research communications
and Hirshfeld surface analysis of methyl 4′-amino-3′,5′-dicyano-2,2′′-dioxodispiro[indoline-3,1′-cyclopentane-2′,3′′-indolin]-3′-ene-5′-carboximidate with an unknown solvent
aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C23H16N6O3, the central five-membered cyclopentene ring adopts an while the five-membered spiro 2,3-dihydro-1H-pyrrole rings exhibit twisted envelope and envelope conformations. One of the 1,3-dihydro-2H-indol-2-one units is in an axial position and the other is in a bisectional position. The methyl methanimidate unit is in an equatorial position. The of the title compound is consolidated by intermolecular N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds, forming a three dimensional network.
Keywords: crystal structure; dispiro[cyclopent-3-ene]bisoxindoles; hydrogen bond; Hirshfeld surface analysis; molecular conformation.
CCDC reference: 2173900
1. Chemical context
Functionalized carbo- and heterocycles are of great interest in the fields of organic synthesis, catalysis, material science and medicinal chemistry (Zubkov et al., 2018; Shikhaliyev et al., 2019; Viswanathan et al., 2019; Gurbanov et al., 2020). of carbo- and heterocycles with the participation of malononitrile to obtain has been reported in the literature. (Zhu et al., 2016; Tan et al., 2020). In addition, it is known that the reaction of Hantzsch ester with two molecules of 2-(2-oxoindolin-3-ylidene)malononitrile, 1, leads to the formation of dispiro[cyclopent-3-ene]bisoxindoles, 2 (Shanthi & Perumal, 2008). We found that one of the nitrile groups of dispiro[cyclopent-3-ene]bisoxindole tricarbonitrile 2 reacted with the methanol (solvent) gave rise to compound 3 (Fig. 1).
Thus, in the framework of ongoing structural studies (Safavora et al., 2019; Aliyeva et al., 2011; Mamedov et al., 2022), we report the and Hirshfeld surface analysis of the title compound, methyl 4′-amino-3′,5′-dicyano-2,2′′-dioxodispiro[indoline-3,1′-cyclopentane-2′,3′′-indolin]-3′-ene-5′-carbimidate, which has an unknown solvent.
2. Structural commentary
The title compound (Fig.2) crystallizes in the monoclinic P21/c with Z = 4. The N1/O2/C2/C3/C3A/C4–C7/C7A 1,3-dihydro-2H-indol-2-one unit, which is attached to C3, makes a dihedral angle of 1.71 (6)° with the mean plane of the central five-membered cyclopentene ring (C3/C10/C15–C17). The N8/C9/C10/C10A/C14A 1,3-dihydro-2H-indol-2-one unit, which is attached to C10, forms a dihedral angle of 57.50 (4)° with the other 1,3-dihydro-2H-indol-2-one unit. The methyl methanimidate unit, which is attached to C17, is in an equatorial position. The conformation of the title molecule, (Fig. 2), is fixed because of the weak intramolecular N16—H16A⋯N19 [2.079 (19) Å, 132.5 (16)°] and C11—H11⋯O2 [2.53 Å, 123°] hydrogen bonds, which close the six- and seven-membered rings with graph-set notations S(6) and S(7), respectively (Bernstein et al., 1995; Table 1).
The central five-membered cyclopentene ring (C3/C10/C15–C17) adopts an ) are Q(2) = 0.2915 (14) Å, φ(2) = 175.0 (3)°. The five-membered spiro 2,3-dihydro-1H-pyrrole rings (N1/C2/C3/C3A/C7A and N8/C9/C10/C10A/C14A) exhibit a twisted on bond C2–C3 and an with atom C10 as a flap, respectively. Their puckering parameters are Q(2) = 0.0864 (13) Å, φ(2) = 62.5 (9)° and Q(2) = 0.0810 (14) Å, φ(2) = 64.7 (10)°, respectively.
with the flap atom, C3, lying 0.181 (1) Å out of the plane defined by the remaining atoms. The puckering parameters (Cremer & Pople, 19753. Supramolecular features and Hirshfeld surface analysis
In the crystal, pairs of molecules are linked by intermolecular N19—-H19⋯O2(−x + 1, −y + 1, −z + 1) hydrogen bonds into inversion dimers with an R22(14) ring motif (Bernstein et al., 1995). Weak intermolecular C20—-H20C⋯O2(−x + 1, −y + 1, −z + 1) and intramolecular N16—H16A⋯N19 (x, y, z) hydrogen bonds also form an S(6) R12(6) R22(14) R12(6)S(6) ring motif system between these dimer molecules. Futhermore, these dimers are linked by N8—H8⋯N18(−x, y − , −z + ) hydrogen bonds in the directions of both base diagonals of the ab plane of the forming sheets parallel to the (001) plane. These layers are also connected along the c-axis direction by N1—H1⋯O9 (x, −y + , z − ) and N16—H16A⋯N21 (−x + 1, y + , −z + ) hydrogen bonds (Table 1, Fig. 3). The three-dimensional hydrogen-bonded network thus formed keeps the stable.
Hirshfeld surface analysis can be used to qualitatively visualize the main interactions between molecules (Spackman & Jayatilaka, 2009). CrystalExplorer17.5 (Turner et al., 2017) was used to map the normalized contact distance (dnorm). On the Hirshfeld surfaces, the most notable interactions (short contact areas) are represented in red, whereas long contacts are displayed in blue. Fig. 4 depicts the three-dimensional Hirshfeld surface overlaid over dnorm in the range −0.6120 (red) to +2.8879 (blue) a.u.
Fingerprint plots were created to indicate intermolecular surface bond distances, with regions highlighted for N⋯H/H⋯N and O⋯H/H⋯O interactions (Table 1, Fig. 5). Such connections contribute 30.3% and 14.6%, respectively, of the surface area. The very low number of C⋯H/H⋯C connections (14.9%) shows that these interactions play a minor role in crystal-packing consolidation. The contribution to the surface area for H⋯H contacts is 38.3%. Other weak contacts contribute only 1.0% (C⋯C), 0.5% (N⋯C/C⋯N), 0.2% (O⋯O), 0.1% (N⋯N) and 0.1% (O⋯C/C⋯O) to the Hirshfeld surface.
4. Database survey
The compound most closely related to the 2,8-diazadispiro[4.0.46.35]trideca-3,9,11-triene unit of the title compound was found to be 4′-amino-2,2′′-dioxo-1,1′′,2,2′′-tetrahydro-3′H-dispiro[indole-3,1′-cyclopent[4]ene-2′,3′′-indole]-3′,3′-dicarbonitrile dihydrate (GITGUM; Gayathri et al., 2008), which crystallizes in the orthorhombic Pna21. The cyclopentene ring adopts an with the spiro C atom bonded to the dicyano-substituted C atom deviating by 0.437 (2) Å from the plane of the remaining four atoms in the ring. The dihedral angle between the two indole groups is 60.1 (1)°. The structure contains intermolecular N— H⋯O hydrogen bonds involving the indole groups and O—H⋯O and O—H⋯N hydrogen bonds involving the water molecules.
5. Synthesis and crystallization
A solution of 2-(2-oxoindolin-3-ylidene)malononitrile (0.99 g; 5.1 mmol) and furfurylamine (0.5 g; 5.2 mmol) in methanol (25 mL) was stirred for 10 minutes and was kept in room temperature for 96 h. Then 15 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol/water (1:1) solution (yield 46%; m.p. 574–575 K).
1H NMR (300 MHz, DMSO-d6, p.p.m.): 3.78 (s, 3H, CH3); 6.62–7.26 (m, 8H, 8CHarom.); 7.69 (s, 2H, NH2); 8.87 (s, 1H, NH); 10.56 (s, 1H, NH), 10.62 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6, ppm): 53.66 (OCH3), 54.56 (Cquat.), 56.63 (Cquat.), 75.06 (=Cquat), 76.72 (=Cquat), 109.96 (CHarom.), 110.18 (CHarom.), 116.32 (CN), 116.83 (CN), 122.08 (CHarom.), 122.63 (CHarom.), 124.17 (Carom.), 124.41 (Carom.), 126.07 (CHarom.), 126.62 (CHarom.), 130.27 (CHarom.), 130.65 (CHarom.), 143.14 (Carom.), 143.31 (Carom.), 159.57 (=Cquat.), 160.18 (=Cquat.), 175.07 (O=C—NH), 177.32 (O=C—NH).
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and included as riding contributions with isotropic displacement parameters fixed at 1.2Ueq(C) (1.5 for methyl groups). The N-bound H atoms were found in difference-Fourier maps and their coordinates refined with Uiso(H)=1.2Ueq(N). The residual electron density was difficult to model and therefore the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final The solvent formula mass and unit-cell characteristics were not taken into account during The cavity of volume ca 404.2 Å3 (ca 17.5% of the unit-cell volume) contains approximately 101 electrons. A suitable solvent with this electron number may be about four ethanol molecules per unit cell.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2173900
https://doi.org/10.1107/S2056989022005370/dx2045sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022005370/dx2045Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C23H16N6O3 | F(000) = 880 |
Mr = 424.42 | Dx = 1.219 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 12.0085 (1) Å | Cell parameters from 22193 reflections |
b = 12.4719 (1) Å | θ = 3.7–79.3° |
c = 15.4909 (1) Å | µ = 0.70 mm−1 |
β = 94.489 (1)° | T = 100 K |
V = 2312.94 (3) Å3 | Prism, colourless |
Z = 4 | 0.15 × 0.12 × 0.10 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 4771 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.038 |
φ and ω scans | θmax = 79.7°, θmin = 3.7° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −15→14 |
Tmin = 0.891, Tmax = 0.927 | k = −15→15 |
31502 measured reflections | l = −16→19 |
5011 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: mixed |
wR(F2) = 0.128 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0719P)2 + 1.0231P] where P = (Fo2 + 2Fc2)/3 |
5011 reflections | (Δ/σ)max < 0.001 |
305 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.29981 (9) | 0.24967 (9) | 0.44133 (7) | 0.0245 (2) | |
H1 | 0.2870 (14) | 0.2626 (14) | 0.3869 (12) | 0.029* | |
C2 | 0.30095 (10) | 0.32803 (10) | 0.50096 (8) | 0.0217 (2) | |
O2 | 0.29321 (8) | 0.42469 (7) | 0.48817 (6) | 0.0257 (2) | |
C3 | 0.31293 (10) | 0.27464 (10) | 0.59181 (8) | 0.0203 (2) | |
C3A | 0.33681 (10) | 0.15908 (10) | 0.56953 (8) | 0.0207 (2) | |
C4 | 0.36295 (10) | 0.06941 (10) | 0.61983 (8) | 0.0241 (3) | |
H4 | 0.3722 | 0.0747 | 0.6811 | 0.029* | |
C5 | 0.37540 (12) | −0.02910 (10) | 0.57855 (9) | 0.0278 (3) | |
H5 | 0.3942 | −0.0911 | 0.6122 | 0.033* | |
C6 | 0.36067 (12) | −0.03723 (11) | 0.48910 (9) | 0.0305 (3) | |
H6 | 0.3694 | −0.1049 | 0.4623 | 0.037* | |
C7 | 0.33332 (12) | 0.05214 (11) | 0.43778 (9) | 0.0288 (3) | |
H7 | 0.3224 | 0.0465 | 0.3765 | 0.035* | |
C7A | 0.32274 (10) | 0.14916 (10) | 0.47930 (8) | 0.0231 (3) | |
N8 | 0.09577 (10) | 0.13898 (10) | 0.67133 (7) | 0.0275 (2) | |
H8 | 0.0674 (15) | 0.0887 (15) | 0.7013 (12) | 0.033* | |
C9 | 0.18227 (10) | 0.20090 (10) | 0.70137 (8) | 0.0232 (3) | |
O9 | 0.23955 (8) | 0.18888 (8) | 0.76917 (6) | 0.0284 (2) | |
C10 | 0.19781 (10) | 0.29116 (10) | 0.63396 (8) | 0.0227 (3) | |
C10A | 0.09505 (11) | 0.27542 (11) | 0.57198 (8) | 0.0257 (3) | |
C11 | 0.04983 (12) | 0.33584 (13) | 0.50258 (10) | 0.0346 (3) | |
H11 | 0.0839 | 0.4011 | 0.4872 | 0.041* | |
C12 | −0.04637 (13) | 0.29896 (16) | 0.45597 (11) | 0.0437 (4) | |
H12 | −0.0784 | 0.3396 | 0.4084 | 0.052* | |
C13 | −0.09603 (13) | 0.20330 (16) | 0.47827 (11) | 0.0440 (4) | |
H13 | −0.1604 | 0.1785 | 0.4446 | 0.053* | |
C14 | −0.05321 (12) | 0.14320 (14) | 0.54893 (10) | 0.0368 (3) | |
H14 | −0.0876 | 0.0782 | 0.5647 | 0.044* | |
C14A | 0.04124 (11) | 0.18180 (11) | 0.59521 (9) | 0.0276 (3) | |
C15 | 0.21617 (11) | 0.39881 (10) | 0.67678 (8) | 0.0256 (3) | |
C16 | 0.32451 (11) | 0.43111 (10) | 0.68444 (8) | 0.0233 (3) | |
N16 | 0.36972 (11) | 0.51996 (9) | 0.72048 (7) | 0.0281 (2) | |
H16A | 0.4391 (16) | 0.5352 (15) | 0.7097 (12) | 0.034* | |
H16B | 0.3234 (15) | 0.5750 (15) | 0.7399 (11) | 0.034* | |
C17 | 0.39908 (10) | 0.34282 (10) | 0.64964 (8) | 0.0217 (2) | |
C18 | 0.12832 (12) | 0.45803 (11) | 0.70963 (10) | 0.0315 (3) | |
N18 | 0.05723 (12) | 0.50576 (12) | 0.73688 (10) | 0.0455 (3) | |
C19 | 0.49892 (10) | 0.38414 (10) | 0.60184 (8) | 0.0233 (3) | |
O19 | 0.52472 (7) | 0.31043 (7) | 0.54332 (6) | 0.0246 (2) | |
N19 | 0.54541 (10) | 0.47131 (10) | 0.62336 (8) | 0.0305 (3) | |
H19 | 0.6035 (16) | 0.4899 (15) | 0.5939 (12) | 0.037* | |
C20 | 0.61787 (12) | 0.33447 (11) | 0.49283 (9) | 0.0285 (3) | |
H20A | 0.6255 | 0.2776 | 0.4501 | 0.043* | |
H20B | 0.6865 | 0.3390 | 0.5312 | 0.043* | |
H20C | 0.6047 | 0.4031 | 0.4630 | 0.043* | |
C21 | 0.45228 (11) | 0.28321 (10) | 0.72483 (8) | 0.0239 (3) | |
N21 | 0.50020 (10) | 0.24235 (10) | 0.78254 (8) | 0.0322 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0290 (5) | 0.0262 (5) | 0.0187 (5) | −0.0010 (4) | 0.0053 (4) | 0.0020 (4) |
C2 | 0.0198 (5) | 0.0246 (6) | 0.0215 (6) | −0.0013 (4) | 0.0063 (4) | 0.0026 (4) |
O2 | 0.0279 (5) | 0.0229 (4) | 0.0272 (5) | −0.0006 (3) | 0.0074 (4) | 0.0046 (3) |
C3 | 0.0211 (5) | 0.0201 (6) | 0.0203 (5) | −0.0008 (4) | 0.0064 (4) | 0.0014 (4) |
C3A | 0.0200 (5) | 0.0207 (6) | 0.0222 (6) | −0.0017 (4) | 0.0066 (4) | −0.0012 (4) |
C4 | 0.0253 (6) | 0.0236 (6) | 0.0241 (6) | −0.0009 (5) | 0.0058 (5) | 0.0004 (5) |
C5 | 0.0324 (7) | 0.0212 (6) | 0.0305 (7) | 0.0006 (5) | 0.0066 (5) | 0.0013 (5) |
C6 | 0.0361 (7) | 0.0235 (6) | 0.0329 (7) | −0.0010 (5) | 0.0094 (6) | −0.0066 (5) |
C7 | 0.0344 (7) | 0.0293 (7) | 0.0236 (6) | −0.0031 (5) | 0.0074 (5) | −0.0057 (5) |
C7A | 0.0235 (6) | 0.0244 (6) | 0.0222 (6) | −0.0018 (5) | 0.0059 (4) | −0.0001 (5) |
N8 | 0.0279 (6) | 0.0293 (6) | 0.0263 (5) | −0.0066 (4) | 0.0076 (4) | 0.0047 (4) |
C9 | 0.0247 (6) | 0.0240 (6) | 0.0223 (6) | 0.0003 (5) | 0.0098 (5) | −0.0009 (4) |
O9 | 0.0339 (5) | 0.0312 (5) | 0.0206 (4) | −0.0012 (4) | 0.0051 (4) | 0.0002 (4) |
C10 | 0.0227 (6) | 0.0229 (6) | 0.0237 (6) | 0.0007 (4) | 0.0083 (5) | 0.0016 (5) |
C10A | 0.0222 (6) | 0.0287 (6) | 0.0271 (6) | 0.0010 (5) | 0.0074 (5) | 0.0019 (5) |
C11 | 0.0258 (6) | 0.0418 (8) | 0.0366 (7) | 0.0021 (6) | 0.0058 (6) | 0.0119 (6) |
C12 | 0.0295 (7) | 0.0611 (11) | 0.0398 (8) | 0.0025 (7) | −0.0008 (6) | 0.0153 (7) |
C13 | 0.0255 (7) | 0.0643 (11) | 0.0414 (8) | −0.0069 (7) | −0.0033 (6) | 0.0034 (8) |
C14 | 0.0280 (7) | 0.0443 (8) | 0.0386 (8) | −0.0090 (6) | 0.0053 (6) | 0.0016 (6) |
C14A | 0.0238 (6) | 0.0324 (7) | 0.0273 (6) | −0.0019 (5) | 0.0076 (5) | 0.0018 (5) |
C15 | 0.0292 (6) | 0.0216 (6) | 0.0273 (6) | 0.0009 (5) | 0.0113 (5) | −0.0003 (5) |
C16 | 0.0296 (6) | 0.0208 (6) | 0.0210 (5) | 0.0010 (5) | 0.0100 (5) | 0.0017 (4) |
N16 | 0.0337 (6) | 0.0211 (5) | 0.0308 (6) | −0.0033 (4) | 0.0120 (5) | −0.0041 (4) |
C17 | 0.0243 (6) | 0.0206 (6) | 0.0208 (5) | −0.0004 (4) | 0.0064 (4) | −0.0004 (4) |
C18 | 0.0325 (7) | 0.0273 (7) | 0.0361 (7) | 0.0007 (5) | 0.0121 (6) | −0.0021 (5) |
N18 | 0.0412 (7) | 0.0417 (8) | 0.0561 (8) | 0.0086 (6) | 0.0195 (6) | −0.0100 (6) |
C19 | 0.0238 (6) | 0.0243 (6) | 0.0226 (6) | 0.0004 (5) | 0.0068 (4) | 0.0003 (5) |
O19 | 0.0257 (4) | 0.0238 (4) | 0.0256 (4) | −0.0020 (3) | 0.0107 (3) | −0.0018 (3) |
N19 | 0.0286 (6) | 0.0289 (6) | 0.0356 (6) | −0.0073 (5) | 0.0127 (5) | −0.0051 (5) |
C20 | 0.0298 (6) | 0.0271 (6) | 0.0306 (6) | −0.0017 (5) | 0.0154 (5) | −0.0011 (5) |
C21 | 0.0253 (6) | 0.0227 (6) | 0.0244 (6) | −0.0022 (5) | 0.0059 (5) | −0.0029 (5) |
N21 | 0.0343 (6) | 0.0323 (6) | 0.0296 (6) | 0.0016 (5) | 0.0006 (5) | −0.0005 (5) |
N1—C2 | 1.3442 (17) | C10A—C14A | 1.3953 (19) |
N1—C7A | 1.4028 (17) | C11—C12 | 1.392 (2) |
N1—H1 | 0.860 (18) | C11—H11 | 0.9500 |
C2—O2 | 1.2240 (16) | C12—C13 | 1.389 (3) |
C2—C3 | 1.5534 (16) | C12—H12 | 0.9500 |
C3—C3A | 1.5147 (16) | C13—C14 | 1.392 (2) |
C3—C17 | 1.5655 (17) | C13—H13 | 0.9500 |
C3—C10 | 1.5878 (16) | C14—C14A | 1.380 (2) |
C3A—C4 | 1.3849 (17) | C14—H14 | 0.9500 |
C3A—C7A | 1.4003 (17) | C15—C16 | 1.3582 (19) |
C4—C5 | 1.3984 (18) | C15—C18 | 1.4148 (18) |
C4—H4 | 0.9500 | C16—N16 | 1.3368 (17) |
C5—C6 | 1.3868 (19) | C16—C17 | 1.5429 (17) |
C5—H5 | 0.9500 | N16—H16A | 0.88 (2) |
C6—C7 | 1.393 (2) | N16—H16B | 0.947 (19) |
C6—H6 | 0.9500 | C17—C21 | 1.4835 (17) |
C7—C7A | 1.3809 (18) | C17—C19 | 1.5461 (16) |
C7—H7 | 0.9500 | C18—N18 | 1.148 (2) |
N8—C9 | 1.3477 (17) | C19—N19 | 1.2553 (18) |
N8—C14A | 1.4083 (18) | C19—O19 | 1.3441 (15) |
N8—H8 | 0.87 (2) | O19—C20 | 1.4457 (15) |
C9—O9 | 1.2188 (16) | N19—H19 | 0.89 (2) |
C9—C10 | 1.5566 (17) | C20—H20A | 0.9800 |
C10—C15 | 1.5060 (18) | C20—H20B | 0.9800 |
C10—C10A | 1.5158 (18) | C20—H20C | 0.9800 |
C10A—C11 | 1.3882 (19) | C21—N21 | 1.1443 (18) |
C2—N1—C7A | 111.74 (11) | C14A—C10A—C10 | 108.39 (11) |
C2—N1—H1 | 121.9 (12) | C10A—C11—C12 | 118.74 (14) |
C7A—N1—H1 | 126.4 (12) | C10A—C11—H11 | 120.6 |
O2—C2—N1 | 127.46 (12) | C12—C11—H11 | 120.6 |
O2—C2—C3 | 124.71 (11) | C13—C12—C11 | 120.65 (15) |
N1—C2—C3 | 107.83 (10) | C13—C12—H12 | 119.7 |
C3A—C3—C2 | 101.96 (9) | C11—C12—H12 | 119.7 |
C3A—C3—C17 | 121.25 (10) | C12—C13—C14 | 121.24 (15) |
C2—C3—C17 | 107.21 (9) | C12—C13—H13 | 119.4 |
C3A—C3—C10 | 113.81 (10) | C14—C13—H13 | 119.4 |
C2—C3—C10 | 107.16 (9) | C14A—C14—C13 | 117.31 (15) |
C17—C3—C10 | 104.59 (9) | C14A—C14—H14 | 121.3 |
C4—C3A—C7A | 119.64 (11) | C13—C14—H14 | 121.3 |
C4—C3A—C3 | 132.76 (11) | C14—C14A—C10A | 122.43 (13) |
C7A—C3A—C3 | 107.53 (10) | C14—C14A—N8 | 127.74 (13) |
C3A—C4—C5 | 118.67 (12) | C10A—C14A—N8 | 109.81 (12) |
C3A—C4—H4 | 120.7 | C16—C15—C18 | 123.36 (12) |
C5—C4—H4 | 120.7 | C16—C15—C10 | 114.15 (11) |
C6—C5—C4 | 120.75 (12) | C18—C15—C10 | 122.43 (12) |
C6—C5—H5 | 119.6 | N16—C16—C15 | 129.59 (12) |
C4—C5—H5 | 119.6 | N16—C16—C17 | 120.64 (12) |
C5—C6—C7 | 121.16 (12) | C15—C16—C17 | 109.63 (11) |
C5—C6—H6 | 119.4 | C16—N16—H16A | 117.3 (12) |
C7—C6—H6 | 119.4 | C16—N16—H16B | 120.3 (11) |
C7A—C7—C6 | 117.48 (12) | H16A—N16—H16B | 119.3 (16) |
C7A—C7—H7 | 121.3 | C21—C17—C16 | 108.02 (10) |
C6—C7—H7 | 121.3 | C21—C17—C19 | 103.92 (10) |
C7—C7A—C3A | 122.28 (12) | C16—C17—C19 | 114.99 (10) |
C7—C7A—N1 | 127.58 (12) | C21—C17—C3 | 113.69 (10) |
C3A—C7A—N1 | 110.12 (11) | C16—C17—C3 | 102.24 (10) |
C9—N8—C14A | 111.54 (11) | C19—C17—C3 | 114.17 (10) |
C9—N8—H8 | 123.7 (12) | N18—C18—C15 | 179.49 (18) |
C14A—N8—H8 | 123.1 (12) | N19—C19—O19 | 130.56 (12) |
O9—C9—N8 | 126.50 (12) | N19—C19—C17 | 120.46 (11) |
O9—C9—C10 | 125.30 (12) | O19—C19—C17 | 108.87 (10) |
N8—C9—C10 | 108.20 (11) | C19—O19—C20 | 116.87 (10) |
C15—C10—C10A | 118.58 (11) | C19—N19—H19 | 116.0 (12) |
C15—C10—C9 | 111.74 (10) | O19—C20—H20A | 109.5 |
C10A—C10—C9 | 101.35 (10) | O19—C20—H20B | 109.5 |
C15—C10—C3 | 101.22 (10) | H20A—C20—H20B | 109.5 |
C10A—C10—C3 | 114.49 (10) | O19—C20—H20C | 109.5 |
C9—C10—C3 | 109.63 (10) | H20A—C20—H20C | 109.5 |
C11—C10A—C14A | 119.54 (13) | H20B—C20—H20C | 109.5 |
C11—C10A—C10 | 132.06 (13) | N21—C21—C17 | 174.75 (14) |
C7A—N1—C2—O2 | 173.52 (12) | C9—C10—C10A—C14A | −7.41 (13) |
C7A—N1—C2—C3 | −7.02 (14) | C3—C10—C10A—C14A | 110.49 (12) |
O2—C2—C3—C3A | −171.59 (12) | C14A—C10A—C11—C12 | −2.3 (2) |
N1—C2—C3—C3A | 8.93 (12) | C10—C10A—C11—C12 | 178.83 (14) |
O2—C2—C3—C17 | −43.22 (15) | C10A—C11—C12—C13 | −0.2 (3) |
N1—C2—C3—C17 | 137.30 (10) | C11—C12—C13—C14 | 1.8 (3) |
O2—C2—C3—C10 | 68.59 (15) | C12—C13—C14—C14A | −0.8 (3) |
N1—C2—C3—C10 | −110.89 (11) | C13—C14—C14A—C10A | −1.8 (2) |
C2—C3—C3A—C4 | 175.38 (13) | C13—C14—C14A—N8 | 176.05 (15) |
C17—C3—C3A—C4 | 56.55 (18) | C11—C10A—C14A—C14 | 3.4 (2) |
C10—C3—C3A—C4 | −69.58 (17) | C10—C10A—C14A—C14 | −177.49 (13) |
C2—C3—C3A—C7A | −7.73 (12) | C11—C10A—C14A—N8 | −174.82 (12) |
C17—C3—C3A—C7A | −126.56 (11) | C10—C10A—C14A—N8 | 4.31 (15) |
C10—C3—C3A—C7A | 107.30 (11) | C9—N8—C14A—C14 | −176.69 (14) |
C7A—C3A—C4—C5 | 0.46 (18) | C9—N8—C14A—C10A | 1.39 (16) |
C3—C3A—C4—C5 | 177.04 (12) | C10A—C10—C15—C16 | −141.23 (12) |
C3A—C4—C5—C6 | −0.7 (2) | C9—C10—C15—C16 | 101.48 (13) |
C4—C5—C6—C7 | 0.1 (2) | C3—C10—C15—C16 | −15.12 (14) |
C5—C6—C7—C7A | 0.7 (2) | C10A—C10—C15—C18 | 41.63 (17) |
C6—C7—C7A—C3A | −1.0 (2) | C9—C10—C15—C18 | −75.66 (16) |
C6—C7—C7A—N1 | 177.60 (12) | C3—C10—C15—C18 | 167.73 (12) |
C4—C3A—C7A—C7 | 0.41 (19) | C18—C15—C16—N16 | −1.2 (2) |
C3—C3A—C7A—C7 | −176.96 (12) | C10—C15—C16—N16 | −178.31 (12) |
C4—C3A—C7A—N1 | −178.41 (11) | C18—C15—C16—C17 | 174.49 (12) |
C3—C3A—C7A—N1 | 4.22 (13) | C10—C15—C16—C17 | −2.62 (15) |
C2—N1—C7A—C7 | −176.84 (13) | N16—C16—C17—C21 | 75.41 (14) |
C2—N1—C7A—C3A | 1.90 (15) | C15—C16—C17—C21 | −100.73 (12) |
C14A—N8—C9—O9 | 174.09 (12) | N16—C16—C17—C19 | −40.11 (16) |
C14A—N8—C9—C10 | −6.31 (14) | C15—C16—C17—C19 | 143.75 (11) |
O9—C9—C10—C15 | −44.88 (17) | N16—C16—C17—C3 | −164.39 (11) |
N8—C9—C10—C15 | 135.52 (11) | C15—C16—C17—C3 | 19.47 (13) |
O9—C9—C10—C10A | −172.13 (12) | C3A—C3—C17—C21 | −41.76 (15) |
N8—C9—C10—C10A | 8.26 (13) | C2—C3—C17—C21 | −157.97 (10) |
O9—C9—C10—C3 | 66.51 (15) | C10—C3—C17—C21 | 88.47 (12) |
N8—C9—C10—C3 | −113.10 (11) | C3A—C3—C17—C16 | −157.92 (10) |
C3A—C3—C10—C15 | 160.56 (10) | C2—C3—C17—C16 | 85.87 (11) |
C2—C3—C10—C15 | −87.52 (11) | C10—C3—C17—C16 | −27.69 (11) |
C17—C3—C10—C15 | 26.07 (12) | C3A—C3—C17—C19 | 77.25 (14) |
C3A—C3—C10—C10A | −70.67 (13) | C2—C3—C17—C19 | −38.96 (13) |
C2—C3—C10—C10A | 41.26 (14) | C10—C3—C17—C19 | −152.52 (10) |
C17—C3—C10—C10A | 154.85 (10) | C21—C17—C19—N19 | −86.46 (15) |
C3A—C3—C10—C9 | 42.42 (14) | C16—C17—C19—N19 | 31.40 (17) |
C2—C3—C10—C9 | 154.34 (10) | C3—C17—C19—N19 | 149.14 (12) |
C17—C3—C10—C9 | −92.07 (11) | C21—C17—C19—O19 | 90.07 (11) |
C15—C10—C10A—C11 | 48.9 (2) | C16—C17—C19—O19 | −152.07 (11) |
C9—C10—C10A—C11 | 171.58 (14) | C3—C17—C19—O19 | −34.33 (14) |
C3—C10—C10A—C11 | −70.52 (18) | N19—C19—O19—C20 | −3.0 (2) |
C15—C10—C10A—C14A | −130.06 (12) | C17—C19—O19—C20 | −179.10 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O9i | 0.860 (19) | 1.963 (18) | 2.8145 (14) | 170.0 (16) |
N8—H8···N18ii | 0.866 (19) | 2.110 (18) | 2.9270 (19) | 157.1 (17) |
N16—H16A···N19 | 0.883 (19) | 2.079 (19) | 2.7531 (17) | 132.5 (16) |
N16—H16A···N21iii | 0.883 (19) | 2.684 (19) | 3.1854 (17) | 117.1 (14) |
N19—H19···O2iv | 0.894 (19) | 2.130 (19) | 2.9912 (15) | 161.6 (17) |
C11—H11···O2 | 0.95 | 2.53 | 3.1499 (18) | 123 |
C20—H20C···O2iv | 0.98 | 2.56 | 3.1938 (16) | 123 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, y−1/2, −z+3/2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, ANK, MA and EAF; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, FNN and ANK; resources, AB, VNK and FNN; supervision, ANK and MA.
Funding information
This work was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].
References
Aliyeva, K. N., Maharramov, A. M., Allahverdiyev, M. A., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o2293. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gayathri, D., Velmurugan, D., Shanthi, G., Perumal, P. T. & Ravikumar, K. (2008). Acta Cryst. E64, o501–o502. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291–296. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Kristallogr. New Cryst. Struct. 234, 1183–1185. CSD CrossRef CAS Google Scholar
Shanthi, G. & Perumal, P. T. (2008). Tetrahedron Lett. 49, 7139–7142. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tan, Z. Y., Wu, K. X., Huang, L. S., Wu, R. S., Du, Z. Y. & Xu, D. Z. (2020). Green Chem. 22, 332–335. CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net. Google Scholar
Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. Web of Science CrossRef CAS PubMed Google Scholar
Zhu, X. Q., Wu, J. S. & Xie, J. W. (2016). Tetrahedron, 72, 8327–8334. CSD CrossRef CAS Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.