research communications
III–phthalate–acetate coordination polymer
and photoluminescent properties of a new EuaDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand, and bMaterials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
*Correspondence e-mail: apinpus.rujiwatra@cmu.ac.th
A new coordination polymer, poly[(acetato)aqua(μ3-phthalato)europium(III)], [Eu(C8H4O4)(CH3O2)(H2O)]n or [EuIII(phth)(OAc)(H2O)] (phth2− = phthalate and OAc− = acetate) was synthesized and characterized, revealing it to be a supramolecular assembly of one-dimensional [EuIII(phth)(OAc)(H2O)] chains. Each chain is built up of edge-sharing distorted tricapped trigonal–prismatic TPRS-{EuIIIO9} building motifs and assembled in a regular fashion through hydrogen-bonding and aromatic π–π interactions. The fully deprotonated phth2− ligand was shown to be an effective sensitizer, promoting the characteristic 5D0→7FJ (J = 1–4) emissions of EuIII even in the presence of the non-sensitizing OAc− group.
Keywords: coordination polymer; lanthanide; phthalate; acetate; crystal structure; photoluminescence.
CCDC reference: 2168116
1. Chemical context
Interest in crystal engineering of lanthanide coordination polymers has been driven by the unique coordination chemistry and electronic properties of trivalent lanthanides (LnIII), which bring about a wide variety of potential applications ranging from, for instance, luminescence sensing (Hasegawa & Kitagawa, 2022), magnetism (Hu et al., 2021), catalysis (Sinchow et al., 2021), gas storage and separation (Li & Chen, 2014), to drug delivery (Wei et al., 2020) and biomolecular imaging (Miller et al., 2016). However, the high coordination numbers, flexible coordination geometries and lack of directionality of Ln—O bonds complicate prediction of the designed polymeric frameworks, which are also greatly influenced by differences in synthetic parameters, i.e. reaction temperature and time, solvent, pH of reaction, etc (Bünzli, 2014; Qiu & Zhu, 2009). The study of structure–property relationships, which is an essence of property design, is consequently limited.
Unlike transition-metal-based coordination polymers in which the preferred coordination geometries of the transition-metal ions play an important role in directing the framework architecture (Kitagawa et al., 2004), those based on LnIII are principally governed by the organic ligands. Polycarboxylic acids are notably the most commonly utilized, facilitating diversity through their modes of coordination such as those found for phthalic acid (H2phth) (Fig. 1). These coordination modes can also be diversified through the presence of the other ligands such as those found in, for instance, [LnIII(bdc)0.5(phth)(H2O)2] (LnIII = EuIII, TbIII, HoIII, ErIII and TmIII, H2bdc = terephthalic acid; Chuasaard et al., 2020), [LnIII(abdc)0.5(phth)(H2O)2]·2H2O (LnIII = EuIII, GdIII and TbIII, H2abdc = azobenzene-4,4′-dicarboxylic acid; Chuasaard et al., 2022) and [LnIII(ox)(phth)(H2O)2]·0.5H2O (LnIII = SmIII and TbIII, H2ox = oxalic acid; Wang et al., 2010).
With respect to 2− is acknowledged as a good sensitizer and can effectively promote f–f emissions in, for example, [EuIII2(phth)3(H2O)] (Wan et al., 2002). The apparent can, nonetheless, be modulated by the other ligands such as ad2− in [LnIII(ad)0.5(phth)(H2O)2] (Chuasaard et al., 2018) and bdc2− in [LnIII(bdc)0.5(phth)(H2O)2] (Chuasaard et al., 2020).
phth2. Structural commentary
The III(phth)(OAc)(H2O)], is composed of one crystallographically unique EuIII ion, a whole molecule of phth2−, and the coordinating OAc− and water molecules (Fig. 2). The EuIII ion is ninefold coordinated to O atoms from three phth2−, two OAc− and one water molecule, which define a distorted tricapped trigonal–prismatic TPRS-{EuIIIO9} building motif. The Eu—O bond distances are in the range 2.352 (2)-2.605 (2) Å (Table 1), which are consistent with those reported for other EuIII frameworks of phth2− and OAc−, viz. [EuIII(abdc)0.5(phth)(H2O)2]·2H2O (Chuasaard et al., 2022), [EuIII(phth)(STP)] (NaSTP = sodium 2-(2,2′:6′,2′′-terpyridin-4′-yl)benzenesulfonate; Hu et al., 2019) and [C2mim]2[Eu2(OAc)8] (C2mim = 1-ethyl-3-methylimidazolium; Bousrez et al., 2021). The TPRS-{EuIIIO9} motifs are fused through the μ2-O atoms of phth2−, forming an infinite one-dimensional zigzag chain of edge-sharing TPRS-{EuIIIO9} motifs extending along the b-axis direction. Not only phth2−, which helps facilitating the formation of the one-dimensional chain through the overall μ3-η1:η2:η2:η1 mode of coordination (mode i in Fig. 1), but also the smaller OAc− link adjacent EuIII centers in a bridging μ2-η1:η1 coordination mode.
of the title compound, [Eu3. Supramolecular features
The three-dimensional supramolecular assembly of [EuIII(phth)(OAc)(H2O)] chains are facilitated by hydrogen bonding and aromatic π–π interactions (Fig. 3). The hydrogen-bonding interactions can be divided into the interchain O7—H7A⋯O4 and the intrachain O7—H7B⋯O6 and C3—H3⋯O2 interactions (Table 2). The π–π interaction between neighboring chains is considered to be of the displaced-stacking type (Banerjee et al., 2019; Yao et al., 2018), with an interplanar angle of 0°, an offset distance of ca 1.0 Å and a centroid-to-centroid distance of ca 3.6 Å.
4. Photoluminescent properties
The 5D0→7FJ (J = 1–4) transitions of EuIII were displayed (Fig. 4). This indicates the efficiency of phth2− as a good sensitizer, even in the presence of the non-sensitizing OAc−. A split of the very intense 5D0→7F2 emission suggests that the EuIII ion is not located at a site with a center of symmetry (Binnemans, 2015), which is consistent with its distorted tricapped trigonal–prismatic coordination geometry. The split of the 5D0→7F4 emission, on the other hand, should be due to the ligand-field effect (Gupta et al., 2015; Okayasu & Yuasa, 2021; Puntus et al., 2010).
of ground crystals of the title compound was recorded at room temperature. Upon the excitation at 370 nm, the characteristic red emission originating from the5. Database survey
A search of the CSD database (CSD version 5.43, update of November 2021; Groom et al., 2016) using the ConQuest software (version 2021.3.0; Bruno et al., 2002), found 115 structures of lanthanide compounds including phth2−. In six of these structures, phth2− adopts the same μ3-η1:η2:η2:η1 mode of coordination as in the title compound. This mode of coordination apparently promotes the formation of a one-dimensional coordination framework, as, for example, in [Pr3(phen)2(phth)4(NO3)]·H2O (phen = 1,10-phenanthroline) (refcode: LAXWOX; Thirumurugan & Natarajan, 2005), [Nd(Nphgly)(phth)(H2O)]·2H2O (Nphgly = N-phthaloylglycine) (refcode: TOHJEH; Yang et al., 2014), and [Gd2Ni(2,5-pdc)2(phth)2(H2O)4]·8H2O (2,5-H2pdc = 2,5-pyridinedicarboxylic acid) (refcode: XOZYER; Mahata et al., 2009).
Regarding OAc−, there are 566 structures containing this deposited in the CSD, none of which also contains phth2−. There are, however, structures containing both OAc− and isophthalate (iso-phth2−), e.g. [Sm2(iso-phth)2(OAc)2(H2O)4]·H2O (refcode: VOJNAK; Jin et al., 2008), and [Dy4(iso-phth)4(OAc)4(H2O)8]·2H2O (refcode: DIBZEU; Hu et al., 2007).
6. Synthesis and crystallization
All chemicals used in this work were obtained commercially and used without purification: Eu2O3 (Strategic Elements, 99.99%), phthalic acid (H2phth; C8H6O4, BDH laboratory, 99%), NaOH (RCI Labscan, 99.0%), glacial acetic acid (AcOH; CH3COOH, QRëC, 99.8%), tetrahydrofuran (THF; C4H8O, RCI Labscan, 99.8%), ethanol (EtOH; C2H5OH, RCI Labscan, 99.7%). Eu(OAc)3·4H2O, was prepared by dissolving Eu2O3 (2.5000 g, 7.1038 mmol) in 50.0 mL of deionized water with a few drops of glacial acetic acid (HOAc). After the pH of the suspension was adjusted to 3 using HOAc, the mixture was gently heated and a colorless homogeneous solution was attained. The white powder of Eu(OAc)3·4H2O was then recovered through slow evaporation of the solvent.
To synthesize the title compound, Eu(OAc)3·4H2O (0.16 g, 0.40 mmol) was dissolved in 2.0 mL of deionized water to prepare solution A. Solution B was separately prepared by dissolving Na2phth (84 mg, 0.40 mmol) and NaOAc (33 mg, 0.4 mmol) in a mixed solvent prepared from 1.0 mL of deionized water and 5.0 mL of tetrahydrofuran (THF). Solutions A and B were then mixed in a 15 mL glass vial. The volume of the reaction was adjusted to 10.0 mL using deionized water and the pH of the solution was adjusted to 4 using HOAc. The reaction was left under stirring at room temperature for 2 h, after which the solvent was slowly evaporated, leading to the crystallization of colorless block-shaped crystals of [Eu(phth)(OAc)(H2O)] (78% yield based on EuIII). The crystals were characterized using FT–IR spectroscopy (PerkinElmer/Frontier FT–IR instrument; ATR mode; cm−1): 3541(br), 3419(br), 2978(w), 1548(w), 1402(m), 1373(m), 804(s), 754(s), 707(s), 650(s), 543(m), 503(m). The room-temperature photoluminescent spectrum was collected using a ASEQ LR-1T broad-range spectrophotometer equipped with an Ultrafire G60 UV LED Flashlight Torch excitation source (5 W, 370 nm)
7. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined isotropically using a riding model. The C—H bond lengths in the aromatic phth2− linker and in OAc− were restrained to 0.93 Å [Uiso(H) = 1.2Ueq(C)] and 0.96 Å [Uiso(H) = 1.5Ueq(C)], respectively. The O—H bond lengths in the coordinated water molecule were restrained to 0.85 Å with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 3Supporting information
CCDC reference: 2168116
https://doi.org/10.1107/S2056989022004339/zn2019sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022004339/zn2019Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2019); cell
CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Eu(C8H4O4)(CH3O2)(H2O)] | F(000) = 1504 |
Mr = 393.13 | Dx = 2.335 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 26.5184 (15) Å | Cell parameters from 7078 reflections |
b = 7.2632 (2) Å | θ = 2.0–27.4° |
c = 15.3622 (8) Å | µ = 5.63 mm−1 |
β = 130.906 (9)° | T = 293 K |
V = 2236.3 (3) Å3 | Block, clear light colourless |
Z = 8 | 0.2 × 0.1 × 0.1 mm |
Rigaku SuperNova, Single source at offset/far, HyPix3000 diffractometer | 2393 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 2138 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.032 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 27.4°, θmin = 2.0° |
ω scans | h = −33→33 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | k = −9→9 |
Tmin = 0.218, Tmax = 1.000 | l = −19→18 |
9923 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.052 | w = 1/[σ2(Fo2) + (0.0235P)2 + 1.2859P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
2393 reflections | Δρmax = 0.64 e Å−3 |
167 parameters | Δρmin = −0.79 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Eu1 | 0.75770 (2) | 0.36927 (2) | 0.71208 (2) | 0.01709 (7) | |
O1 | 0.69745 (10) | 0.1993 (3) | 0.7522 (2) | 0.0219 (5) | |
O4 | 0.68510 (12) | 0.6542 (3) | 0.8366 (2) | 0.0264 (6) | |
O3 | 0.68174 (10) | 0.5756 (3) | 0.69468 (19) | 0.0185 (5) | |
O6 | 0.69030 (12) | −0.0954 (3) | 0.5869 (2) | 0.0290 (6) | |
O2 | 0.62648 (11) | −0.0281 (3) | 0.6844 (2) | 0.0273 (6) | |
O7 | 0.72235 (14) | 0.5336 (4) | 0.5410 (2) | 0.0422 (7) | |
H7A | 0.697069 | 0.483288 | 0.474914 | 0.063* | |
H7B | 0.708422 | 0.643920 | 0.528604 | 0.063* | |
O5 | 0.67155 (11) | 0.2044 (3) | 0.5460 (2) | 0.0308 (6) | |
C7 | 0.59568 (15) | 0.4602 (4) | 0.6922 (3) | 0.0185 (7) | |
C2 | 0.58415 (15) | 0.2718 (4) | 0.6633 (3) | 0.0185 (7) | |
C8 | 0.65937 (15) | 0.5624 (4) | 0.7479 (3) | 0.0181 (7) | |
C9 | 0.66224 (16) | 0.0380 (5) | 0.5165 (3) | 0.0257 (8) | |
C1 | 0.63844 (17) | 0.1403 (4) | 0.7002 (3) | 0.0196 (8) | |
C10 | 0.61510 (19) | −0.0007 (5) | 0.3902 (3) | 0.0412 (10) | |
H10A | 0.616586 | −0.129448 | 0.377789 | 0.062* | |
H10B | 0.627783 | 0.070141 | 0.354452 | 0.062* | |
H10C | 0.570626 | 0.032152 | 0.357152 | 0.062* | |
C6 | 0.54332 (17) | 0.5698 (5) | 0.6621 (3) | 0.0282 (8) | |
H6 | 0.551117 | 0.692945 | 0.683999 | 0.034* | |
C3 | 0.52024 (16) | 0.2027 (5) | 0.6028 (3) | 0.0257 (8) | |
H3 | 0.512351 | 0.077936 | 0.585067 | 0.031* | |
C4 | 0.46810 (17) | 0.3156 (5) | 0.5685 (3) | 0.0301 (9) | |
H4 | 0.425093 | 0.268326 | 0.524046 | 0.036* | |
C5 | 0.47994 (17) | 0.4983 (5) | 0.6002 (3) | 0.0318 (9) | |
H5 | 0.445276 | 0.573408 | 0.579933 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu1 | 0.01881 (11) | 0.01068 (11) | 0.02213 (12) | 0.00003 (6) | 0.01356 (9) | −0.00015 (6) |
O1 | 0.0190 (12) | 0.0157 (11) | 0.0322 (14) | 0.0006 (10) | 0.0173 (11) | 0.0032 (11) |
O4 | 0.0294 (14) | 0.0245 (14) | 0.0270 (14) | −0.0045 (10) | 0.0191 (12) | −0.0049 (11) |
O3 | 0.0205 (12) | 0.0112 (11) | 0.0261 (13) | −0.0006 (9) | 0.0162 (11) | 0.0012 (10) |
O6 | 0.0311 (14) | 0.0253 (14) | 0.0243 (14) | 0.0014 (11) | 0.0154 (12) | 0.0038 (11) |
O2 | 0.0255 (13) | 0.0127 (12) | 0.0439 (15) | −0.0017 (10) | 0.0228 (12) | −0.0027 (11) |
O7 | 0.0635 (19) | 0.0265 (15) | 0.0297 (15) | −0.0021 (14) | 0.0275 (15) | 0.0026 (12) |
O5 | 0.0299 (14) | 0.0218 (13) | 0.0312 (14) | −0.0048 (11) | 0.0158 (12) | −0.0053 (11) |
C7 | 0.0202 (17) | 0.0164 (17) | 0.0204 (17) | 0.0005 (13) | 0.0139 (15) | 0.0027 (14) |
C2 | 0.0191 (17) | 0.0157 (17) | 0.0214 (17) | 0.0006 (13) | 0.0136 (15) | 0.0012 (14) |
C8 | 0.0174 (16) | 0.0097 (16) | 0.0256 (18) | 0.0063 (13) | 0.0135 (15) | 0.0054 (14) |
C9 | 0.0231 (18) | 0.028 (2) | 0.0270 (19) | −0.0079 (16) | 0.0168 (17) | −0.0048 (17) |
C1 | 0.0243 (19) | 0.0166 (18) | 0.0210 (19) | 0.0015 (13) | 0.0161 (16) | 0.0041 (13) |
C10 | 0.049 (3) | 0.037 (2) | 0.023 (2) | −0.0107 (19) | 0.017 (2) | −0.0014 (18) |
C6 | 0.029 (2) | 0.0200 (18) | 0.041 (2) | 0.0016 (16) | 0.0257 (18) | 0.0003 (17) |
C3 | 0.0239 (18) | 0.0208 (18) | 0.0279 (19) | −0.0018 (15) | 0.0149 (16) | 0.0013 (16) |
C4 | 0.0168 (18) | 0.033 (2) | 0.035 (2) | −0.0030 (16) | 0.0143 (17) | 0.0025 (18) |
C5 | 0.0228 (19) | 0.027 (2) | 0.044 (2) | 0.0075 (15) | 0.0213 (18) | 0.0055 (18) |
Eu1—O1i | 2.570 (2) | Eu1—O4ii | 2.605 (2) |
Eu1—O1 | 2.397 (2) | Eu1—O5 | 2.352 (2) |
Eu1—O2i | 2.474 (2) | Eu1—O6i | 2.434 (3) |
Eu1—O3 | 2.381 (2) | Eu1—O7 | 2.446 (2) |
Eu1—O3ii | 2.484 (2) | ||
O1—Eu1—Eu1i | 100.62 (6) | Eu1—O3—Eu1i | 107.20 (8) |
O1i—Eu1—Eu1i | 36.44 (5) | C8—O3—Eu1i | 95.16 (19) |
O1—Eu1—O1i | 135.94 (6) | C8—O3—Eu1 | 126.05 (19) |
O1—Eu1—O4ii | 112.11 (8) | C9—O6—Eu1ii | 133.7 (2) |
O1i—Eu1—O4ii | 110.21 (7) | C1—O2—Eu1ii | 96.9 (2) |
O1—Eu1—O3ii | 72.40 (7) | Eu1—O7—H7A | 121.4 |
O1—Eu1—O6i | 69.36 (8) | Eu1—O7—H7B | 120.3 |
O1—Eu1—O2i | 138.23 (8) | H7A—O7—H7B | 104.5 |
O1—Eu1—O7 | 132.57 (9) | C9—O5—Eu1 | 134.6 (2) |
O4ii—Eu1—Eu1i | 146.65 (5) | C2—C7—C8 | 126.3 (3) |
O3—Eu1—Eu1i | 37.29 (5) | C6—C7—C2 | 119.2 (3) |
O3ii—Eu1—Eu1i | 141.16 (5) | C6—C7—C8 | 114.4 (3) |
O3—Eu1—O1i | 71.11 (7) | C7—C2—C1 | 123.0 (3) |
O3—Eu1—O1 | 72.28 (8) | C3—C2—C7 | 118.7 (3) |
O3ii—Eu1—O1i | 130.07 (7) | C3—C2—C1 | 118.3 (3) |
O3ii—Eu1—O4ii | 51.12 (7) | O4—C8—Eu1i | 63.93 (18) |
O3—Eu1—O4ii | 162.55 (8) | O4—C8—O3 | 120.3 (3) |
O3—Eu1—O3ii | 141.75 (4) | O4—C8—C7 | 119.7 (3) |
O3—Eu1—O6i | 79.11 (8) | O3—C8—Eu1i | 58.54 (16) |
O3—Eu1—O2i | 119.05 (7) | O3—C8—C7 | 119.3 (3) |
O3—Eu1—O7 | 82.61 (9) | C7—C8—Eu1i | 156.5 (2) |
O6i—Eu1—Eu1i | 66.91 (5) | O6—C9—C10 | 119.2 (3) |
O6i—Eu1—O1i | 80.35 (8) | O5—C9—O6 | 124.1 (3) |
O6i—Eu1—O4ii | 118.34 (8) | O5—C9—C10 | 116.7 (3) |
O6i—Eu1—O3ii | 75.15 (8) | O1—C1—Eu1ii | 62.34 (16) |
O6i—Eu1—O2i | 73.70 (8) | O1—C1—C2 | 120.2 (3) |
O6i—Eu1—O7 | 144.26 (8) | O2—C1—Eu1ii | 57.86 (16) |
O2i—Eu1—Eu1i | 81.77 (5) | O2—C1—O1 | 120.1 (3) |
O2i—Eu1—O1i | 51.37 (7) | O2—C1—C2 | 119.6 (3) |
O2i—Eu1—O4ii | 69.76 (7) | C2—C1—Eu1ii | 174.1 (2) |
O2i—Eu1—O3ii | 79.99 (7) | C9—C10—H10A | 109.5 |
O7—Eu1—Eu1i | 79.97 (7) | C9—C10—H10B | 109.5 |
O7—Eu1—O1i | 64.69 (8) | C9—C10—H10C | 109.5 |
O7—Eu1—O4ii | 82.51 (9) | H10A—C10—H10B | 109.5 |
O7—Eu1—O3ii | 133.38 (9) | H10A—C10—H10C | 109.5 |
O7—Eu1—O2i | 89.12 (9) | H10B—C10—H10C | 109.5 |
O5—Eu1—Eu1i | 125.35 (6) | C7—C6—H6 | 119.5 |
O5—Eu1—O1 | 71.29 (8) | C5—C6—C7 | 120.9 (3) |
O5—Eu1—O1i | 133.75 (8) | C5—C6—H6 | 119.5 |
O5—Eu1—O4ii | 73.60 (8) | C2—C3—H3 | 119.3 |
O5—Eu1—O3 | 92.82 (8) | C4—C3—C2 | 121.3 (3) |
O5—Eu1—O3ii | 89.44 (7) | C4—C3—H3 | 119.3 |
O5—Eu1—O6i | 140.44 (9) | C3—C4—H4 | 120.1 |
O5—Eu1—O2i | 139.98 (8) | C5—C4—C3 | 119.8 (3) |
O5—Eu1—O7 | 70.49 (9) | C5—C4—H4 | 120.1 |
Eu1—O1—Eu1ii | 104.00 (8) | C6—C5—H5 | 120.0 |
C1—O1—Eu1ii | 91.53 (18) | C4—C5—C6 | 119.9 (3) |
C1—O1—Eu1 | 139.6 (2) | C4—C5—H5 | 120.0 |
C8—O4—Eu1i | 90.7 (2) | ||
Eu1—O1—C1—Eu1ii | 113.9 (3) | C7—C2—C3—C4 | 1.7 (5) |
Eu1ii—O1—C1—O2 | −3.0 (3) | C7—C6—C5—C4 | 0.7 (6) |
Eu1—O1—C1—O2 | 110.9 (3) | C2—C7—C8—Eu1i | 140.5 (5) |
Eu1ii—O1—C1—C2 | 174.0 (3) | C2—C7—C8—O4 | −127.1 (3) |
Eu1—O1—C1—C2 | −72.1 (4) | C2—C7—C8—O3 | 62.7 (4) |
Eu1i—O4—C8—O3 | 16.5 (3) | C2—C7—C6—C5 | −2.9 (5) |
Eu1i—O4—C8—C7 | −153.6 (2) | C2—C3—C4—C5 | −3.9 (5) |
Eu1—O3—C8—Eu1i | 115.7 (2) | C8—C7—C2—C1 | 8.9 (5) |
Eu1—O3—C8—O4 | 98.2 (3) | C8—C7—C2—C3 | −174.4 (3) |
Eu1i—O3—C8—O4 | −17.4 (3) | C8—C7—C6—C5 | 173.7 (3) |
Eu1—O3—C8—C7 | −91.6 (3) | C1—C2—C3—C4 | 178.4 (3) |
Eu1i—O3—C8—C7 | 152.8 (2) | C6—C7—C2—C1 | −174.9 (3) |
Eu1ii—O6—C9—O5 | 21.5 (5) | C6—C7—C2—C3 | 1.7 (5) |
Eu1ii—O6—C9—C10 | −158.7 (3) | C6—C7—C8—Eu1i | −35.8 (7) |
Eu1ii—O2—C1—O1 | 3.1 (3) | C6—C7—C8—O4 | 56.7 (4) |
Eu1ii—O2—C1—C2 | −173.9 (3) | C6—C7—C8—O3 | −113.6 (3) |
Eu1—O5—C9—O6 | 23.5 (5) | C3—C2—C1—O1 | 177.3 (3) |
Eu1—O5—C9—C10 | −156.3 (3) | C3—C2—C1—O2 | −5.7 (5) |
C7—C2—C1—O1 | −6.1 (5) | C3—C4—C5—C6 | 2.7 (5) |
C7—C2—C1—O2 | 170.9 (3) |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+3/2, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O4iii | 0.85 | 2.17 | 2.9384 | 149 |
O7—H7B···O6iv | 0.85 | 2.28 | 3.0438 | 150 |
C3—H3···O2 | 0.93 | 2.46 | 2.7741 | 100 |
Symmetry codes: (iii) x, −y, z−1/2; (iv) −x+1/2, y+1/2, −z+1/2. |
Funding information
This research was funded by Chiang Mai University and the Program Management Unit – Brain Power (PMU B), The Office of National Higher Education Science Research and Innovation Policy Council (NXPO) in a Global Partnership Project.
References
Banerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245–2252. Web of Science CrossRef CAS Google Scholar
Binnemans, K. (2015). Coord. Chem. Rev. 295, 1–45. Web of Science CrossRef CAS Google Scholar
Bousrez, G., Renier, O., Kelley, S. P., Adranno, B., Tahavori, E., Titi, H. M., Smetana, V., Tang, S.-F., Mudring, A.-V. & Rogers, R. D. (2021). Chem. Eur. J. 27, 13181–13189. CrossRef CAS PubMed Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bünzli, J.-C. G. (2014). J. Coord. Chem. 67, 3706–3733. Google Scholar
Chuasaard, T., Ngamjarurojana, A., Konno, T. & Rujiwatra, A. (2020). J. Coord. Chem. 73, 333–345. CrossRef CAS Google Scholar
Chuasaard, T., Ngamjarurojana, A., Surinwong, S., Konno, T., Bureekaew, S. & Rujiwatra, A. (2018). Inorg. Chem. 57, 2620–2630. CrossRef CAS PubMed Google Scholar
Chuasaard, T., Thammakan, S., Semakul, N., Konno, T. & Rujiwatra, A. (2022). J. Mol. Struct. 1251, 131940. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, S. K., Ghosh, P. S., Sahu, M., Bhattacharyya, K., Tewari, R. & Natarajan, V. (2015). RSC Adv. 5, 58832–58842. CrossRef CAS Google Scholar
Hasegawa, Y. & Kitagawa, Y. (2022). J. Photochem. Photobiol. Photochem. Rev. 51, 100485. CrossRef Google Scholar
Hu, D.-X., Chen, P.-K., Luo, F., Che, Y.-X. & Zheng, J.-M. (2007). J. Mol. Struct. 837, 179–184. CrossRef CAS Google Scholar
Hu, J.-J., Peng, Y., Liu, S.-J. & Wen, H.-R. (2021). Dalton Trans. 50, 15473–15487. CrossRef CAS PubMed Google Scholar
Hu, Y.-C., Bai, C., Hu, H.-M., Li, C.-T., Zhang, T.-H. & Liu, W. (2019). Acta Cryst. B75, 855–864. CrossRef IUCr Journals Google Scholar
Jin, Y., Luo, F., Che, Y.-X. & Zheng, J. M. (2008). Inorg. Chem. Commun. 11, 711–713. CrossRef CAS Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Li, B. & Chen, B. (2014). Lanthanide Metal–Organic Frameworks. Structure and Bonding, edited by P. Cheng, pp. 75–107. Berlin, Heidelberg: Springer. Google Scholar
Mahata, P., Ramya, K. V. & Natarajan, S. (2009). Inorg. Chem. 48, 4942–4951. CrossRef PubMed CAS Google Scholar
Miller, S. E., Teplensky, M. H., Moghadam, P. Z. & Fairen-Jimenez, D. (2016). Interface Focus, 6, 20160027. CrossRef PubMed Google Scholar
Okayasu, Y. & Yuasa, J. (2021). J. Phys. Chem. Lett. 12, 6867–6874. CrossRef CAS PubMed Google Scholar
Puntus, L. N., Lyssenko, K. A., Pekareva, I. S. & Antipin, M. Y. (2010). Mol. Phys. 108, 557–572. CrossRef CAS Google Scholar
Qiu, S. & Zhu, G. (2009). Coord. Chem. Rev. 253, 2891–2911. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sinchow, M., Semakul, N., Konno, T. & Rujiwatra, A. (2021). ACS Sustainable Chem. Eng. 9, 8581–8591. CrossRef CAS Google Scholar
Thirumurugan, A. & Natarajan, S. (2005). J. Mater. Chem. 15, 4588–4594. Web of Science CSD CrossRef CAS Google Scholar
Wan, Y., Jin, L., Wang, K., Zhang, L., Zheng, X. & Lu, S. (2002). New J. Chem. 26, 1590–1596. Web of Science CSD CrossRef CAS Google Scholar
Wang, Z., Xing, Y.-H., Wang, C.-G., Sun, L.-X., Zhang, J., Ge, M.-F. & Niu, S.-Y. (2010). CrystEngComm, 12, 762–773. CrossRef CAS Google Scholar
Wei, D., Xin, Y., Rong, Y., Li, Y., Zhang, C., Chen, Q., Qin, S., Wang, W. & Hao, Y. (2020). J. Inorg. Organomet. Polym. 30, 1121–1131. CrossRef CAS Google Scholar
Yang, Y.-T., Tu, C.-Z., Yin, H.-J. & Cheng, F.-X. (2014). Inorg. Chem. Commun. 46, 107–109. CrossRef CAS Google Scholar
Yao, Z.-F., Wang, J.-Y. & Pei, J. (2018). Cryst. Growth Des. 18, 7–15. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.