research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of methyl 4′-amino-3′,5′-di­cyano-2,2′′-dioxodi­spiro[indoline-3,1′-cyclo­pentane-2′,3′′-indolin]-3′-ene-5′-carboximidate with an unknown solvent

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 27 April 2022; accepted 20 May 2022; online 24 May 2022)

In the title compound, C23H16N6O3, the central five-membered cyclo­pentene ring adopts an envelope conformation while the five-membered spiro 2,3-di­hydro-1H-pyrrole rings exhibit twisted envelope and envelope conformations. One of the 1,3-di­hydro-2H-indol-2-one units is in an axial position and the other is in a bis­ectional position. The methyl methanimidate unit is in an equatorial position. The crystal structure of the title compound is consolidated by inter­molecular N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds, forming a three dimensional network.

1. Chemical context

Functionalized carbo- and heterocycles are of great inter­est in the fields of organic synthesis, catalysis, material science and medicinal chemistry (Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]; Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628-633.]). Cyclization of carbo- and heterocycles with the participation of malono­nitrile to obtain spiro compounds has been reported in the literature. (Zhu et al., 2016[Zhu, X. Q., Wu, J. S. & Xie, J. W. (2016). Tetrahedron, 72, 8327-8334.]; Tan et al., 2020[Tan, Z. Y., Wu, K. X., Huang, L. S., Wu, R. S., Du, Z. Y. & Xu, D. Z. (2020). Green Chem. 22, 332-335.]). In addition, it is known that the reaction of Hantzsch ester with two mol­ecules of 2-(2-oxoindolin-3-yl­idene)malono­nitrile, 1, leads to the formation of di­spiro­[cyclo­pent-3-ene]bis­oxindoles, 2 (Shanthi & Perumal, 2008[Shanthi, G. & Perumal, P. T. (2008). Tetrahedron Lett. 49, 7139-7142.]). We found that one of the nitrile groups of di­spiro­[cyclo­pent-3-ene]bis­oxindole tricarbo­nitrile 2 reacted with the methanol (solvent) gave rise to compound 3 (Fig. 1[link]).

[Figure 1]
Figure 1
The formation of 3.

Thus, in the framework of ongoing structural studies (Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Kristallogr. New Cryst. Struct. 234, 1183-1185.]; Aliyeva et al., 2011[Aliyeva, K. N., Maharramov, A. M., Allahverdiyev, M. A., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o2293.]; Mamedov et al., 2022[Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291-296.]), we report the crystal structure and Hirshfeld surface analysis of the title compound, methyl 4′-amino-3′,5′-di­cyano-2,2′′-dioxodi­spiro­[indoline-3,1′-cyclo­pentane-2′,3′′-indolin]-3′-ene-5′-carbimidate, which has an unknown solvent.

[Scheme 1]

2. Structural commentary

The title compound (Fig.2) crystallizes in the monoclinic space group P21/c with Z = 4. The N1/O2/C2/C3/C3A/C4–C7/C7A 1,3-di­hydro-2H-indol-2-one unit, which is attached to C3, makes a dihedral angle of 1.71 (6)° with the mean plane of the central five-membered cyclo­pentene ring (C3/C10/C15–C17). The N8/C9/C10/C10A/C14A 1,3-di­hydro-2H-indol-2-one unit, which is attached to C10, forms a dihedral angle of 57.50 (4)° with the other 1,3-di­hydro-2H-indol-2-one unit. The methyl methanimidate unit, which is attached to C17, is in an equatorial position. The conformation of the title mol­ecule, (Fig. 2[link]), is fixed because of the weak intra­molecular N16—H16A⋯N19 [2.079 (19) Å, 132.5 (16)°] and C11—H11⋯O2 [2.53 Å, 123°] hydrogen bonds, which close the six- and seven-membered rings with graph-set notations S(6) and S(7), respectively (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O9i 0.860 (19) 1.963 (18) 2.8145 (14) 170.0 (16)
N8—H8⋯N18ii 0.866 (19) 2.110 (18) 2.9270 (19) 157.1 (17)
N16—H16A⋯N19 0.883 (19) 2.079 (19) 2.7531 (17) 132.5 (16)
N16—H16A⋯N21iii 0.883 (19) 2.684 (19) 3.1854 (17) 117.1 (14)
N19—H19⋯O2iv 0.894 (19) 2.130 (19) 2.9912 (15) 161.6 (17)
C11—H11⋯O2 0.95 2.53 3.1499 (18) 123
C20—H20C⋯O2iv 0.98 2.56 3.1938 (16) 123
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

The central five-membered cyclo­pentene ring (C3/C10/C15–C17) adopts an envelope conformation with the flap atom, C3, lying 0.181 (1) Å out of the plane defined by the remaining atoms. The puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are Q(2) = 0.2915 (14) Å, φ(2) = 175.0 (3)°. The five-membered spiro 2,3-di­hydro-1H-pyrrole rings (N1/C2/C3/C3A/C7A and N8/C9/C10/C10A/C14A) exhibit a twisted envelope conformation on bond C2–C3 and an envelope conformation with atom C10 as a flap, respectively. Their puckering parameters are Q(2) = 0.0864 (13) Å, φ(2) = 62.5 (9)° and Q(2) = 0.0810 (14) Å, φ(2) = 64.7 (10)°, respectively.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, pairs of mol­ecules are linked by inter­molecular N19—-H19⋯O2(−x + 1, −y + 1, −z + 1) hydrogen bonds into inversion dimers with an R22(14) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Weak inter­molecular C20—-H20C⋯O2(−x + 1, −y + 1, −z + 1) and intra­molecular N16—H16A⋯N19 (x, y, z) hydrogen bonds also form an S(6) R12(6) R22(14) R12(6)S(6) ring motif system between these dimer mol­ecules. Futhermore, these dimers are linked by N8—H8⋯N18(−x, y − [{1\over 2}], −z + [{3\over 2}]) hydrogen bonds in the directions of both base diagonals of the ab plane of the unit cell, forming sheets parallel to the (001) plane. These layers are also connected along the c-axis direction by N1—H1⋯O9 (x, −y + [{1\over 2}], z − [{1\over 2}]) and N16—H16A⋯N21 (−x + 1, y + [{1\over 2}], −z + [{3\over 2}]) hydrogen bonds (Table 1[link], Fig. 3[link]). The three-dimensional hydrogen-bonded network thus formed keeps the crystal structure stable.

[Figure 3]
Figure 3
A general view of the packing and N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonding of the title compound in the unit cell. The hydrogen atoms not involved in the hydrogen bonds have been omitted for clarity. Symmetry codes: (i) x, −y + [{1\over 2}], z − [{1\over 2}]; (ii) −x, y − [{1\over 2}], −z + [{3\over 2}]; (iii) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]; (iv) −x + 1, −y + 1, −z + 1; (v) −x, [{1\over 2}] + y, [{3\over 2}] − z; (vi) x, [{1\over 2}] − y, [{1\over 2}] + z.

Hirshfeld surface analysis can be used to qualitatively visualize the main inter­actions between mol­ecules (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net.]) was used to map the normalized contact distance (dnorm). On the Hirshfeld surfaces, the most notable inter­actions (short contact areas) are represented in red, whereas long contacts are displayed in blue. Fig. 4[link] depicts the three-dimensional Hirshfeld surface overlaid over dnorm in the range −0.6120 (red) to +2.8879 (blue) a.u.

[Figure 4]
Figure 4
The three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.6120 to 2.8879 a.u. The N—H⋯N and N—H⋯O hydrogen bonds are shown.

Fingerprint plots were created to indicate inter­molecular surface bond distances, with regions highlighted for N⋯H/H⋯N and O⋯H/H⋯O inter­actions (Table 1[link], Fig. 5[link]). Such connections contribute 30.3% and 14.6%, respectively, of the surface area. The very low number of C⋯H/H⋯C connections (14.9%) shows that these inter­actions play a minor role in crystal-packing consolidation. The contribution to the surface area for H⋯H contacts is 38.3%. Other weak contacts contribute only 1.0% (C⋯C), 0.5% (N⋯C/C⋯N), 0.2% (O⋯O), 0.1% (N⋯N) and 0.1% (O⋯C/C⋯O) to the Hirshfeld surface.

[Figure 5]
Figure 5
The two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N, (d) C⋯H/H⋯C and (e) O⋯H/H⋯O inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

The compound most closely related to the 2,8-di­aza­dispiro[4.0.46.35]trideca-3,9,11-triene unit of the title compound was found to be 4′-amino-2,2′′-dioxo-1,1′′,2,2′′-tetra­hydro-3′H-di­spiro­[indole-3,1′-cyclo­pent[4]ene-2′,3′′-indole]-3′,3′-dicarbo­nitrile dihydrate (GITGUM; Gayathri et al., 2008[Gayathri, D., Velmurugan, D., Shanthi, G., Perumal, P. T. & Ravikumar, K. (2008). Acta Cryst. E64, o501-o502.]), which crystallizes in the ortho­rhom­bic space group, Pna21. The cyclo­pentene ring adopts an envelope conformation, with the spiro C atom bonded to the di­cyano-substituted C atom deviating by 0.437 (2) Å from the plane of the remaining four atoms in the ring. The dihedral angle between the two indole groups is 60.1 (1)°. The structure contains inter­molecular N— H⋯O hydrogen bonds involving the indole groups and O—H⋯O and O—H⋯N hydrogen bonds involving the water mol­ecules.

5. Synthesis and crystallization

A solution of 2-(2-oxoindolin-3-yl­idene)malono­nitrile (0.99 g; 5.1 mmol) and furfuryl­amine (0.5 g; 5.2 mmol) in methanol (25 mL) was stirred for 10 minutes and was kept in room temperature for 96 h. Then 15 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol/water (1:1) solution (yield 46%; m.p. 574–575 K).

1H NMR (300 MHz, DMSO-d6, p.p.m.): 3.78 (s, 3H, CH3); 6.62–7.26 (m, 8H, 8CHarom.); 7.69 (s, 2H, NH2); 8.87 (s, 1H, NH); 10.56 (s, 1H, NH), 10.62 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6, ppm): 53.66 (OCH3), 54.56 (Cquat.), 56.63 (Cquat.), 75.06 (=Cquat), 76.72 (=Cquat), 109.96 (CHarom.), 110.18 (CHarom.), 116.32 (CN), 116.83 (CN), 122.08 (CHarom.), 122.63 (CHarom.), 124.17 (Carom.), 124.41 (Carom.), 126.07 (CHarom.), 126.62 (CHarom.), 130.27 (CHarom.), 130.65 (CHarom.), 143.14 (Carom.), 143.31 (Carom.), 159.57 (=Cquat.), 160.18 (=Cquat.), 175.07 (O=C—NH), 177.32 (O=C—NH).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and included as riding contributions with isotropic displacement parameters fixed at 1.2Ueq(C) (1.5 for methyl groups). The N-bound H atoms were found in difference-Fourier maps and their coordinates refined with Uiso(H)=1.2Ueq(N). The residual electron density was difficult to model and therefore the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final refinement. The solvent formula mass and unit-cell characteristics were not taken into account during refinement. The cavity of volume ca 404.2 Å3 (ca 17.5% of the unit-cell volume) contains approximately 101 electrons. A suitable solvent with this electron number may be about four ethanol mol­ecules per unit cell.

Table 2
Experimental details

Crystal data
Chemical formula C23H16N6O3
Mr 424.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.0085 (1), 12.4719 (1), 15.4909 (1)
β (°) 94.489 (1)
V3) 2312.94 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.70
Crystal size (mm) 0.15 × 0.12 × 0.10
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.891, 0.927
No. of measured, independent and observed [I > 2σ(I)] reflections 31502, 5011, 4771
Rint 0.038
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.128, 1.04
No. of reflections 5011
No. of parameters 305
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.25
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

Methyl 4'-amino-3',5'-dicyano-2,2''-dioxodispiro[indoline-3,1'-cyclopentane-2',3''-indolin]-3'-ene-5'-carboximidate top
Crystal data top
C23H16N6O3F(000) = 880
Mr = 424.42Dx = 1.219 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.0085 (1) ÅCell parameters from 22193 reflections
b = 12.4719 (1) Åθ = 3.7–79.3°
c = 15.4909 (1) ŵ = 0.70 mm1
β = 94.489 (1)°T = 100 K
V = 2312.94 (3) Å3Prism, colourless
Z = 40.15 × 0.12 × 0.10 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
4771 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.038
φ and ω scansθmax = 79.7°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1514
Tmin = 0.891, Tmax = 0.927k = 1515
31502 measured reflectionsl = 1619
5011 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0719P)2 + 1.0231P]
where P = (Fo2 + 2Fc2)/3
5011 reflections(Δ/σ)max < 0.001
305 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.29981 (9)0.24967 (9)0.44133 (7)0.0245 (2)
H10.2870 (14)0.2626 (14)0.3869 (12)0.029*
C20.30095 (10)0.32803 (10)0.50096 (8)0.0217 (2)
O20.29321 (8)0.42469 (7)0.48817 (6)0.0257 (2)
C30.31293 (10)0.27464 (10)0.59181 (8)0.0203 (2)
C3A0.33681 (10)0.15908 (10)0.56953 (8)0.0207 (2)
C40.36295 (10)0.06941 (10)0.61983 (8)0.0241 (3)
H40.37220.07470.68110.029*
C50.37540 (12)0.02910 (10)0.57855 (9)0.0278 (3)
H50.39420.09110.61220.033*
C60.36067 (12)0.03723 (11)0.48910 (9)0.0305 (3)
H60.36940.10490.46230.037*
C70.33332 (12)0.05214 (11)0.43778 (9)0.0288 (3)
H70.32240.04650.37650.035*
C7A0.32274 (10)0.14916 (10)0.47930 (8)0.0231 (3)
N80.09577 (10)0.13898 (10)0.67133 (7)0.0275 (2)
H80.0674 (15)0.0887 (15)0.7013 (12)0.033*
C90.18227 (10)0.20090 (10)0.70137 (8)0.0232 (3)
O90.23955 (8)0.18888 (8)0.76917 (6)0.0284 (2)
C100.19781 (10)0.29116 (10)0.63396 (8)0.0227 (3)
C10A0.09505 (11)0.27542 (11)0.57198 (8)0.0257 (3)
C110.04983 (12)0.33584 (13)0.50258 (10)0.0346 (3)
H110.08390.40110.48720.041*
C120.04637 (13)0.29896 (16)0.45597 (11)0.0437 (4)
H120.07840.33960.40840.052*
C130.09603 (13)0.20330 (16)0.47827 (11)0.0440 (4)
H130.16040.17850.44460.053*
C140.05321 (12)0.14320 (14)0.54893 (10)0.0368 (3)
H140.08760.07820.56470.044*
C14A0.04124 (11)0.18180 (11)0.59521 (9)0.0276 (3)
C150.21617 (11)0.39881 (10)0.67678 (8)0.0256 (3)
C160.32451 (11)0.43111 (10)0.68444 (8)0.0233 (3)
N160.36972 (11)0.51996 (9)0.72048 (7)0.0281 (2)
H16A0.4391 (16)0.5352 (15)0.7097 (12)0.034*
H16B0.3234 (15)0.5750 (15)0.7399 (11)0.034*
C170.39908 (10)0.34282 (10)0.64964 (8)0.0217 (2)
C180.12832 (12)0.45803 (11)0.70963 (10)0.0315 (3)
N180.05723 (12)0.50576 (12)0.73688 (10)0.0455 (3)
C190.49892 (10)0.38414 (10)0.60184 (8)0.0233 (3)
O190.52472 (7)0.31043 (7)0.54332 (6)0.0246 (2)
N190.54541 (10)0.47131 (10)0.62336 (8)0.0305 (3)
H190.6035 (16)0.4899 (15)0.5939 (12)0.037*
C200.61787 (12)0.33447 (11)0.49283 (9)0.0285 (3)
H20A0.62550.27760.45010.043*
H20B0.68650.33900.53120.043*
H20C0.60470.40310.46300.043*
C210.45228 (11)0.28321 (10)0.72483 (8)0.0239 (3)
N210.50020 (10)0.24235 (10)0.78254 (8)0.0322 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0290 (5)0.0262 (5)0.0187 (5)0.0010 (4)0.0053 (4)0.0020 (4)
C20.0198 (5)0.0246 (6)0.0215 (6)0.0013 (4)0.0063 (4)0.0026 (4)
O20.0279 (5)0.0229 (4)0.0272 (5)0.0006 (3)0.0074 (4)0.0046 (3)
C30.0211 (5)0.0201 (6)0.0203 (5)0.0008 (4)0.0064 (4)0.0014 (4)
C3A0.0200 (5)0.0207 (6)0.0222 (6)0.0017 (4)0.0066 (4)0.0012 (4)
C40.0253 (6)0.0236 (6)0.0241 (6)0.0009 (5)0.0058 (5)0.0004 (5)
C50.0324 (7)0.0212 (6)0.0305 (7)0.0006 (5)0.0066 (5)0.0013 (5)
C60.0361 (7)0.0235 (6)0.0329 (7)0.0010 (5)0.0094 (6)0.0066 (5)
C70.0344 (7)0.0293 (7)0.0236 (6)0.0031 (5)0.0074 (5)0.0057 (5)
C7A0.0235 (6)0.0244 (6)0.0222 (6)0.0018 (5)0.0059 (4)0.0001 (5)
N80.0279 (6)0.0293 (6)0.0263 (5)0.0066 (4)0.0076 (4)0.0047 (4)
C90.0247 (6)0.0240 (6)0.0223 (6)0.0003 (5)0.0098 (5)0.0009 (4)
O90.0339 (5)0.0312 (5)0.0206 (4)0.0012 (4)0.0051 (4)0.0002 (4)
C100.0227 (6)0.0229 (6)0.0237 (6)0.0007 (4)0.0083 (5)0.0016 (5)
C10A0.0222 (6)0.0287 (6)0.0271 (6)0.0010 (5)0.0074 (5)0.0019 (5)
C110.0258 (6)0.0418 (8)0.0366 (7)0.0021 (6)0.0058 (6)0.0119 (6)
C120.0295 (7)0.0611 (11)0.0398 (8)0.0025 (7)0.0008 (6)0.0153 (7)
C130.0255 (7)0.0643 (11)0.0414 (8)0.0069 (7)0.0033 (6)0.0034 (8)
C140.0280 (7)0.0443 (8)0.0386 (8)0.0090 (6)0.0053 (6)0.0016 (6)
C14A0.0238 (6)0.0324 (7)0.0273 (6)0.0019 (5)0.0076 (5)0.0018 (5)
C150.0292 (6)0.0216 (6)0.0273 (6)0.0009 (5)0.0113 (5)0.0003 (5)
C160.0296 (6)0.0208 (6)0.0210 (5)0.0010 (5)0.0100 (5)0.0017 (4)
N160.0337 (6)0.0211 (5)0.0308 (6)0.0033 (4)0.0120 (5)0.0041 (4)
C170.0243 (6)0.0206 (6)0.0208 (5)0.0004 (4)0.0064 (4)0.0004 (4)
C180.0325 (7)0.0273 (7)0.0361 (7)0.0007 (5)0.0121 (6)0.0021 (5)
N180.0412 (7)0.0417 (8)0.0561 (8)0.0086 (6)0.0195 (6)0.0100 (6)
C190.0238 (6)0.0243 (6)0.0226 (6)0.0004 (5)0.0068 (4)0.0003 (5)
O190.0257 (4)0.0238 (4)0.0256 (4)0.0020 (3)0.0107 (3)0.0018 (3)
N190.0286 (6)0.0289 (6)0.0356 (6)0.0073 (5)0.0127 (5)0.0051 (5)
C200.0298 (6)0.0271 (6)0.0306 (6)0.0017 (5)0.0154 (5)0.0011 (5)
C210.0253 (6)0.0227 (6)0.0244 (6)0.0022 (5)0.0059 (5)0.0029 (5)
N210.0343 (6)0.0323 (6)0.0296 (6)0.0016 (5)0.0006 (5)0.0005 (5)
Geometric parameters (Å, º) top
N1—C21.3442 (17)C10A—C14A1.3953 (19)
N1—C7A1.4028 (17)C11—C121.392 (2)
N1—H10.860 (18)C11—H110.9500
C2—O21.2240 (16)C12—C131.389 (3)
C2—C31.5534 (16)C12—H120.9500
C3—C3A1.5147 (16)C13—C141.392 (2)
C3—C171.5655 (17)C13—H130.9500
C3—C101.5878 (16)C14—C14A1.380 (2)
C3A—C41.3849 (17)C14—H140.9500
C3A—C7A1.4003 (17)C15—C161.3582 (19)
C4—C51.3984 (18)C15—C181.4148 (18)
C4—H40.9500C16—N161.3368 (17)
C5—C61.3868 (19)C16—C171.5429 (17)
C5—H50.9500N16—H16A0.88 (2)
C6—C71.393 (2)N16—H16B0.947 (19)
C6—H60.9500C17—C211.4835 (17)
C7—C7A1.3809 (18)C17—C191.5461 (16)
C7—H70.9500C18—N181.148 (2)
N8—C91.3477 (17)C19—N191.2553 (18)
N8—C14A1.4083 (18)C19—O191.3441 (15)
N8—H80.87 (2)O19—C201.4457 (15)
C9—O91.2188 (16)N19—H190.89 (2)
C9—C101.5566 (17)C20—H20A0.9800
C10—C151.5060 (18)C20—H20B0.9800
C10—C10A1.5158 (18)C20—H20C0.9800
C10A—C111.3882 (19)C21—N211.1443 (18)
C2—N1—C7A111.74 (11)C14A—C10A—C10108.39 (11)
C2—N1—H1121.9 (12)C10A—C11—C12118.74 (14)
C7A—N1—H1126.4 (12)C10A—C11—H11120.6
O2—C2—N1127.46 (12)C12—C11—H11120.6
O2—C2—C3124.71 (11)C13—C12—C11120.65 (15)
N1—C2—C3107.83 (10)C13—C12—H12119.7
C3A—C3—C2101.96 (9)C11—C12—H12119.7
C3A—C3—C17121.25 (10)C12—C13—C14121.24 (15)
C2—C3—C17107.21 (9)C12—C13—H13119.4
C3A—C3—C10113.81 (10)C14—C13—H13119.4
C2—C3—C10107.16 (9)C14A—C14—C13117.31 (15)
C17—C3—C10104.59 (9)C14A—C14—H14121.3
C4—C3A—C7A119.64 (11)C13—C14—H14121.3
C4—C3A—C3132.76 (11)C14—C14A—C10A122.43 (13)
C7A—C3A—C3107.53 (10)C14—C14A—N8127.74 (13)
C3A—C4—C5118.67 (12)C10A—C14A—N8109.81 (12)
C3A—C4—H4120.7C16—C15—C18123.36 (12)
C5—C4—H4120.7C16—C15—C10114.15 (11)
C6—C5—C4120.75 (12)C18—C15—C10122.43 (12)
C6—C5—H5119.6N16—C16—C15129.59 (12)
C4—C5—H5119.6N16—C16—C17120.64 (12)
C5—C6—C7121.16 (12)C15—C16—C17109.63 (11)
C5—C6—H6119.4C16—N16—H16A117.3 (12)
C7—C6—H6119.4C16—N16—H16B120.3 (11)
C7A—C7—C6117.48 (12)H16A—N16—H16B119.3 (16)
C7A—C7—H7121.3C21—C17—C16108.02 (10)
C6—C7—H7121.3C21—C17—C19103.92 (10)
C7—C7A—C3A122.28 (12)C16—C17—C19114.99 (10)
C7—C7A—N1127.58 (12)C21—C17—C3113.69 (10)
C3A—C7A—N1110.12 (11)C16—C17—C3102.24 (10)
C9—N8—C14A111.54 (11)C19—C17—C3114.17 (10)
C9—N8—H8123.7 (12)N18—C18—C15179.49 (18)
C14A—N8—H8123.1 (12)N19—C19—O19130.56 (12)
O9—C9—N8126.50 (12)N19—C19—C17120.46 (11)
O9—C9—C10125.30 (12)O19—C19—C17108.87 (10)
N8—C9—C10108.20 (11)C19—O19—C20116.87 (10)
C15—C10—C10A118.58 (11)C19—N19—H19116.0 (12)
C15—C10—C9111.74 (10)O19—C20—H20A109.5
C10A—C10—C9101.35 (10)O19—C20—H20B109.5
C15—C10—C3101.22 (10)H20A—C20—H20B109.5
C10A—C10—C3114.49 (10)O19—C20—H20C109.5
C9—C10—C3109.63 (10)H20A—C20—H20C109.5
C11—C10A—C14A119.54 (13)H20B—C20—H20C109.5
C11—C10A—C10132.06 (13)N21—C21—C17174.75 (14)
C7A—N1—C2—O2173.52 (12)C9—C10—C10A—C14A7.41 (13)
C7A—N1—C2—C37.02 (14)C3—C10—C10A—C14A110.49 (12)
O2—C2—C3—C3A171.59 (12)C14A—C10A—C11—C122.3 (2)
N1—C2—C3—C3A8.93 (12)C10—C10A—C11—C12178.83 (14)
O2—C2—C3—C1743.22 (15)C10A—C11—C12—C130.2 (3)
N1—C2—C3—C17137.30 (10)C11—C12—C13—C141.8 (3)
O2—C2—C3—C1068.59 (15)C12—C13—C14—C14A0.8 (3)
N1—C2—C3—C10110.89 (11)C13—C14—C14A—C10A1.8 (2)
C2—C3—C3A—C4175.38 (13)C13—C14—C14A—N8176.05 (15)
C17—C3—C3A—C456.55 (18)C11—C10A—C14A—C143.4 (2)
C10—C3—C3A—C469.58 (17)C10—C10A—C14A—C14177.49 (13)
C2—C3—C3A—C7A7.73 (12)C11—C10A—C14A—N8174.82 (12)
C17—C3—C3A—C7A126.56 (11)C10—C10A—C14A—N84.31 (15)
C10—C3—C3A—C7A107.30 (11)C9—N8—C14A—C14176.69 (14)
C7A—C3A—C4—C50.46 (18)C9—N8—C14A—C10A1.39 (16)
C3—C3A—C4—C5177.04 (12)C10A—C10—C15—C16141.23 (12)
C3A—C4—C5—C60.7 (2)C9—C10—C15—C16101.48 (13)
C4—C5—C6—C70.1 (2)C3—C10—C15—C1615.12 (14)
C5—C6—C7—C7A0.7 (2)C10A—C10—C15—C1841.63 (17)
C6—C7—C7A—C3A1.0 (2)C9—C10—C15—C1875.66 (16)
C6—C7—C7A—N1177.60 (12)C3—C10—C15—C18167.73 (12)
C4—C3A—C7A—C70.41 (19)C18—C15—C16—N161.2 (2)
C3—C3A—C7A—C7176.96 (12)C10—C15—C16—N16178.31 (12)
C4—C3A—C7A—N1178.41 (11)C18—C15—C16—C17174.49 (12)
C3—C3A—C7A—N14.22 (13)C10—C15—C16—C172.62 (15)
C2—N1—C7A—C7176.84 (13)N16—C16—C17—C2175.41 (14)
C2—N1—C7A—C3A1.90 (15)C15—C16—C17—C21100.73 (12)
C14A—N8—C9—O9174.09 (12)N16—C16—C17—C1940.11 (16)
C14A—N8—C9—C106.31 (14)C15—C16—C17—C19143.75 (11)
O9—C9—C10—C1544.88 (17)N16—C16—C17—C3164.39 (11)
N8—C9—C10—C15135.52 (11)C15—C16—C17—C319.47 (13)
O9—C9—C10—C10A172.13 (12)C3A—C3—C17—C2141.76 (15)
N8—C9—C10—C10A8.26 (13)C2—C3—C17—C21157.97 (10)
O9—C9—C10—C366.51 (15)C10—C3—C17—C2188.47 (12)
N8—C9—C10—C3113.10 (11)C3A—C3—C17—C16157.92 (10)
C3A—C3—C10—C15160.56 (10)C2—C3—C17—C1685.87 (11)
C2—C3—C10—C1587.52 (11)C10—C3—C17—C1627.69 (11)
C17—C3—C10—C1526.07 (12)C3A—C3—C17—C1977.25 (14)
C3A—C3—C10—C10A70.67 (13)C2—C3—C17—C1938.96 (13)
C2—C3—C10—C10A41.26 (14)C10—C3—C17—C19152.52 (10)
C17—C3—C10—C10A154.85 (10)C21—C17—C19—N1986.46 (15)
C3A—C3—C10—C942.42 (14)C16—C17—C19—N1931.40 (17)
C2—C3—C10—C9154.34 (10)C3—C17—C19—N19149.14 (12)
C17—C3—C10—C992.07 (11)C21—C17—C19—O1990.07 (11)
C15—C10—C10A—C1148.9 (2)C16—C17—C19—O19152.07 (11)
C9—C10—C10A—C11171.58 (14)C3—C17—C19—O1934.33 (14)
C3—C10—C10A—C1170.52 (18)N19—C19—O19—C203.0 (2)
C15—C10—C10A—C14A130.06 (12)C17—C19—O19—C20179.10 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O9i0.860 (19)1.963 (18)2.8145 (14)170.0 (16)
N8—H8···N18ii0.866 (19)2.110 (18)2.9270 (19)157.1 (17)
N16—H16A···N190.883 (19)2.079 (19)2.7531 (17)132.5 (16)
N16—H16A···N21iii0.883 (19)2.684 (19)3.1854 (17)117.1 (14)
N19—H19···O2iv0.894 (19)2.130 (19)2.9912 (15)161.6 (17)
C11—H11···O20.952.533.1499 (18)123
C20—H20C···O2iv0.982.563.1938 (16)123
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+3/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1, z+1.
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, ANK, MA and EAF; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, FNN and ANK; resources, AB, VNK and FNN; supervision, ANK and MA.

Funding information

This work was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].

References

First citationAliyeva, K. N., Maharramov, A. M., Allahverdiyev, M. A., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o2293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGayathri, D., Velmurugan, D., Shanthi, G., Perumal, P. T. & Ravikumar, K. (2008). Acta Cryst. E64, o501–o502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationMamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291–296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Kristallogr. New Cryst. Struct. 234, 1183–1185.  CSD CrossRef CAS Google Scholar
First citationShanthi, G. & Perumal, P. T. (2008). Tetrahedron Lett. 49, 7139–7142.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, Z. Y., Wu, K. X., Huang, L. S., Wu, R. S., Du, Z. Y. & Xu, D. Z. (2020). Green Chem. 22, 332–335.  CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhu, X. Q., Wu, J. S. & Xie, J. W. (2016). Tetrahedron, 72, 8327–8334.  CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds