research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and photoluminescent properties of a new EuIII–phthalate–acetate coordination polymer

crossmark logo

aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand, and bMaterials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
*Correspondence e-mail: apinpus.rujiwatra@cmu.ac.th

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 8 April 2022; accepted 22 April 2022; online 28 April 2022)

A new coordination polymer, poly[(acetato)aqua(μ3-phthalato)europium(III)], [Eu(C8H4O4)(CH3O2)(H2O)]n or [EuIII(phth)(OAc)(H2O)] (phth2− = phthalate and OAc = acetate) was synthesized and characterized, revealing it to be a supra­molecular assembly of one-dimensional [EuIII(phth)(OAc)(H2O)] chains. Each chain is built up of edge-sharing distorted tricapped trigonal–prismatic TPRS-{EuIIIO9} building motifs and assembled in a regular fashion through hydrogen-bonding and aromatic ππ inter­actions. The fully deprotonated phth2− ligand was shown to be an effective sensitizer, promoting the characteristic 5D07FJ (J = 1–4) emissions of EuIII even in the presence of the non-sensitizing OAc group.

1. Chemical context

Inter­est in crystal engineering of lanthanide coordination polymers has been driven by the unique coordination chemistry and electronic properties of trivalent lanthanides (LnIII), which bring about a wide variety of potential applications ranging from, for instance, luminescence sensing (Hasegawa & Kitagawa, 2022[Hasegawa, Y. & Kitagawa, Y. (2022). J. Photochem. Photobiol. Photochem. Rev. 51, 100485.]), magnetism (Hu et al., 2021[Hu, J.-J., Peng, Y., Liu, S.-J. & Wen, H.-R. (2021). Dalton Trans. 50, 15473-15487.]), catalysis (Sinchow et al., 2021[Sinchow, M., Semakul, N., Konno, T. & Rujiwatra, A. (2021). ACS Sustainable Chem. Eng. 9, 8581-8591.]), gas storage and separation (Li & Chen, 2014[Li, B. & Chen, B. (2014). Lanthanide Metal-Organic Frameworks. Structure and Bonding, edited by P. Cheng, pp. 75-107. Berlin, Heidelberg: Springer.]), to drug delivery (Wei et al., 2020[Wei, D., Xin, Y., Rong, Y., Li, Y., Zhang, C., Chen, Q., Qin, S., Wang, W. & Hao, Y. (2020). J. Inorg. Organomet. Polym. 30, 1121-1131.]) and biomolecular imaging (Miller et al., 2016[Miller, S. E., Teplensky, M. H., Moghadam, P. Z. & Fairen-Jimenez, D. (2016). Interface Focus, 6, 20160027.]). However, the high coordination numbers, flexible coordination geometries and lack of directionality of Ln—O bonds complicate prediction of the designed polymeric frameworks, which are also greatly influenced by differences in synthetic parameters, i.e. reaction temperature and time, solvent, pH of reaction, etc (Bünzli, 2014[Bünzli, J.-C. G. (2014). J. Coord. Chem. 67, 3706-3733.]; Qiu & Zhu, 2009[Qiu, S. & Zhu, G. (2009). Coord. Chem. Rev. 253, 2891-2911.]). The study of structure–property relationships, which is an essence of property design, is consequently limited.

[Scheme 1]

Unlike transition-metal-based coordination polymers in which the preferred coordination geometries of the transition-metal ions play an important role in directing the framework architecture (Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]), those based on LnIII are principally governed by the organic ligands. Polycarb­oxy­lic acids are notably the most commonly utilized, facilitating diversity through their modes of coordination such as those found for phthalic acid (H2phth) (Fig. 1[link]). These coordination modes can also be diversified through the presence of the other ligands such as those found in, for instance, [LnIII(bdc)0.5(phth)(H2O)2] (LnIII = EuIII, TbIII, HoIII, ErIII and TmIII, H2bdc = terephthalic acid; Chuasaard et al., 2020[Chuasaard, T., Ngamjarurojana, A., Konno, T. & Rujiwatra, A. (2020). J. Coord. Chem. 73, 333-345.]), [LnIII(abdc)0.5(phth)(H2O)2]·2H2O (LnIII = EuIII, GdIII and TbIII, H2abdc = azo­benzene-4,4′-di­carb­oxy­lic acid; Chuasaard et al., 2022[Chuasaard, T., Thammakan, S., Semakul, N., Konno, T. & Rujiwatra, A. (2022). J. Mol. Struct. 1251, 131940.]) and [LnIII(ox)(phth)(H2O)2]·0.5H2O (LnIII = SmIII and TbIII, H2ox = oxalic acid; Wang et al., 2010[Wang, Z., Xing, Y.-H., Wang, C.-G., Sun, L.-X., Zhang, J., Ge, M.-F. & Niu, S.-Y. (2010). CrystEngComm, 12, 762-773.]).

[Figure 1]
Figure 1
Coordination modes of phth2− and Hphth found in lanthanide coordination compounds deposited to the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with frequency of appearance in parentheses.

With respect to photoluminescence, phth2− is acknowledged as a good sensitizer and can effectively promote ff emissions in, for example, [EuIII2(phth)3(H2O)] (Wan et al., 2002[Wan, Y., Jin, L., Wang, K., Zhang, L., Zheng, X. & Lu, S. (2002). New J. Chem. 26, 1590-1596.]). The apparent photoluminescence can, nonetheless, be modulated by the other ligands such as ad2− in [LnIII(ad)0.5(phth)(H2O)2] (Chuasaard et al., 2018[Chuasaard, T., Ngamjarurojana, A., Surinwong, S., Konno, T., Bureekaew, S. & Rujiwatra, A. (2018). Inorg. Chem. 57, 2620-2630.]) and bdc2− in [LnIII(bdc)0.5(phth)(H2O)2] (Chuasaard et al., 2020[Chuasaard, T., Ngamjarurojana, A., Konno, T. & Rujiwatra, A. (2020). J. Coord. Chem. 73, 333-345.]).

2. Structural commentary

The asymmetric unit of the title compound, [EuIII(phth)(OAc)(H2O)], is composed of one crystallographically unique EuIII ion, a whole mol­ecule of phth2−, and the coordinating OAc and water mol­ecules (Fig. 2[link]). The EuIII ion is ninefold coordinated to O atoms from three phth2−, two OAc and one water mol­ecule, which define a distorted tricapped trigonal–prismatic TPRS-{EuIIIO9} building motif. The Eu—O bond distances are in the range 2.352 (2)-2.605 (2) Å (Table 1[link]), which are consistent with those reported for other EuIII frameworks of phth2− and OAc, viz. [EuIII(abdc)0.5(phth)(H2O)2]·2H2O (Chuasaard et al., 2022[Chuasaard, T., Thammakan, S., Semakul, N., Konno, T. & Rujiwatra, A. (2022). J. Mol. Struct. 1251, 131940.]), [EuIII(phth)(STP)] (NaSTP = sodium 2-(2,2′:6′,2′′-terpyridin-4′-yl)benzene­sulfonate; Hu et al., 2019[Hu, Y.-C., Bai, C., Hu, H.-M., Li, C.-T., Zhang, T.-H. & Liu, W. (2019). Acta Cryst. B75, 855-864.]) and [C2mim]2[Eu2(OAc)8] (C2mim = 1-ethyl-3-methyl­imidazolium; Bousrez et al., 2021[Bousrez, G., Renier, O., Kelley, S. P., Adranno, B., Tahavori, E., Titi, H. M., Smetana, V., Tang, S.-F., Mudring, A.-V. & Rogers, R. D. (2021). Chem. Eur. J. 27, 13181-13189.]). The TPRS-{EuIIIO9} motifs are fused through the μ2-O atoms of phth2−, forming an infinite one-dimensional zigzag chain of edge-sharing TPRS-{EuIIIO9} motifs extending along the b-axis direction. Not only phth2−, which helps facilitating the formation of the one-dimensional chain through the overall μ3-η1:η2:η2:η1 mode of coordination (mode i in Fig. 1[link]), but also the smaller OAc link adjacent EuIII centers in a bridging μ2-η1:η1 coord­ination mode.

Table 1
Selected bond lengths (Å)

Eu1—O1i 2.570 (2) Eu1—O4ii 2.605 (2)
Eu1—O1 2.397 (2) Eu1—O5 2.352 (2)
Eu1—O2i 2.474 (2) Eu1—O6i 2.434 (3)
Eu1—O3 2.381 (2) Eu1—O7 2.446 (2)
Eu1—O3ii 2.484 (2)    
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Extended asymmetric unit of the title compound drawn using 50% probability for ellipsoids (hydrogen atoms are omitted for clarity). Symmetry codes: (i) [{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z; (ii) [{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z.

3. Supra­molecular features

The three-dimensional supra­molecular assembly of [EuIII(phth)(OAc)(H2O)] chains are facilitated by hydrogen bonding and aromatic ππ inter­actions (Fig. 3[link]). The hydrogen-bonding inter­actions can be divided into the inter­chain O7—H7A⋯O4 and the intra­chain O7—H7B⋯O6 and C3—H3⋯O2 inter­actions (Table 2[link]). The ππ inter­action between neighboring chains is considered to be of the displaced-stacking type (Banerjee et al., 2019[Banerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245-2252.]; Yao et al., 2018[Yao, Z.-F., Wang, J.-Y. & Pei, J. (2018). Cryst. Growth Des. 18, 7-15.]), with an inter­planar angle of 0°, an offset distance of ca 1.0 Å and a centroid-to-centroid distance of ca 3.6 Å.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4iii 0.85 2.17 2.9384 149
O7—H7B⋯O6iv 0.85 2.28 3.0438 150
C3—H3⋯O2 0.93 2.46 2.7741 100
Symmetry codes: (iii) [x, -y, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Depiction of (a) intra­chain and (b) inter­chain hydrogen-bonding inter­actions, and (c) ππ inter­actions.

4. Photoluminescent properties

The emission spectrum of ground crystals of the title compound was recorded at room temperature. Upon the excitation at 370 nm, the characteristic red emission originating from the 5D07FJ (J = 1–4) transitions of EuIII were displayed (Fig. 4[link]). This indicates the efficiency of phth2− as a good sensitizer, even in the presence of the non-sensitizing OAc. A split of the very intense 5D07F2 emission suggests that the EuIII ion is not located at a site with a center of symmetry (Binnemans, 2015[Binnemans, K. (2015). Coord. Chem. Rev. 295, 1-45.]), which is consistent with its distorted tricapped trigonal–prismatic coordination geometry. The split of the 5D07F4 emission, on the other hand, should be due to the ligand-field effect (Gupta et al., 2015[Gupta, S. K., Ghosh, P. S., Sahu, M., Bhattacharyya, K., Tewari, R. & Natarajan, V. (2015). RSC Adv. 5, 58832-58842.]; Okayasu & Yuasa, 2021[Okayasu, Y. & Yuasa, J. (2021). J. Phys. Chem. Lett. 12, 6867-6874.]; Puntus et al., 2010[Puntus, L. N., Lyssenko, K. A., Pekareva, I. S. & Antipin, M. Y. (2010). Mol. Phys. 108, 557-572.]).

[Figure 4]
Figure 4
Room-temperature photoluminescent emission spectrum of the title compound.

5. Database survey

A search of the CSD database (CSD version 5.43, update of November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the ConQuest software (version 2021.3.0; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), found 115 structures of lanthanide compounds including phth2−. In six of these structures, phth2− adopts the same μ3-η1:η2:η2:η1 mode of coordination as in the title compound. This mode of coordination apparently promotes the formation of a one-dimensional coordination framework, as, for example, in [Pr3(phen)2(phth)4(NO3)]·H2O (phen = 1,10-phenanthroline) (refcode: LAXWOX; Thirumurugan & Natarajan, 2005[Thirumurugan, A. & Natarajan, S. (2005). J. Mater. Chem. 15, 4588-4594.]), [Nd(Nphgly)(phth)(H2O)]·2H2O (Nphgly = N-phthaloylglycine) (refcode: TOHJEH; Yang et al., 2014[Yang, Y.-T., Tu, C.-Z., Yin, H.-J. & Cheng, F.-X. (2014). Inorg. Chem. Commun. 46, 107-109.]), and [Gd2Ni(2,5-pdc)2(phth)2(H2O)4]·8H2O (2,5-H2pdc = 2,5-pyridinedi­carb­oxy­lic acid) (refcode: XOZYER; Mahata et al., 2009[Mahata, P., Ramya, K. V. & Natarajan, S. (2009). Inorg. Chem. 48, 4942-4951.]).

Regarding OAc, there are 566 structures containing this deposited in the CSD, none of which also contains phth2−. There are, however, structures containing both OAc and isophthalate (iso-phth2−), e.g. [Sm2(iso-phth)2(OAc)2(H2O)4]·H2O (refcode: VOJNAK; Jin et al., 2008[Jin, Y., Luo, F., Che, Y.-X. & Zheng, J. M. (2008). Inorg. Chem. Commun. 11, 711-713.]), and [Dy4(iso-phth)4(OAc)4(H2O)8]·2H2O (refcode: DIBZEU; Hu et al., 2007[Hu, D.-X., Chen, P.-K., Luo, F., Che, Y.-X. & Zheng, J.-M. (2007). J. Mol. Struct. 837, 179-184.]).

6. Synthesis and crystallization

All chemicals used in this work were obtained commercially and used without purification: Eu2O3 (Strategic Elements, 99.99%), phthalic acid (H2phth; C8H6O4, BDH laboratory, 99%), NaOH (RCI Labscan, 99.0%), glacial acetic acid (AcOH; CH3COOH, QRëC, 99.8%), tetra­hydro­furan (THF; C4H8O, RCI Labscan, 99.8%), ethanol (EtOH; C2H5OH, RCI Labscan, 99.7%). Eu(OAc)3·4H2O, was prepared by dissolving Eu2O3 (2.5000 g, 7.1038 mmol) in 50.0 mL of deionized water with a few drops of glacial acetic acid (HOAc). After the pH of the suspension was adjusted to 3 using HOAc, the mixture was gently heated and a colorless homogeneous solution was attained. The white powder of Eu(OAc)3·4H2O was then recovered through slow evaporation of the solvent.

To synthesize the title compound, Eu(OAc)3·4H2O (0.16 g, 0.40 mmol) was dissolved in 2.0 mL of deionized water to prepare solution A. Solution B was separately prepared by dissolving Na2phth (84 mg, 0.40 mmol) and NaOAc (33 mg, 0.4 mmol) in a mixed solvent prepared from 1.0 mL of deionized water and 5.0 mL of tetra­hydro­furan (THF). Solutions A and B were then mixed in a 15 mL glass vial. The volume of the reaction was adjusted to 10.0 mL using deionized water and the pH of the solution was adjusted to 4 using HOAc. The reaction was left under stirring at room temperature for 2 h, after which the solvent was slowly evaporated, leading to the crystallization of colorless block-shaped crystals of [Eu(phth)(OAc)(H2O)] (78% yield based on EuIII). The crystals were characterized using FT–IR spectroscopy (PerkinElmer/Frontier FT–IR instrument; ATR mode; cm−1): 3541(br), 3419(br), 2978(w), 1548(w), 1402(m), 1373(m), 804(s), 754(s), 707(s), 650(s), 543(m), 503(m). The room-temperature photoluminescent spectrum was collected using a ASEQ LR-1T broad-range spectrophotometer equipped with an Ultrafire G60 UV LED Flashlight Torch excitation source (5 W, 370 nm)

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined isotropically using a riding model. The C—H bond lengths in the aromatic phth2− linker and in OAc were restrained to 0.93 Å [Uiso(H) = 1.2Ueq(C)] and 0.96 Å [Uiso(H) = 1.5Ueq(C)], respectively. The O—H bond lengths in the coordinated water mol­ecule were restrained to 0.85 Å with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Eu(C8H4O4)(CH3O2)(H2O)]
Mr 393.13
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 26.5184 (15), 7.2632 (2), 15.3622 (8)
β (°) 130.906 (9)
V3) 2236.3 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 5.63
Crystal size (mm) 0.2 × 0.1 × 0.1
 
Data collection
Diffractometer Rigaku SuperNova, single source at offset/far, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.218, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9923, 2393, 2138
Rint 0.032
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.052, 1.05
No. of reflections 2393
No. of parameters 167
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.79
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[(acetato)aqua(µ3-phthalato)europium(III)] top
Crystal data top
[Eu(C8H4O4)(CH3O2)(H2O)]F(000) = 1504
Mr = 393.13Dx = 2.335 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 26.5184 (15) ÅCell parameters from 7078 reflections
b = 7.2632 (2) Åθ = 2.0–27.4°
c = 15.3622 (8) ŵ = 5.63 mm1
β = 130.906 (9)°T = 293 K
V = 2236.3 (3) Å3Block, clear light colourless
Z = 80.2 × 0.1 × 0.1 mm
Data collection top
Rigaku SuperNova, Single source at offset/far, HyPix3000
diffractometer
2393 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2138 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.0000 pixels mm-1θmax = 27.4°, θmin = 2.0°
ω scansh = 3333
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 99
Tmin = 0.218, Tmax = 1.000l = 1918
9923 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0235P)2 + 1.2859P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2393 reflectionsΔρmax = 0.64 e Å3
167 parametersΔρmin = 0.79 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.75770 (2)0.36927 (2)0.71208 (2)0.01709 (7)
O10.69745 (10)0.1993 (3)0.7522 (2)0.0219 (5)
O40.68510 (12)0.6542 (3)0.8366 (2)0.0264 (6)
O30.68174 (10)0.5756 (3)0.69468 (19)0.0185 (5)
O60.69030 (12)0.0954 (3)0.5869 (2)0.0290 (6)
O20.62648 (11)0.0281 (3)0.6844 (2)0.0273 (6)
O70.72235 (14)0.5336 (4)0.5410 (2)0.0422 (7)
H7A0.6970690.4832880.4749140.063*
H7B0.7084220.6439200.5286040.063*
O50.67155 (11)0.2044 (3)0.5460 (2)0.0308 (6)
C70.59568 (15)0.4602 (4)0.6922 (3)0.0185 (7)
C20.58415 (15)0.2718 (4)0.6633 (3)0.0185 (7)
C80.65937 (15)0.5624 (4)0.7479 (3)0.0181 (7)
C90.66224 (16)0.0380 (5)0.5165 (3)0.0257 (8)
C10.63844 (17)0.1403 (4)0.7002 (3)0.0196 (8)
C100.61510 (19)0.0007 (5)0.3902 (3)0.0412 (10)
H10A0.6165860.1294480.3777890.062*
H10B0.6277830.0701410.3544520.062*
H10C0.5706260.0321520.3571520.062*
C60.54332 (17)0.5698 (5)0.6621 (3)0.0282 (8)
H60.5511170.6929450.6839990.034*
C30.52024 (16)0.2027 (5)0.6028 (3)0.0257 (8)
H30.5123510.0779360.5850670.031*
C40.46810 (17)0.3156 (5)0.5685 (3)0.0301 (9)
H40.4250930.2683260.5240460.036*
C50.47994 (17)0.4983 (5)0.6002 (3)0.0318 (9)
H50.4452760.5734080.5799330.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01881 (11)0.01068 (11)0.02213 (12)0.00003 (6)0.01356 (9)0.00015 (6)
O10.0190 (12)0.0157 (11)0.0322 (14)0.0006 (10)0.0173 (11)0.0032 (11)
O40.0294 (14)0.0245 (14)0.0270 (14)0.0045 (10)0.0191 (12)0.0049 (11)
O30.0205 (12)0.0112 (11)0.0261 (13)0.0006 (9)0.0162 (11)0.0012 (10)
O60.0311 (14)0.0253 (14)0.0243 (14)0.0014 (11)0.0154 (12)0.0038 (11)
O20.0255 (13)0.0127 (12)0.0439 (15)0.0017 (10)0.0228 (12)0.0027 (11)
O70.0635 (19)0.0265 (15)0.0297 (15)0.0021 (14)0.0275 (15)0.0026 (12)
O50.0299 (14)0.0218 (13)0.0312 (14)0.0048 (11)0.0158 (12)0.0053 (11)
C70.0202 (17)0.0164 (17)0.0204 (17)0.0005 (13)0.0139 (15)0.0027 (14)
C20.0191 (17)0.0157 (17)0.0214 (17)0.0006 (13)0.0136 (15)0.0012 (14)
C80.0174 (16)0.0097 (16)0.0256 (18)0.0063 (13)0.0135 (15)0.0054 (14)
C90.0231 (18)0.028 (2)0.0270 (19)0.0079 (16)0.0168 (17)0.0048 (17)
C10.0243 (19)0.0166 (18)0.0210 (19)0.0015 (13)0.0161 (16)0.0041 (13)
C100.049 (3)0.037 (2)0.023 (2)0.0107 (19)0.017 (2)0.0014 (18)
C60.029 (2)0.0200 (18)0.041 (2)0.0016 (16)0.0257 (18)0.0003 (17)
C30.0239 (18)0.0208 (18)0.0279 (19)0.0018 (15)0.0149 (16)0.0013 (16)
C40.0168 (18)0.033 (2)0.035 (2)0.0030 (16)0.0143 (17)0.0025 (18)
C50.0228 (19)0.027 (2)0.044 (2)0.0075 (15)0.0213 (18)0.0055 (18)
Geometric parameters (Å, º) top
Eu1—O1i2.570 (2)Eu1—O4ii2.605 (2)
Eu1—O12.397 (2)Eu1—O52.352 (2)
Eu1—O2i2.474 (2)Eu1—O6i2.434 (3)
Eu1—O32.381 (2)Eu1—O72.446 (2)
Eu1—O3ii2.484 (2)
O1—Eu1—Eu1i100.62 (6)Eu1—O3—Eu1i107.20 (8)
O1i—Eu1—Eu1i36.44 (5)C8—O3—Eu1i95.16 (19)
O1—Eu1—O1i135.94 (6)C8—O3—Eu1126.05 (19)
O1—Eu1—O4ii112.11 (8)C9—O6—Eu1ii133.7 (2)
O1i—Eu1—O4ii110.21 (7)C1—O2—Eu1ii96.9 (2)
O1—Eu1—O3ii72.40 (7)Eu1—O7—H7A121.4
O1—Eu1—O6i69.36 (8)Eu1—O7—H7B120.3
O1—Eu1—O2i138.23 (8)H7A—O7—H7B104.5
O1—Eu1—O7132.57 (9)C9—O5—Eu1134.6 (2)
O4ii—Eu1—Eu1i146.65 (5)C2—C7—C8126.3 (3)
O3—Eu1—Eu1i37.29 (5)C6—C7—C2119.2 (3)
O3ii—Eu1—Eu1i141.16 (5)C6—C7—C8114.4 (3)
O3—Eu1—O1i71.11 (7)C7—C2—C1123.0 (3)
O3—Eu1—O172.28 (8)C3—C2—C7118.7 (3)
O3ii—Eu1—O1i130.07 (7)C3—C2—C1118.3 (3)
O3ii—Eu1—O4ii51.12 (7)O4—C8—Eu1i63.93 (18)
O3—Eu1—O4ii162.55 (8)O4—C8—O3120.3 (3)
O3—Eu1—O3ii141.75 (4)O4—C8—C7119.7 (3)
O3—Eu1—O6i79.11 (8)O3—C8—Eu1i58.54 (16)
O3—Eu1—O2i119.05 (7)O3—C8—C7119.3 (3)
O3—Eu1—O782.61 (9)C7—C8—Eu1i156.5 (2)
O6i—Eu1—Eu1i66.91 (5)O6—C9—C10119.2 (3)
O6i—Eu1—O1i80.35 (8)O5—C9—O6124.1 (3)
O6i—Eu1—O4ii118.34 (8)O5—C9—C10116.7 (3)
O6i—Eu1—O3ii75.15 (8)O1—C1—Eu1ii62.34 (16)
O6i—Eu1—O2i73.70 (8)O1—C1—C2120.2 (3)
O6i—Eu1—O7144.26 (8)O2—C1—Eu1ii57.86 (16)
O2i—Eu1—Eu1i81.77 (5)O2—C1—O1120.1 (3)
O2i—Eu1—O1i51.37 (7)O2—C1—C2119.6 (3)
O2i—Eu1—O4ii69.76 (7)C2—C1—Eu1ii174.1 (2)
O2i—Eu1—O3ii79.99 (7)C9—C10—H10A109.5
O7—Eu1—Eu1i79.97 (7)C9—C10—H10B109.5
O7—Eu1—O1i64.69 (8)C9—C10—H10C109.5
O7—Eu1—O4ii82.51 (9)H10A—C10—H10B109.5
O7—Eu1—O3ii133.38 (9)H10A—C10—H10C109.5
O7—Eu1—O2i89.12 (9)H10B—C10—H10C109.5
O5—Eu1—Eu1i125.35 (6)C7—C6—H6119.5
O5—Eu1—O171.29 (8)C5—C6—C7120.9 (3)
O5—Eu1—O1i133.75 (8)C5—C6—H6119.5
O5—Eu1—O4ii73.60 (8)C2—C3—H3119.3
O5—Eu1—O392.82 (8)C4—C3—C2121.3 (3)
O5—Eu1—O3ii89.44 (7)C4—C3—H3119.3
O5—Eu1—O6i140.44 (9)C3—C4—H4120.1
O5—Eu1—O2i139.98 (8)C5—C4—C3119.8 (3)
O5—Eu1—O770.49 (9)C5—C4—H4120.1
Eu1—O1—Eu1ii104.00 (8)C6—C5—H5120.0
C1—O1—Eu1ii91.53 (18)C4—C5—C6119.9 (3)
C1—O1—Eu1139.6 (2)C4—C5—H5120.0
C8—O4—Eu1i90.7 (2)
Eu1—O1—C1—Eu1ii113.9 (3)C7—C2—C3—C41.7 (5)
Eu1ii—O1—C1—O23.0 (3)C7—C6—C5—C40.7 (6)
Eu1—O1—C1—O2110.9 (3)C2—C7—C8—Eu1i140.5 (5)
Eu1ii—O1—C1—C2174.0 (3)C2—C7—C8—O4127.1 (3)
Eu1—O1—C1—C272.1 (4)C2—C7—C8—O362.7 (4)
Eu1i—O4—C8—O316.5 (3)C2—C7—C6—C52.9 (5)
Eu1i—O4—C8—C7153.6 (2)C2—C3—C4—C53.9 (5)
Eu1—O3—C8—Eu1i115.7 (2)C8—C7—C2—C18.9 (5)
Eu1—O3—C8—O498.2 (3)C8—C7—C2—C3174.4 (3)
Eu1i—O3—C8—O417.4 (3)C8—C7—C6—C5173.7 (3)
Eu1—O3—C8—C791.6 (3)C1—C2—C3—C4178.4 (3)
Eu1i—O3—C8—C7152.8 (2)C6—C7—C2—C1174.9 (3)
Eu1ii—O6—C9—O521.5 (5)C6—C7—C2—C31.7 (5)
Eu1ii—O6—C9—C10158.7 (3)C6—C7—C8—Eu1i35.8 (7)
Eu1ii—O2—C1—O13.1 (3)C6—C7—C8—O456.7 (4)
Eu1ii—O2—C1—C2173.9 (3)C6—C7—C8—O3113.6 (3)
Eu1—O5—C9—O623.5 (5)C3—C2—C1—O1177.3 (3)
Eu1—O5—C9—C10156.3 (3)C3—C2—C1—O25.7 (5)
C7—C2—C1—O16.1 (5)C3—C4—C5—C62.7 (5)
C7—C2—C1—O2170.9 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4iii0.852.172.9384149
O7—H7B···O6iv0.852.283.0438150
C3—H3···O20.932.462.7741100
Symmetry codes: (iii) x, y, z1/2; (iv) x+1/2, y+1/2, z+1/2.
 

Funding information

This research was funded by Chiang Mai University and the Program Management Unit – Brain Power (PMU B), The Office of National Higher Education Science Research and Innovation Policy Council (NXPO) in a Global Partnership Project.

References

First citationBanerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245–2252.  Web of Science CrossRef CAS Google Scholar
First citationBinnemans, K. (2015). Coord. Chem. Rev. 295, 1–45.  Web of Science CrossRef CAS Google Scholar
First citationBousrez, G., Renier, O., Kelley, S. P., Adranno, B., Tahavori, E., Titi, H. M., Smetana, V., Tang, S.-F., Mudring, A.-V. & Rogers, R. D. (2021). Chem. Eur. J. 27, 13181–13189.  CrossRef CAS PubMed Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBünzli, J.-C. G. (2014). J. Coord. Chem. 67, 3706–3733.  Google Scholar
First citationChuasaard, T., Ngamjarurojana, A., Konno, T. & Rujiwatra, A. (2020). J. Coord. Chem. 73, 333–345.  CrossRef CAS Google Scholar
First citationChuasaard, T., Ngamjarurojana, A., Surinwong, S., Konno, T., Bureekaew, S. & Rujiwatra, A. (2018). Inorg. Chem. 57, 2620–2630.  CrossRef CAS PubMed Google Scholar
First citationChuasaard, T., Thammakan, S., Semakul, N., Konno, T. & Rujiwatra, A. (2022). J. Mol. Struct. 1251, 131940.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, S. K., Ghosh, P. S., Sahu, M., Bhattacharyya, K., Tewari, R. & Natarajan, V. (2015). RSC Adv. 5, 58832–58842.  CrossRef CAS Google Scholar
First citationHasegawa, Y. & Kitagawa, Y. (2022). J. Photochem. Photobiol. Photochem. Rev. 51, 100485.  CrossRef Google Scholar
First citationHu, D.-X., Chen, P.-K., Luo, F., Che, Y.-X. & Zheng, J.-M. (2007). J. Mol. Struct. 837, 179–184.  CrossRef CAS Google Scholar
First citationHu, J.-J., Peng, Y., Liu, S.-J. & Wen, H.-R. (2021). Dalton Trans. 50, 15473–15487.  CrossRef CAS PubMed Google Scholar
First citationHu, Y.-C., Bai, C., Hu, H.-M., Li, C.-T., Zhang, T.-H. & Liu, W. (2019). Acta Cryst. B75, 855–864.  CrossRef IUCr Journals Google Scholar
First citationJin, Y., Luo, F., Che, Y.-X. & Zheng, J. M. (2008). Inorg. Chem. Commun. 11, 711–713.  CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLi, B. & Chen, B. (2014). Lanthanide Metal–Organic Frameworks. Structure and Bonding, edited by P. Cheng, pp. 75–107. Berlin, Heidelberg: Springer.  Google Scholar
First citationMahata, P., Ramya, K. V. & Natarajan, S. (2009). Inorg. Chem. 48, 4942–4951.  CrossRef PubMed CAS Google Scholar
First citationMiller, S. E., Teplensky, M. H., Moghadam, P. Z. & Fairen-Jimenez, D. (2016). Interface Focus, 6, 20160027.  CrossRef PubMed Google Scholar
First citationOkayasu, Y. & Yuasa, J. (2021). J. Phys. Chem. Lett. 12, 6867–6874.  CrossRef CAS PubMed Google Scholar
First citationPuntus, L. N., Lyssenko, K. A., Pekareva, I. S. & Antipin, M. Y. (2010). Mol. Phys. 108, 557–572.  CrossRef CAS Google Scholar
First citationQiu, S. & Zhu, G. (2009). Coord. Chem. Rev. 253, 2891–2911.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinchow, M., Semakul, N., Konno, T. & Rujiwatra, A. (2021). ACS Sustainable Chem. Eng. 9, 8581–8591.  CrossRef CAS Google Scholar
First citationThirumurugan, A. & Natarajan, S. (2005). J. Mater. Chem. 15, 4588–4594.  Web of Science CSD CrossRef CAS Google Scholar
First citationWan, Y., Jin, L., Wang, K., Zhang, L., Zheng, X. & Lu, S. (2002). New J. Chem. 26, 1590–1596.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Z., Xing, Y.-H., Wang, C.-G., Sun, L.-X., Zhang, J., Ge, M.-F. & Niu, S.-Y. (2010). CrystEngComm, 12, 762–773.  CrossRef CAS Google Scholar
First citationWei, D., Xin, Y., Rong, Y., Li, Y., Zhang, C., Chen, Q., Qin, S., Wang, W. & Hao, Y. (2020). J. Inorg. Organomet. Polym. 30, 1121–1131.  CrossRef CAS Google Scholar
First citationYang, Y.-T., Tu, C.-Z., Yin, H.-J. & Cheng, F.-X. (2014). Inorg. Chem. Commun. 46, 107–109.  CrossRef CAS Google Scholar
First citationYao, Z.-F., Wang, J.-Y. & Pei, J. (2018). Cryst. Growth Des. 18, 7–15.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds