., Lemaire, J., Keita, B., Nadjo, L. & Dolbecq, A. (2011). J. Am. Chem. Soc. 133, 13363-13374.]). Despite extensive experimental work with an inexpensive multicomponent system H2O/DMF/imidazole/Zn2+/V5+, we were not able to isolate from the various preparations any crystalline product other than (NH4)2[Zn(H2O)5(DMF)]2[V10O28]·4H2O (1). Its crystal structure is presented here.

[Scheme 1]

2. Structural commentary

Compound 1 crystallizes from a bicomponent solvent H2O/DMF at room temperature in the form of orange block-shaped crystals in monoclinic symmetry [P21/n; β = 108.628 (1)°]. Although imidazole is not present in the crystal structure, neither as a free mol­ecule or cation nor as a ligand, its presence was necessary for crystallization to take place. In the absence of imidazole we observed the formation of oily solutions without crystalline product or the slow reduction of vanadium accompanied by a change in color of the solution from orange to greenish. The asymmetric unit of (NH4)2[Zn(H2O)5(DMF)]2[V10O28]·4H2O (Fig. 1[link]) comprises one half of the [V10O28]6– polyoxometalate, one [Zn(H2O)5(DMF)]2+ complex cation, one NH4+ and two mol­ecules of water of crystallization. The H atoms of the ammonium cation and water mol­ecules were found in the difference map and refined freely except for three water mol­ecules where restraints on the O—H distances were applied. The H atoms bound to the C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms. The Zn2+ center in [Zn(H2O)5(DMF)]2+ is coordinated by five aqua ligands with Zn—O bond lengths in the range 2.0482 (16)–2.1273 (16) Å and one N,N′-di­methyl­formamide ligand coordinated through the oxygen atom with a Zn—O bond length of 2.0926 (14) Å, forming an irregular octa­hedron. The deca­vanadate anion [V10O28]6– is present in a fully deprotonated form, as further confirmed by elemental analysis and charge balance. It resides in a special position on the center of symmetry, as observed many times before (Rakovský & Krivosudský, 2014[Rakovský, E. & Krivosudský, L. (2014). Acta Cryst. E70, m225-m226.]). The anion adopts Ci symmetry (idealized D2h) and is composed of ten edge-sharing heavily distorted octa­hedra. The terminal vanadium–oxygen bond lengths (V=O groups) are in the range 1.5929 (14)–1.6210 (14) Å, with an average value of 1.6083 Å. The bond lengths of the bridging μ–O atoms are in the range 1.6890 (13)–2.0696 (14) Å, with an average value of 1.853 Å. The bond lengths of the bridging μ3–O atoms with coord­ination numbers of three are in the range 1.8700 (14)–2.0208 (14) Å, with an average value of 1.9725 Å. Bond lengths of the hexa­coordinated oxygen atom trapped inside the deca­vanadate (O16) are in the range 2.1033 (13)–2.3337 (13) Å, with an average value of 2.2222 Å. All metrical parameters fall in their typical ranges.

[Figure 1]
Figure 1
The mol­ecular structure of 1 showing 50% displacement ellipsoids illustrated with DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]). The half of the deca­vanadate anion that is not part of the asymmetric unit is displayed as faded.

3. Supra­molecular features

The supra­molecular structure of 1 is stabilized by a rich network of hydrogen bonds that involves all components of the compound. The strongest hydrogen bonds are formed by the complex cation (Fig. 2[link], Table 1[link]), which serves as a linker for deca­vanadate anions in its vicinity. More specifically, [Zn(H2O)5(DMF)]2+ forms 2 + 2 + 3 hydrogen bonds through its aqua ligands (as donors) to three different [V10O28]6− anions (as acceptors). The structural parameters of the hydrogen bonds are summarized in Table 1[link]. Based on the DA distances ranging from 2.659 (2) to 2.892 (2) Å and the angles D—H⋯A falling into the range 164 (3)–177 (3)°, the hydrogen bonds may be considered relatively strong examples.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O15i 0.75 (3) 1.98 (3) 2.722 (2) 167 (3)
O3—H3P⋯O18 0.83 (3) 2.07 (3) 2.892 (2) 173 (3)
O4—H4O⋯O17ii 0.74 (3) 1.97 (3) 2.710 (2) 177 (3)
O5—H5O⋯O19 0.85 (3) 1.82 (3) 2.659 (2) 169 (3)
O5—H5P⋯O9iii 0.76 (3) 2.10 (3) 2.842 (2) 164 (3)
O6—H6O⋯O7iii 0.82 (3) 1.95 (3) 2.771 (2) 173 (3)
O6—H6P⋯O11ii 0.78 (2) 2.00 (2) 2.769 (2) 170 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Relative positions of the three adjacent deca­vanadate anions (orange polyhedra) linked by a single [Zn(H2O)5(DMF)]2+ cation.

4. Database survey

In a search of the Cambridge Structural Database (WebCSD, accessed January 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for closely related deca­vanadates bearing mononuclear zinc(II) complex cations which are not coordinated to the deca­vanadate anion, six entries were found: (NH4)2[Zn(H2O)6]2[V10O28]·4H2O ICSD Entry: 422816 (Udomvech et al., 2012[Udomvech, A., Kongrat, P., Pakawatchai, C. & Phetmung, H. (2012). Inorg. Chem. Commun. 17, 132-136.]), [Zn(H2O)6]n[{Na2(H2O)6(μ-H2O)4Zn(H2O)2}V10O28]n·4nH2O ICSD Entry: 427974 (Yerra & Das, 2017[Yerra, S. & Das, S. K. (2017). J. Mol. Struct. 1146, 23-31.]), (C4H14N2)2]·[Zn(H2O)6][V10O28]·6H2O YEYYEJ (Jin et al., 2018[Jin, K. P., Jiang, H. J., Wang, Y., Zhang, D. P., Mei, J. & Cui, S. H. (2018). J. Clust Sci. 29, 785-792.]), (NH4)2[Zn(H2O)5(NH3CH2CH2COO)]2[V10O28nH2O XABQIC (Klištincová et al., 2010[Klištincová, L., Rakovský, E. & Schwendt, P. (2010). Transition Met. Chem. 35, 229-236.]), [Zn(3-Hdpye)(H2O)5]2[V10O28]·4H2O OXUYUD (Wang et al., 2016[Wang, X., Sun, J., Lin, H., Chang, Z. & Liu, G. (2016). Inorg. Chem. Commun. 73, 152-156.]), and [Zn(H2O)6][Na3(H2O)14][HV10O28]·4H2O SUDGUW (Amanchi & Das, 2018[Amanchi, S. R. & Das, S. K. (2018). Front. Chem., 6, Article No. 469.]). The overall compositions (cations, deca­vanadate anion, water) are in all cases similar to that of the title compound.

5. Synthesis and crystallization

NH4VO3 (0.464 g, 4 mmol) was dissolved in 20 ml of water and stirred upon heating. After being cooled down to ambient temperature, deca­vanadate was prepared in situ by adjusting the pH to 4 with 2 M HCl until the color of the solution changed from bright yellow to orange. Under continuous stirring, imidazole (0.136 g, 2 mmol) was poured into the mixture and the pH was adjusted to 4 by adding 2 M HCl again. Finally, first ZnSO4·7H2O (0.287 g, 1 mmol) and secondly 20 mL of DMF were added to the clear solution. The mixture was filtered, and the clear orange filtrate was left to crystallize at RT. The orange crystals were isolated a few days later. The vanadium content was determined using an ICP MS Thermo Scientific iCap-Q; the zinc content was determined using an AAS Perkin-Elmer Model 1100. An infrared spectrum was recorded on a Nicolet FTIR 6700 spectrometer in Nujol mull. Analytical data for C6H50N4O44V10Zn2: theoretical V 33.5%, Zn 8.6%; found V 32.4%, Zn 8.40%. Characteristic bands in the FTIR spectrum (in cm−1): V10O28 964, 951, 938, 805, 596; NH4+ 1416; DMF 1658, 1382, 1118.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropically and those on carbon atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C). Hydrogen atoms of the water mol­ecules and the ammonium cation were found in the difference-Fourier map. For the two lattice water mol­ecules and one coordinated water, the O—H distances were restrained with DFIX while orientation and displacement parameters were refined freely. All other water hydrogen atoms and the ammonium cation hydrogen atoms were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula (NH4)2[Zn(C3H7NO)(H2O)5]2[V10O28]·4H2O
Mr 1522.64
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 15.5436 (6), 8.6538 (4), 16.7362 (7)
β (°) 108.628 (1)
V3) 2133.27 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.31
Crystal size (mm) 0.49 × 0.23 × 0.10
 
Data collection
Diffractometer Nonius KappaCCD with Buker APEXII detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.57, 0.73
No. of measured, independent and observed [I > 2σ(I)] reflections 29908, 4901, 4354
Rint 0.033
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.056, 1.06
No. of reflections 4901
No. of parameters 372
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.62
Computer programs: Instrument Service (Bruker, 2021[Bruker (2021). Instrument Service. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2021[Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: Instrument Service (Bruker, 2021); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: DIAMOND (Brandenburg & Putz, 2005).

Bis(ammonium) bis[pentaaqua(dimethylformamide)zinc(II)] decavanadate tetrahydrate top
Crystal data top
(NH4)2[Zn(C3H7NO)(H2O)5]2[V10O28]·4H2OF(000) = 1512
Mr = 1522.64Dx = 2.370 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.5436 (6) ÅCell parameters from 9949 reflections
b = 8.6538 (4) Åθ = 2.6–27.5°
c = 16.7362 (7) ŵ = 3.31 mm1
β = 108.628 (1)°T = 120 K
V = 2133.27 (16) Å3Prism, orange
Z = 20.49 × 0.23 × 0.10 mm
Data collection top
Nonius KappaCCD with Buker APEXII detector
diffractometer
4354 reflections with I > 2σ(I)
data from phi and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.5°, θmin = 2.2°
Tmin = 0.57, Tmax = 0.73h = 2019
29908 measured reflectionsk = 1111
4901 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0284P)2 + 1.1852P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
4901 reflectionsΔρmax = 0.36 e Å3
372 parametersΔρmin = 0.62 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.31800 (2)0.46454 (3)0.54363 (2)0.00759 (6)
O10.36049 (10)0.62987 (16)0.47301 (9)0.0114 (3)
O20.31034 (13)0.30400 (19)0.45168 (11)0.0159 (3)
H2O0.276 (2)0.240 (3)0.4386 (19)0.027 (9)*
H2P0.350 (2)0.281 (4)0.439 (2)0.043 (11)*
O30.44977 (11)0.3899 (2)0.60794 (10)0.0125 (3)
H3O0.4493 (17)0.310 (3)0.6204 (16)0.012 (7)*
H3P0.478 (2)0.433 (3)0.653 (2)0.027 (8)*
O40.27068 (12)0.31855 (17)0.62168 (10)0.0107 (3)
H4O0.2351 (18)0.260 (3)0.6034 (16)0.012 (7)*
H4P0.311 (2)0.274 (3)0.6540 (19)0.026 (8)*
O50.32040 (12)0.64584 (19)0.62565 (10)0.0147 (3)
H5O0.338 (2)0.648 (4)0.679 (2)0.037 (9)*
H5P0.309 (2)0.728 (4)0.609 (2)0.041 (10)*
O60.17863 (11)0.51996 (18)0.48529 (10)0.0107 (3)
H6O0.1613 (18)0.600 (3)0.4584 (16)0.025 (8)*
H6P0.1389 (16)0.463 (3)0.4648 (17)0.018 (7)*
C10.31089 (15)0.6545 (2)0.39870 (13)0.0127 (4)
H10.2676240.5773530.3723750.015*
N10.31404 (12)0.7783 (2)0.35441 (11)0.0126 (4)
C20.37449 (17)0.9071 (3)0.38953 (16)0.0207 (5)
H2A0.3397670.9914730.4035820.031*
H2B0.4023280.9434000.3480190.031*
H2C0.4220780.8732600.4406310.031*
C30.24580 (16)0.8028 (3)0.27197 (15)0.0230 (5)
H3A0.2081050.7100720.2556210.035*
H3B0.2761270.8238420.2299860.035*
H3C0.2074510.8910600.2750520.035*
V10.66396 (2)0.54542 (4)0.97966 (2)0.00519 (8)
V20.48442 (2)0.68753 (4)0.99591 (2)0.00468 (8)
V30.54965 (2)0.33633 (4)0.83349 (2)0.00615 (8)
V40.37025 (2)0.46974 (4)0.84932 (2)0.00550 (8)
V50.51936 (2)0.68687 (4)0.82367 (2)0.00627 (8)
O70.63516 (9)0.70057 (15)0.90117 (8)0.0068 (3)
O80.48640 (9)0.80713 (15)0.91677 (8)0.0066 (3)
O90.76998 (9)0.57672 (15)1.03142 (9)0.0079 (3)
O100.60927 (9)0.67399 (15)1.05199 (8)0.0057 (3)
O110.45500 (9)0.79640 (15)1.06789 (8)0.0066 (3)
O120.57404 (10)0.20530 (16)0.77742 (9)0.0102 (3)
O130.42410 (9)0.32537 (15)0.79962 (8)0.0067 (3)
O140.26409 (10)0.43520 (16)0.80457 (9)0.0096 (3)
O150.66637 (9)0.39324 (15)0.90763 (8)0.0068 (3)
O160.51531 (9)0.50621 (14)0.92593 (8)0.0055 (3)
O170.36261 (9)0.60759 (15)0.94154 (8)0.0061 (3)
O180.54495 (10)0.51674 (15)0.77235 (9)0.0072 (3)
O190.39504 (9)0.63135 (15)0.79227 (8)0.0070 (3)
O200.51633 (10)0.82531 (16)0.75840 (9)0.0107 (3)
N20.13802 (14)0.5436 (2)0.65462 (12)0.0091 (4)
H2R0.0918 (19)0.476 (3)0.6319 (17)0.017 (7)*
H2S0.176 (2)0.502 (3)0.691 (2)0.024 (8)*
H2T0.1165 (18)0.620 (3)0.6764 (16)0.019 (7)*
H2Q0.165 (2)0.572 (3)0.618 (2)0.031 (8)*
O210.41424 (12)0.08923 (19)0.64987 (12)0.0191 (4)
H21A0.446 (2)0.032 (3)0.6837 (18)0.036 (9)*
H21B0.3783 (19)0.042 (3)0.6175 (18)0.037 (10)*
O220.46542 (13)0.2601 (2)0.41289 (12)0.0260 (4)
H22A0.472 (2)0.250 (4)0.3693 (16)0.040 (10)*
H22B0.5092 (18)0.296 (4)0.4460 (18)0.039 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00799 (12)0.00689 (11)0.00765 (11)0.00058 (9)0.00214 (9)0.00008 (9)
O10.0120 (8)0.0121 (7)0.0107 (7)0.0031 (6)0.0046 (6)0.0005 (6)
O20.0122 (9)0.0163 (8)0.0222 (9)0.0065 (7)0.0099 (7)0.0108 (7)
O30.0122 (8)0.0103 (8)0.0122 (8)0.0005 (7)0.0001 (6)0.0005 (7)
O40.0087 (8)0.0085 (7)0.0129 (8)0.0020 (7)0.0006 (7)0.0017 (6)
O50.0246 (9)0.0090 (8)0.0068 (8)0.0014 (7)0.0002 (7)0.0004 (6)
O60.0079 (8)0.0077 (7)0.0133 (8)0.0006 (6)0.0009 (6)0.0015 (6)
C10.0122 (11)0.0143 (10)0.0135 (10)0.0001 (9)0.0069 (9)0.0010 (8)
N10.0106 (9)0.0150 (9)0.0142 (9)0.0021 (7)0.0069 (8)0.0037 (7)
C20.0288 (14)0.0143 (11)0.0244 (12)0.0034 (10)0.0162 (11)0.0011 (9)
C30.0163 (12)0.0374 (14)0.0168 (12)0.0070 (11)0.0073 (10)0.0110 (11)
V10.00446 (17)0.00613 (15)0.00523 (15)0.00007 (12)0.00188 (13)0.00022 (12)
V20.00508 (17)0.00396 (15)0.00497 (15)0.00072 (12)0.00156 (13)0.00013 (12)
V30.00678 (17)0.00668 (16)0.00561 (16)0.00051 (13)0.00282 (13)0.00102 (12)
V40.00511 (17)0.00675 (15)0.00438 (15)0.00021 (12)0.00115 (13)0.00009 (12)
V50.00768 (18)0.00618 (16)0.00514 (16)0.00000 (13)0.00230 (13)0.00097 (12)
O70.0071 (7)0.0072 (6)0.0068 (6)0.0008 (5)0.0032 (6)0.0003 (5)
O80.0068 (7)0.0058 (6)0.0074 (7)0.0003 (5)0.0024 (6)0.0003 (5)
O90.0070 (7)0.0088 (6)0.0081 (7)0.0001 (6)0.0027 (6)0.0000 (5)
O100.0057 (7)0.0055 (6)0.0056 (6)0.0004 (5)0.0011 (5)0.0006 (5)
O110.0068 (7)0.0061 (6)0.0072 (7)0.0007 (5)0.0027 (6)0.0000 (5)
O120.0104 (8)0.0113 (7)0.0097 (7)0.0000 (6)0.0045 (6)0.0033 (6)
O130.0066 (7)0.0076 (6)0.0061 (6)0.0000 (5)0.0023 (6)0.0003 (5)
O140.0078 (7)0.0121 (7)0.0081 (7)0.0005 (6)0.0014 (6)0.0002 (6)
O150.0060 (7)0.0077 (6)0.0075 (7)0.0001 (5)0.0033 (6)0.0000 (5)
O160.0045 (7)0.0057 (6)0.0063 (6)0.0001 (5)0.0019 (6)0.0004 (5)
O170.0045 (7)0.0062 (6)0.0075 (6)0.0009 (5)0.0019 (5)0.0002 (5)
O180.0071 (7)0.0084 (6)0.0064 (6)0.0006 (5)0.0029 (6)0.0002 (5)
O190.0074 (7)0.0079 (6)0.0055 (6)0.0012 (5)0.0017 (6)0.0014 (5)
O200.0117 (8)0.0109 (7)0.0095 (7)0.0005 (6)0.0033 (6)0.0018 (6)
N20.0090 (9)0.0078 (8)0.0095 (9)0.0005 (8)0.0014 (8)0.0011 (7)
O210.0162 (9)0.0113 (8)0.0217 (9)0.0007 (7)0.0056 (8)0.0002 (7)
O220.0184 (10)0.0405 (11)0.0223 (10)0.0112 (8)0.0110 (9)0.0143 (9)
Geometric parameters (Å, º) top
Zn1—O22.0482 (16)V2—O111.7029 (14)
Zn1—O52.0772 (16)V2—O101.8700 (14)
Zn1—O32.0886 (16)V2—O171.9470 (14)
Zn1—O12.0926 (14)V2—O162.1033 (13)
Zn1—O42.1113 (16)V2—O16i2.1256 (13)
Zn1—O62.1273 (16)V2—V3i3.0726 (5)
O1—C11.255 (3)V2—V53.0993 (5)
O2—H2O0.75 (3)V3—O121.5929 (14)
O2—H2P0.74 (3)V3—O131.8525 (14)
O3—H3O0.73 (3)V3—O181.8552 (14)
O3—H3P0.83 (3)V3—O151.9067 (14)
O4—H4O0.74 (3)V3—O11i2.0310 (14)
O4—H4P0.79 (3)V3—O162.3168 (14)
O5—H5O0.84 (3)V3—V53.0662 (5)
O5—H5P0.76 (3)V3—V43.1066 (5)
O6—H6O0.82 (2)V4—O141.6074 (15)
O6—H6P0.78 (2)V4—O191.8031 (14)
C1—N11.313 (3)V4—O131.8434 (14)
C1—H10.9500V4—O171.9841 (14)
N1—C21.455 (3)V4—O10i2.0101 (14)
N1—C31.463 (3)V4—O162.2317 (14)
C2—H2A0.9800V4—V53.1181 (5)
C2—H2B0.9800V5—O201.6118 (14)
C2—H2C0.9800V5—O181.8115 (14)
C3—H3A0.9800V5—O71.8559 (14)
C3—H3B0.9800V5—O191.8954 (14)
C3—H3C0.9800V5—O82.0696 (14)
V1—O91.6210 (14)V5—O162.3337 (13)
V1—O151.7939 (14)N2—H2R0.91 (3)
V1—O71.8312 (14)N2—H2S0.79 (3)
V1—O17i2.0027 (14)N2—H2T0.87 (3)
V1—O102.0208 (14)N2—H2Q0.88 (3)
V1—O162.2215 (14)O21—H21A0.79 (2)
V1—V4i3.0765 (5)O21—H21B0.76 (2)
V1—V53.1011 (5)O22—H22A0.78 (2)
V1—V33.1047 (5)O22—H22B0.79 (2)
V2—O81.6890 (13)
O2—Zn1—O5173.36 (7)O11i—V3—V2i31.29 (4)
O2—Zn1—O389.40 (7)O16—V3—V2i43.72 (3)
O5—Zn1—O394.90 (7)V5—V3—V2i92.705 (12)
O2—Zn1—O189.57 (7)O12—V3—V1134.03 (5)
O5—Zn1—O185.10 (6)O13—V3—V1123.55 (4)
O3—Zn1—O193.90 (6)O18—V3—V181.71 (4)
O2—Zn1—O496.37 (7)O15—V3—V131.85 (4)
O5—Zn1—O488.82 (6)O11i—V3—V181.33 (4)
O3—Zn1—O488.52 (7)O16—V3—V145.57 (3)
O1—Zn1—O4173.62 (6)V5—V3—V160.334 (11)
O2—Zn1—O690.11 (7)V2i—V3—V162.101 (11)
O5—Zn1—O686.20 (6)O12—V3—V4134.74 (5)
O3—Zn1—O6173.47 (6)O13—V3—V432.71 (4)
O1—Zn1—O692.61 (6)O18—V3—V481.72 (4)
O4—Zn1—O685.06 (6)O15—V3—V4122.81 (4)
C1—O1—Zn1118.11 (14)O11i—V3—V482.82 (4)
Zn1—O2—H2O126 (2)O16—V3—V445.79 (3)
Zn1—O2—H2P123 (3)V5—V3—V460.676 (11)
H2O—O2—H2P107 (3)V2i—V3—V461.307 (10)
Zn1—O3—H3O110 (2)V1—V3—V491.121 (12)
Zn1—O3—H3P118 (2)O14—V4—O19104.99 (7)
H3O—O3—H3P103 (3)O14—V4—O13102.14 (7)
Zn1—O4—H4O121 (2)O19—V4—O1394.71 (6)
Zn1—O4—H4P111 (2)O14—V4—O1799.59 (6)
H4O—O4—H4P107 (3)O19—V4—O1791.24 (6)
Zn1—O5—H5O130 (2)O13—V4—O17155.11 (6)
Zn1—O5—H5P121 (2)O14—V4—O10i97.90 (7)
H5O—O5—H5P108 (3)O19—V4—O10i155.58 (6)
Zn1—O6—H6O123.2 (19)O13—V4—O10i88.61 (6)
Zn1—O6—H6P127.5 (19)O17—V4—O10i76.46 (5)
H6O—O6—H6P102 (3)O14—V4—O16172.94 (6)
O1—C1—N1125.2 (2)O19—V4—O1681.20 (6)
O1—C1—H1117.4O13—V4—O1680.45 (6)
N1—C1—H1117.4O17—V4—O1676.62 (5)
C1—N1—C2122.21 (19)O10i—V4—O1675.50 (5)
C1—N1—C3120.29 (19)O14—V4—V1i88.21 (5)
C2—N1—C3116.75 (19)O19—V4—V1i130.95 (4)
N1—C2—H2A109.5O13—V4—V1i128.99 (4)
N1—C2—H2B109.5O17—V4—V1i39.72 (4)
H2A—C2—H2B109.5O10i—V4—V1i40.38 (4)
N1—C2—H2C109.5O16—V4—V1i85.11 (4)
H2A—C2—H2C109.5O14—V4—V3134.99 (5)
H2B—C2—H2C109.5O19—V4—V383.90 (4)
N1—C3—H3A109.5O13—V4—V332.89 (4)
N1—C3—H3B109.5O17—V4—V3124.63 (4)
H3A—C3—H3B109.5O10i—V4—V385.94 (4)
N1—C3—H3C109.5O16—V4—V348.08 (3)
H3A—C3—H3C109.5V1i—V4—V3119.349 (14)
H3B—C3—H3C109.5O14—V4—V5138.20 (5)
O9—V1—O15104.24 (7)O19—V4—V533.46 (4)
O9—V1—O7103.57 (7)O13—V4—V583.20 (4)
O15—V1—O796.26 (6)O17—V4—V588.66 (4)
O9—V1—O17i98.45 (6)O10i—V4—V5123.81 (4)
O15—V1—O17i90.58 (6)O16—V4—V548.31 (3)
O7—V1—O17i154.50 (6)V1i—V4—V5120.716 (13)
O9—V1—O1097.95 (6)V3—V4—V559.021 (11)
O15—V1—O10155.49 (6)O20—V5—O18104.25 (7)
O7—V1—O1088.44 (6)O20—V5—O7103.77 (7)
O17i—V1—O1075.81 (5)O18—V5—O794.15 (6)
O9—V1—O16171.99 (6)O20—V5—O19101.19 (7)
O15—V1—O1681.84 (6)O18—V5—O1991.23 (6)
O7—V1—O1680.63 (6)O7—V5—O19152.28 (6)
O17i—V1—O1676.05 (5)O20—V5—O8100.13 (6)
O10—V1—O1675.19 (5)O18—V5—O8155.54 (6)
O9—V1—V4i87.61 (5)O7—V5—O881.94 (6)
O15—V1—V4i129.85 (4)O19—V5—O881.98 (6)
O7—V1—V4i128.56 (4)O20—V5—O16173.31 (6)
O17i—V1—V4i39.28 (4)O18—V5—O1682.22 (5)
O10—V1—V4i40.12 (4)O7—V5—O1677.15 (5)
O16—V1—V4i84.47 (4)O19—V5—O1676.68 (5)
O9—V1—V5136.35 (5)O8—V5—O1673.35 (5)
O15—V1—V583.63 (5)O20—V5—V3137.94 (5)
O7—V1—V532.99 (4)O18—V5—V333.71 (4)
O17i—V1—V5124.67 (4)O7—V5—V385.86 (4)
O10—V1—V587.51 (4)O19—V5—V383.66 (4)
O16—V1—V548.63 (3)O8—V5—V3121.86 (4)
V4i—V1—V5120.389 (14)O16—V5—V348.51 (3)
O9—V1—V3138.31 (5)O20—V5—V2130.78 (5)
O15—V1—V334.12 (4)O18—V5—V2124.94 (5)
O7—V1—V385.11 (4)O7—V5—V276.63 (4)
O17i—V1—V386.96 (4)O19—V5—V278.01 (4)
O10—V1—V3123.27 (4)O8—V5—V230.65 (4)
O16—V1—V348.13 (4)O16—V5—V242.72 (3)
V4i—V1—V3118.865 (14)V3—V5—V291.233 (12)
V5—V1—V359.218 (11)O20—V5—V1136.08 (5)
O8—V2—O11106.98 (7)O18—V5—V182.44 (5)
O8—V2—O1098.98 (6)O7—V5—V132.50 (4)
O11—V2—O1098.61 (6)O19—V5—V1122.27 (4)
O8—V2—O1796.31 (6)O8—V5—V181.48 (4)
O11—V2—O1794.96 (6)O16—V5—V145.59 (3)
O10—V2—O17155.59 (6)V3—V5—V160.448 (11)
O8—V2—O1687.47 (6)V2—V5—V160.851 (11)
O11—V2—O16165.32 (6)O20—V5—V4132.78 (5)
O10—V2—O1681.25 (6)O18—V5—V482.01 (5)
O17—V2—O1680.53 (5)O7—V5—V4122.67 (4)
O8—V2—O16i165.68 (6)O19—V5—V431.63 (4)
O11—V2—O16i87.09 (6)O8—V5—V479.96 (4)
O10—V2—O16i81.02 (6)O16—V5—V445.57 (3)
O17—V2—O16i79.50 (5)V3—V5—V460.303 (11)
O16—V2—O16i78.36 (6)V2—V5—V460.938 (10)
O8—V2—V3i145.25 (5)V1—V5—V490.971 (12)
O11—V2—V3i38.27 (5)V1—O7—V5114.51 (7)
O10—V2—V3i89.35 (4)V2—O8—V5110.69 (7)
O17—V2—V3i88.85 (4)V2—O10—V4i108.53 (6)
O16—V2—V3i127.24 (4)V2—O10—V1107.55 (6)
O16i—V2—V3i48.87 (4)V4i—O10—V199.50 (6)
O8—V2—V538.66 (5)V2—O11—V3i110.45 (7)
O11—V2—V5145.64 (5)V4—O13—V3114.40 (7)
O10—V2—V590.27 (4)V1—O15—V3114.03 (7)
O17—V2—V589.87 (4)V2—O16—V2i101.64 (6)
O16—V2—V548.82 (4)V2—O16—V193.07 (5)
O16i—V2—V5127.18 (4)V2i—O16—V194.24 (5)
V3i—V2—V5176.038 (14)V2—O16—V493.27 (5)
O12—V3—O13102.07 (7)V2i—O16—V492.58 (5)
O12—V3—O18104.42 (7)V1—O16—V4169.57 (7)
O13—V3—O1891.28 (6)V2—O16—V3170.95 (7)
O12—V3—O15102.19 (7)V2i—O16—V387.41 (5)
O13—V3—O15154.51 (6)V1—O16—V386.30 (5)
O18—V3—O1590.18 (6)V4—O16—V386.13 (5)
O12—V3—O11i98.81 (6)V2—O16—V588.46 (5)
O13—V3—O11i84.97 (6)V2i—O16—V5169.89 (7)
O18—V3—O11i156.74 (6)V1—O16—V585.77 (5)
O15—V3—O11i83.72 (6)V4—O16—V586.12 (5)
O12—V3—O16173.76 (6)V3—O16—V582.50 (4)
O13—V3—O1677.99 (5)V2—O17—V4106.64 (6)
O18—V3—O1681.80 (5)V2—O17—V1i107.55 (6)
O15—V3—O1677.04 (5)V4—O17—V1i101.01 (6)
O11i—V3—O1674.96 (5)V5—O18—V3113.48 (7)
O12—V3—V5137.23 (5)V4—O19—V5114.91 (7)
O13—V3—V584.58 (4)H2R—N2—H2S110 (3)
O18—V3—V532.81 (4)H2R—N2—H2T108 (2)
O15—V3—V582.95 (4)H2S—N2—H2T109 (3)
O11i—V3—V5123.94 (4)H2R—N2—H2Q112 (3)
O16—V3—V548.99 (3)H2S—N2—H2Q104 (3)
O12—V3—V2i130.07 (5)H2T—N2—H2Q114 (2)
O13—V3—V2i78.67 (4)H21A—O21—H21B109 (3)
O18—V3—V2i125.52 (4)H22A—O22—H22B111 (3)
O15—V3—V2i79.82 (4)
Zn1—O1—C1—N1160.84 (16)V1i—V4—O13—V384.80 (8)
O1—C1—N1—C23.0 (3)V5—V4—O13—V339.62 (6)
O1—C1—N1—C3172.8 (2)O12—V3—O13—V4177.51 (8)
O9—V1—O7—V5174.37 (7)O18—V3—O13—V472.47 (8)
O15—V1—O7—V568.06 (8)O15—V3—O13—V420.64 (18)
O17i—V1—O7—V536.62 (17)O11i—V3—O13—V484.54 (7)
O10—V1—O7—V587.82 (7)O16—V3—O13—V48.87 (7)
O16—V1—O7—V512.58 (7)V5—V3—O13—V440.31 (6)
V4i—V1—O7—V587.71 (8)V2i—V3—O13—V453.56 (6)
V3—V1—O7—V535.75 (6)V1—V3—O13—V48.43 (9)
O20—V5—O7—V1174.70 (8)O9—V1—O15—V3177.41 (7)
O18—V5—O7—V168.93 (8)O7—V1—O15—V371.66 (8)
O19—V5—O7—V131.69 (17)O17i—V1—O15—V383.73 (7)
O8—V5—O7—V186.78 (7)O10—V1—O15—V328.39 (18)
O16—V5—O7—V112.11 (7)O16—V1—O15—V37.90 (7)
V3—V5—O7—V136.23 (6)V4i—V1—O15—V383.63 (8)
V2—V5—O7—V156.03 (6)V5—V1—O15—V341.12 (6)
V4—V5—O7—V114.23 (9)O20—V5—O18—V3178.51 (8)
O11—V2—O8—V5179.02 (6)O7—V5—O18—V376.15 (8)
O10—V2—O8—V579.05 (7)O19—V5—O18—V376.64 (8)
O17—V2—O8—V581.86 (7)O8—V5—O18—V33.5 (2)
O16—V2—O8—V51.67 (7)O16—V5—O18—V30.26 (7)
O16i—V2—O8—V59.8 (3)V2—V5—O18—V30.44 (10)
V3i—V2—O8—V5178.97 (3)V1—V5—O18—V345.77 (6)
O8—V2—O10—V4i178.45 (6)V4—V5—O18—V346.29 (6)
O11—V2—O10—V4i72.71 (7)O12—V3—O18—V5179.26 (8)
O17—V2—O10—V4i50.33 (16)O13—V3—O18—V577.94 (8)
O16—V2—O10—V4i92.44 (6)O15—V3—O18—V576.62 (8)
O16i—V2—O10—V4i12.94 (6)O11i—V3—O18—V52.3 (2)
V3i—V2—O10—V4i35.44 (5)O16—V3—O18—V50.27 (7)
V5—V2—O10—V4i140.62 (5)V2i—V3—O18—V50.97 (10)
O8—V2—O10—V171.68 (7)V1—V3—O18—V545.80 (6)
O11—V2—O10—V1179.48 (6)V4—V3—O18—V546.56 (6)
O17—V2—O10—V156.44 (16)O14—V4—O19—V5174.03 (7)
O16—V2—O10—V114.33 (6)O13—V4—O19—V570.12 (8)
O16i—V2—O10—V193.83 (6)O17—V4—O19—V585.69 (8)
V3i—V2—O10—V1142.21 (5)O10i—V4—O19—V526.93 (18)
V5—V2—O10—V133.84 (5)O16—V4—O19—V59.44 (7)
O8—V2—O11—V3i179.95 (7)V1i—V4—O19—V585.04 (8)
O10—V2—O11—V3i77.85 (7)V3—V4—O19—V539.01 (6)
O17—V2—O11—V3i81.80 (7)O20—V5—O19—V4177.33 (8)
O16—V2—O11—V3i10.5 (3)O18—V5—O19—V472.55 (8)
O16i—V2—O11—V3i2.61 (7)O7—V5—O19—V428.78 (17)
V5—V2—O11—V3i178.87 (3)O8—V5—O19—V483.86 (8)
O14—V4—O13—V3177.55 (8)O16—V5—O19—V49.16 (7)
O19—V4—O13—V371.10 (8)V3—V5—O19—V439.64 (6)
O17—V4—O13—V332.15 (18)V2—V5—O19—V452.98 (6)
O10i—V4—O13—V384.67 (8)V1—V5—O19—V49.28 (9)
O16—V4—O13—V39.14 (7)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O15ii0.75 (3)1.98 (3)2.722 (2)167 (3)
O3—H3P···O180.83 (3)2.07 (3)2.892 (2)173 (3)
O4—H4O···O17iii0.74 (3)1.97 (3)2.710 (2)177 (3)
O5—H5O···O190.85 (3)1.82 (3)2.659 (2)169 (3)
O5—H5P···O9iv0.76 (3)2.10 (3)2.842 (2)164 (3)
O6—H6O···O7iv0.82 (3)1.95 (3)2.771 (2)173 (3)
O6—H6P···O11iii0.78 (2)2.00 (2)2.769 (2)170 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z+3/2; (iv) x1/2, y+3/2, z1/2.
 

Funding information

The authors are grateful for support from the Scientific Grant Agency of the Ministry of Education of Slovak Republic and Slovak Academy of Sciences VEGA, Project No. 1/0669/22.

References

First citationAmanchi, S. R. & Das, S. K. (2018). Front. Chem., 6, Article No. 469.  Web of Science CSD CrossRef ICSD Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2021). Instrument Service. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGorzsás, A., Andersson, I. & Pettersson, L. (2009). J. Inorg. Biochem. 103, 517–526.  Web of Science PubMed Google Scholar
First citationGraia, M., Ksiksi, R. & Driss, A. (2008). J. Chem. Crystallogr. 38, 855–859.  Web of Science CrossRef ICSD CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, X., Gu, X., Zhang, H., Shen, G., Gong, S., Yang, B., Wang, Y. & Chen, Y. (2021). J. CO2 Util. 45, Article No. 101419.  Web of Science CSD CrossRef Google Scholar
First citationJin, K. P., Jiang, H. J., Wang, Y., Zhang, D. P., Mei, J. & Cui, S. H. (2018). J. Clust Sci. 29, 785–792.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlištincová, L., Rakovský, E. & Schwendt, P. (2010). Transition Met. Chem. 35, 229–236.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLuo, X., Li, F., Xu, B., Sun, Z. & Xu, L. (2012). J. Mater. Chem. 22, 15050–15055.  Web of Science CrossRef CAS Google Scholar
First citationNohra, B., El Moll, H., Rodriguez Albelo, L. M., Mialane, P., Marrot, J., Mellot-Draznieks, C., O'Keeffe, M., Ngo Biboum, R., Lemaire, J., Keita, B., Nadjo, L. & Dolbecq, A. (2011). J. Am. Chem. Soc. 133, 13363–13374.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPang, H., Meng, X., Ma, H., Liu, B. & Li, S. (2012). Z. Naturforsch. Teil B, 67, 855–859.  Web of Science CSD CrossRef CAS Google Scholar
First citationPettersson, L., Hedman, B., Nenner, A. M. & Andersson, I. (1985). Acta Chem. Scand. A, 39, 499–506.  CrossRef Web of Science Google Scholar
First citationRakovský, E. & Krivosudský, L. (2014). Acta Cryst. E70, m225–m226.  CSD CrossRef IUCr Journals Google Scholar
First citationRehder, D. (2015). J. Inorg. Biochem. 147, 25–31.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchmidt, H., Andersson, I., Rehder, D. & Pettersson, L. (2001). Chem. Eur. J. 7, 251–257.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlebodnick, C. & Pecoraro, V. L. (1998). Inorg. Chim. Acta, 283, 37–43.  Web of Science CrossRef CAS Google Scholar
First citationUdomvech, A., Kongrat, P., Pakawatchai, C. & Phetmung, H. (2012). Inorg. Chem. Commun. 17, 132–136.  Web of Science CrossRef ICSD CAS Google Scholar
First citationWang, L., Sun, X. P., Liu, M. L., Gao, Y. Q., Gu, W. & Liu, X. (2008). J. Clust Sci. 19, 531–542.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X., Sun, J., Lin, H., Chang, Z. & Liu, G. (2016). Inorg. Chem. Commun. 73, 152–156.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, W., Jiang, F., Zhou, Y., Xiong, K., Chen, L., Yang, M., Feng, R. & Hong, M. (2012). Dalton Trans. 41, 7737–7745.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYerra, S. & Das, S. K. (2017). J. Mol. Struct. 1146, 23–31.  Web of Science CSD CrossRef ICSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds