research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of di­aqua­(1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)zinc(II) bis­­(hydrogen 4-phospho­natobi­phenyl-4′-carboxyl­ato)(1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)zinc(II)

crossmark logo

aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 03028, Ukraine, bInstitute of Chemistry of MES, Academiei str. 3, Chisinau 2028, Republic of Moldova, and c`Petru Poni' Institute of Macromolecular Chemistry, Department of Inorganic Polymers, Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania
*Correspondence e-mail: lampeka@adamant.net

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 19 April 2022; accepted 29 April 2022; online 17 May 2022)

In the asymmetric unit of the title compound, trans-di­aqua­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)zinc(II) trans-bis­(hydrogen 4-phospho­natobiphenyl-4′-carboxyl­ato-κO)(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)zinc(II), [Zn(C10H24N4)(H2O)2][Zn(C13H9O5P)2(C10H24N4)], both Zn atoms lie on crystallographic inversion centres and the atoms of the macrocycle in the cation are disordered over two sets of sites. In both macrocyclic units, the metal ions possess a tetra­gonally elongated ZnN4O2 octa­hedral environment formed by the four secondary N atoms of the macrocyclic ligand in the equatorial plane and the two trans O atoms of the water mol­ecules or anions in the axial positions, with the macrocyclic ligands adopting the most energetically favourable trans-III conformation. The average Zn—N bond lengths in both macrocyclic units do not differ significantly [2.112 (12) Å for the anion and 2.101 (3) Å for the cation] and are shorter than the average axial Zn—O bond lengths [2.189 (4) Å for phospho­nate and 2.295 (4) Å for aqua ligands]. In the crystal, the complex cations and anions are connected via hydrogen-bonding inter­actions between the N—H groups of the macrocycles, the O—H groups of coordinated water mol­ecules and the P—O—H groups of the acids as proton donors, and the O atoms of the phospho­nate and carboxyl­ate groups as acceptors, resulting in the formation of layers lying parallel to the (110) plane.

1. Chemical context

Metal–organic frameworks (MOFs) – crystalline coordination polymers with permanent porosity – attract much current attention due to the possibilities of their applications in different areas, including gas storage, separation, sensing, catalysis, etc. (MacGillivray & Lukehart, 2014[MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal-Organic Framework Materials. Hoboken: John Wiley and Sons.]; Kaskel, 2016[Kaskel, S. (2016). Editor. The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH.]). Metal complexes of the tetra­aza-macrocycles, in particular cyclam (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4, L), possessing high thermodynamic stability and kinetic inertness (Yatsimirskii & Lampeka, 1985[Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. (In Russian.)]), are popular metal-containing building units for the construction of MOFs (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]; Suh & Moon, 2007[Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39-79. San Diego: Academic Press.]; Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782-835.]; Stackhouse & Ma, 2018[Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.]). The overwhelming majority of these materials are built up using oligo­carboxyl­ates as the bridging units (Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]), though linkers with other coordinating groups, in particular oligo­phospho­nates, are also used for the construction of MOFs (Gagnon et al., 2012[Gagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Chem. Rev. 112, 1034-1054.]). At the same time, hybrid bridging mol­ecules containing both phospho­nate and carboxyl­ate functional groups have been studied to a much lesser extent (see, for example, Heering et al., 2016b[Heering, C., Francis, B., Nateghi, B., Makhloufi, G., Lüdeke, S. & Janiak, C. (2016b). CrystEngComm, 18, 5209-5223.]), though one can expect that the combination of different acidic donor groups in one ligand mol­ecule could open new possibilities for the creation of MOFs with specific chemical and structural features different from those inherent for MOFs formed by pure ligand classes.

[Scheme 1]

We report here the synthesis and crystal structure of the product of the reaction of [Zn(L)](ClO4)2 with 4-phos­phonato­biphenyl-4′-carb­oxy­lic acid (H3A) – the closest structural analogue of the ligand 4,4′-di­phenyldi­carboxyl­ate that is actively used for the preparation of different MOFs – namely, trans-di­aqua­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)zinc(II) trans-bis­(hydrogen 4-phospho­nato­bi­phenyl-4′-car­box­yl­ato-κO)(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)zinc(II), [Zn(L)(H2O)2][Zn(L)(HA)2], I. Though several ionic compounds and coordination polymers with this ligand have been reported (Heering et al., 2016a[Heering, C., Nateghi, B. & Janiak, C. (2016a). Crystals, 6, 22-35.],b[Heering, C., Francis, B., Nateghi, B., Makhloufi, G., Lüdeke, S. & Janiak, C. (2016b). CrystEngComm, 18, 5209-5223.]), none of its complexes with macrocyclic cations have been described up to now.

2. Structural commentary

The mol­ecular structure of the title compound, I, is shown in Fig. 1[link]. Atom Zn1 (site symmetry [\overline{1}]) is coordinated by two monodentate doubly deprotonated acidic ligands HA2− via their phospho­nate O-donor atoms, resulting in the formation of the [Zn1(L)(HA)2]2− divalent anion, which is charge-balanced by the [Zn2(L)(H2O)2]2+ divalent cation (Zn2 site symmetry [\overline{1}]). In the latter case, the macrocyclic ligand L is disordered over two orientations, with site occupancies of 50%, which are rotated around the O—Zn2—O axis by approximately 23°. The ligand L in both [Zn(L)] fragments adopts its energetically favoured trans-III conformation, with the five- and six-membered chelate rings in gauche and chair conformations, respectively (Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102-1108.]).

[Figure 1]
Figure 1
The extended asymmetric unit in I, showing the coordination environment of the Zn atoms and the atom-labelling scheme (displacement ellipsoids are drawn at the 30% probability level). C-bound H atoms have been omitted for clarity. Only one of two disordered components of the Zn2 cation is shown. Dotted lines represent intra-cation hydrogen-bonding inter­actions. [Symmetry codes: (i) −x + 2, −y, −z + 2; (ii) −x + 2, −y, −z + 1.]

Both metal ions possess a tetra­gonally elongated trans-ZnN4O2 octa­hedral environment formed by the four secondary N atoms of the macrocyclic ligand in the equatorial plane and the two O atoms of the anions or water mol­ecules in the axial positions (Table 1[link]). The location of the metal ions on inversion centres enforces strict planarity of the ZnN4 coordination moieties. The directivity of the axial Zn—O bonds is nearly orthogonal to the ZnN4 plane.

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 2.189 (4) Zn2—O1W 2.295 (4)
Zn1—N1 2.099 (5) Zn2—N3 2.104 (7)
Zn1—N2 2.125 (4) Zn2—N4 2.092 (7)
       
N1—Zn1—N2i 85.27 (19) N4—Zn2—N3 96.8 (4)
N1—Zn1—N2 94.73 (18) N4—Zn2—N3ii 83.2 (4)
Symmetry codes: (i) [-x+2, -y, -z+2]; (ii) [-x+2, -y, -z+1].

The average Zn—N bond lengths in both macrocyclic units do not differ significantly [2.112 (12) Å for Zn1 and 2.101 (3) Å for Zn2] and are shorter than the average axial Zn—O bond lengths. The Zn—O distance for the phos­pho­n­ate group [2.189 (4) Å] is shorter than that for the aqua ligand [2.295 (4) Å], reflecting the stronger donating properties of the anion. Thus, analogous to the situation for caboxylate groups coordinated to aza-macrocyclic cations (Tsymbal et al., 2021[Tsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355-2370.]), the Zn—O inter­actions are reinforced by intra­molecular hydrogen bonding between the secondary amino group (N1—H1) of ligand L and the O2 atom of the phospho­nate fragment (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.98 1.98 2.923 (6) 161
N2—H2⋯O4iii 0.98 2.26 3.220 (6) 166
N3—H3⋯O3 0.98 2.11 3.076 (10) 168
N4—H4⋯O5iii 0.98 1.84 2.815 (11) 178
O3—H3C⋯O4iii 0.86 1.75 2.597 (6) 167
O1W—H1WA⋯O2ii 0.87 2.08 2.735 (5) 132
O1W—H1WB⋯O5iv 0.86 1.82 2.668 (6) 169
Symmetry codes: (ii) [-x+2, -y, -z+1]; (iii) [x+1, y-1, z]; (iv) [-x+1, -y+1, -z+1].

The benzene rings in the HA2− anion in I are tilted with respect to each other [the angle between their mean planes is 40.4 (2)°], while the uncoordinated carboxyl­ate group is close to being coplanar with the corresponding aromatic fragment [12.3 (2)°]. This carboxyl­ate group displays a high degree of electronic delocalization [the C23—O4 and C23—O5 bond lengths are 1.251 (8) and 1.258 (8) Å, respectively], as does part of the coordinated phospho­nate group [1.503 (4) and 1.511 (4) Å for the P1—O1 and P1—O2 bond lengths, respectivey]. The protonated P—O3H bond [1.583 (4) Å] is not involved in delocalization.

3. Supra­molecular features

The crystals of I are composed of [Zn1(L)(HA)2]2− anions and [Zn2(L)(H2O)2]2+ cations that are connected by numerous hydrogen bonds (Table 2[link]). In particular, due to hydrogen bonding between the protonated phospho­nate P1—O3—H fragments and the secondary amino N2—H2 groups of the macrocycle L as proton donors, and carboxyl­ate atoms O4 [at (x + 1, y − 1, z)] as acceptors, the complex anions are arranged into one-dimensional tapes running along the [1[\overline{1}]0] direction (Fig. 2[link]). These tapes are further connected into two-dimensional arrays lying parallel to the (110) plane by virtue of O—H⋯O and N—H⋯O hydrogen bonding between the O1W coordinated water mol­ecule and the amino N3—H3 and N4—H4 groups as donors, and the phospho­nate and carboxyl­ate atoms O2 [at (−x + 2, −y, −z + 1)], O3 and O5 [at (x + 1, y − 1, z) and (−x + 1, −y + 1, −z + 1)] as acceptors (Fig. 2[link]). The distances Zn1⋯Zn1(x + 1, y − 1, z) and Zn2⋯Zn2(x + 1, y − 1, z) in the [1[\overline{1}]0] direction are 14.179 (2) Å, while the Zn1⋯Zn2 distance is 8.131 (1) Å. There are no hydrogen-bonding contacts between the layers and the three-dimensional coherence of the crystal is provided by van der Waals inter­actions.

[Figure 2]
Figure 2
The hydrogen-bonded tape (C atoms in green) and sheet parallel to the (110) plane in I. H atoms at C atoms have been omitted, as has one disorder component of the macrocyclic Zn2 cation. Intra- and inter-tape hydrogen bonds are shown as dashed lines in green and blue, respectively; intra­molecular N1—H1⋯O2 hydrogen bonds are not depicted.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated that several ionic compounds including ammonium and hexa­amine cobalt(III) cations (refcodes SEDDUD and SEDFEP, respectively; Heering et al., 2016a[Heering, C., Nateghi, B. & Janiak, C. (2016a). Crystals, 6, 22-35.]) and coordination polymers formed by zinc(II) (UNISOB and UNISUH), cadmium(II) (UNITES) and mercury(II) ions (UNIWEV; Heering et al., 2016b[Heering, C., Francis, B., Nateghi, B., Makhloufi, G., Lüdeke, S. & Janiak, C. (2016b). CrystEngComm, 18, 5209-5223.]) have been structurally characterized to date. In the polymeric complexes, the phospho­nate groups of the ligands display a μ3μ5 bridging function and form two-dimensional metal–oxo layers. The complexation behaviour of the carboxyl­ate groups determines the dimensionality of the polymeric systems formed. If, like in I, they are not coordinated, the metal–oxo layers are simply decorated with ligand mol­ecules (UNISOB and UNIWEV). At the same time, the μ2- or μ3-bridging function of the carboxyl­ate groups results in the formation of another kind of metal–oxo layer, thus producing three-dimensional coordination polymers (UNISUH and UNITES), in which the ligand mol­ecules act as pillars. Inter­estingly, the tilting of the benzene rings in the ligand in polymeric complexes is much smaller that in I and does not exceed 7° (UNITES).

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and were used without further purification. The acid H3A was synthesized according to a procedure described previously (Heering et al., 2016b[Heering, C., Francis, B., Nateghi, B., Makhloufi, G., Lüdeke, S. & Janiak, C. (2016b). CrystEngComm, 18, 5209-5223.]). The complex [Zn(L)](ClO4)2 was prepared by mixing equimolar amounts of L and zinc perchlorate hexa­hydrate in ethanol.

For the preparation of the title compound, I, a solution of [Zn(L)](ClO4)2 (23 mg, 0.06 mmol) in water (2 ml) was added to a di­methyl­formamide (DMF) solution (3 ml) of H3A (11 mg, 0,04 mmol) containing tri­ethyl­amine (0.05 ml). A white precipitate, which had formed over several days, was filtered off, washed with small amounts of dimethylformamide (DMF) and diethyl ether, and dried in air (yield: 6.7 mg, 15% based on the acid). Analysis calculated (%) for C46H70N8O12P2Zn2: C 49.34, H 6.30, N 10.01; found: C 49.45, H 6.41, N 10.21. Single crystals of I suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis. Caution! Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms in I were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 (ring H atoms) and 0.97 Å (methyl­ene H atoms), and N—H distances of 0.98 Å, with Uiso(H) values of 1.2Ueq of the parent atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C10H24N4)(H2O)2][Zn(C13H9O5P)2(C10H24N4)]
Mr 1119.78
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.8781 (15), 9.3224 (14), 16.2627 (14)
α, β, γ (°) 102.759 (10), 90.777 (11), 102.315 (14)
V3) 1279.9 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.07
Crystal size (mm) 0.3 × 0.1 × 0.05
 
Data collection
Diffractometer Rigaku Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.866, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9378, 4514, 3242
Rint 0.081
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.203, 1.06
No. of reflections 4514
No. of parameters 317
No. of restraints 41
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.91, −0.69
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Diaqua(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)zinc(II) trans-bis(hydrogen 4-phosphonatobiphenyl-4'-carboxylato-κO)(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)zinc(II) top
Crystal data top
[Zn(C10H24N4)(H2O)2][Zn(C13H9O5P)2(C10H24N4)]Z = 1
Mr = 1119.78F(000) = 588
Triclinic, P1Dx = 1.453 Mg m3
a = 8.8781 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3224 (14) ÅCell parameters from 1677 reflections
c = 16.2627 (14) Åθ = 2.3–25.6°
α = 102.759 (10)°µ = 1.07 mm1
β = 90.777 (11)°T = 296 K
γ = 102.315 (14)°Block, clear light colourless
V = 1279.9 (3) Å30.3 × 0.1 × 0.05 mm
Data collection top
Rigaku Xcalibur Eos
diffractometer
4514 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 8.0797 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
k = 1011
Tmin = 0.866, Tmax = 1.000l = 1919
9378 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.080H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.203 w = 1/[σ2(Fo2) + (0.084P)2 + 0.5432P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4514 reflectionsΔρmax = 0.91 e Å3
317 parametersΔρmin = 0.69 e Å3
41 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn11.0000000.0000001.0000000.0289 (3)
P10.88329 (17)0.02758 (16)0.80359 (8)0.0265 (4)
O10.8559 (4)0.0163 (4)0.8866 (2)0.0323 (9)
O21.0432 (4)0.1165 (4)0.7945 (2)0.0321 (9)
O30.8352 (5)0.1164 (4)0.7280 (2)0.0342 (10)
H3C0.9098080.1619700.7280720.06 (2)*
O40.0291 (5)0.7128 (5)0.7344 (3)0.0507 (12)
O50.1942 (7)0.7954 (6)0.6441 (3)0.0742 (17)
N11.1789 (5)0.1580 (5)0.9652 (3)0.0339 (12)
H11.1530150.1615690.9070230.041*
N21.0824 (6)0.1907 (5)0.9371 (3)0.0331 (12)
H21.0517930.2118590.8768010.040*
C11.3309 (7)0.1235 (8)0.9670 (4)0.0475 (17)
H1A1.3644440.1295961.0249100.057*
H1B1.4040310.1981410.9459430.057*
C21.3313 (7)0.0338 (7)0.9136 (4)0.0472 (17)
H2A1.2826320.0431650.8583120.057*
H2B1.4379370.0403500.9055940.057*
C31.2535 (7)0.1652 (7)0.9470 (4)0.0453 (17)
H3A1.2855840.2549010.9172230.054*
H3B1.2851740.1477851.0063890.054*
C40.9991 (8)0.3146 (7)0.9716 (4)0.0480 (18)
H4A1.0460060.3092421.0266830.058*
H4B1.0056330.4100420.9347680.058*
C51.1696 (8)0.3063 (7)1.0205 (4)0.0474 (17)
H5A1.2237160.3876610.9964020.057*
H5B1.2184270.3172281.0759630.057*
C110.7481 (7)0.1412 (6)0.7863 (3)0.0273 (13)
C120.5919 (7)0.0848 (6)0.7650 (3)0.0330 (14)
H120.5505590.0177940.7585560.040*
C130.4965 (7)0.1788 (6)0.7532 (4)0.0350 (14)
H130.3916960.1386550.7393310.042*
C140.5548 (7)0.3329 (6)0.7618 (3)0.0317 (14)
C150.7119 (7)0.3890 (6)0.7822 (4)0.0358 (15)
H150.7539570.4911040.7873930.043*
C160.8059 (7)0.2947 (6)0.7949 (3)0.0331 (14)
H160.9105070.3348740.8094870.040*
C170.4534 (7)0.4353 (6)0.7474 (3)0.0294 (13)
C180.3040 (7)0.4188 (6)0.7760 (3)0.0345 (14)
H180.2669750.3434250.8043910.041*
C190.2111 (7)0.5140 (6)0.7622 (4)0.0373 (15)
H190.1137150.5036740.7835390.045*
C200.2585 (7)0.6225 (6)0.7183 (3)0.0310 (14)
C210.4062 (8)0.6399 (7)0.6901 (4)0.0424 (17)
H210.4410590.7138370.6603760.051*
C220.5029 (7)0.5488 (7)0.7054 (4)0.0410 (16)
H220.6026400.5643110.6871230.049*
C230.1516 (8)0.7174 (7)0.6970 (4)0.0397 (16)
Zn21.0000000.0000000.5000000.0363 (3)
O1W0.8744 (5)0.0550 (4)0.3688 (2)0.0394 (10)
H1WA0.9501530.0506670.3357690.059*
H1WB0.8604230.0289530.3592890.059*
N30.7873 (9)0.0897 (10)0.5448 (6)0.0419 (15)0.5
H30.8057150.0819130.6053510.050*0.5
N41.0871 (12)0.1955 (9)0.4820 (6)0.0419 (15)0.5
H41.1236870.2017730.5379350.050*0.5
C60.7127 (18)0.2479 (14)0.5069 (10)0.063 (2)0.5
H6A0.6642190.2539280.4520950.075*0.5
H6B0.6322790.2832880.5420950.075*0.5
C70.8282 (15)0.3491 (16)0.4932 (9)0.063 (2)0.5
H7A0.8621520.3492030.5500880.075*0.5
H7B0.7669810.4480830.4661080.075*0.5
C80.9767 (16)0.3350 (14)0.4479 (8)0.063 (2)0.5
H8A1.0236450.4197550.4483580.075*0.5
H8B0.9490250.3382350.3894880.075*0.5
C91.2244 (19)0.165 (2)0.4347 (15)0.059 (3)0.5
H9A1.1929480.1828140.3752290.070*0.5
H9B1.2891790.2337660.4405790.070*0.5
C100.6842 (17)0.0081 (17)0.5368 (9)0.059 (3)0.5
H10A0.6464970.0094290.4783820.070*0.5
H10B0.5973970.0089590.5717020.070*0.5
N3X0.7879 (9)0.0031 (11)0.5569 (6)0.0419 (15)0.5
H3X0.8081760.0038090.6161840.050*0.5
N4X0.9879 (11)0.2316 (8)0.4855 (6)0.0419 (15)0.5
H4X1.0202620.2497250.5394540.050*0.5
C6X0.6707 (17)0.1419 (13)0.5207 (9)0.063 (2)0.5
H6XA0.6463790.1432470.4621950.075*0.5
H6XB0.5771790.1376260.5504350.075*0.5
C7X0.7152 (18)0.2923 (15)0.5230 (10)0.063 (2)0.5
H7XA0.7582740.2870240.5789830.075*0.5
H7XB0.6236530.3736190.5108030.075*0.5
C8X0.8334 (15)0.3249 (17)0.4581 (9)0.063 (2)0.5
H8XA0.8381500.4301110.4498350.075*0.5
H8XB0.7998590.3088910.4045350.075*0.5
C9X1.1027 (16)0.2646 (19)0.4236 (8)0.059 (3)0.5
H9XA1.0602500.2706070.3674050.070*0.5
H9XB1.1249400.3616870.4247350.070*0.5
C10X0.743 (2)0.1386 (19)0.5572 (16)0.059 (3)0.5
H10C0.6700540.1584930.5999630.070*0.5
H10D0.6951240.1350230.5025030.070*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0359 (6)0.0307 (5)0.0213 (5)0.0112 (4)0.0001 (4)0.0050 (4)
P10.0354 (9)0.0329 (8)0.0130 (7)0.0148 (7)0.0034 (6)0.0024 (6)
O10.038 (2)0.042 (2)0.019 (2)0.0099 (19)0.0004 (17)0.0121 (17)
O20.036 (2)0.041 (2)0.021 (2)0.0126 (19)0.0033 (17)0.0062 (17)
O30.042 (3)0.039 (2)0.021 (2)0.017 (2)0.0097 (18)0.0023 (17)
O40.059 (3)0.051 (3)0.050 (3)0.033 (2)0.003 (2)0.007 (2)
O50.111 (5)0.099 (4)0.052 (3)0.078 (4)0.023 (3)0.046 (3)
N10.037 (3)0.045 (3)0.017 (2)0.007 (2)0.005 (2)0.007 (2)
N20.048 (3)0.039 (3)0.015 (2)0.020 (2)0.001 (2)0.003 (2)
C10.033 (4)0.071 (5)0.035 (4)0.001 (3)0.007 (3)0.016 (3)
C20.041 (4)0.073 (5)0.032 (4)0.027 (4)0.000 (3)0.007 (3)
C30.051 (4)0.060 (4)0.025 (3)0.026 (4)0.011 (3)0.002 (3)
C40.073 (5)0.039 (4)0.030 (3)0.018 (4)0.006 (3)0.000 (3)
C50.061 (5)0.041 (4)0.034 (4)0.000 (3)0.010 (3)0.006 (3)
C110.040 (4)0.032 (3)0.012 (3)0.019 (3)0.003 (2)0.001 (2)
C120.040 (4)0.030 (3)0.029 (3)0.011 (3)0.003 (3)0.004 (3)
C130.030 (3)0.033 (3)0.038 (3)0.003 (3)0.002 (3)0.006 (3)
C140.038 (4)0.038 (3)0.023 (3)0.015 (3)0.003 (3)0.009 (3)
C150.045 (4)0.025 (3)0.039 (4)0.013 (3)0.005 (3)0.006 (3)
C160.033 (3)0.037 (3)0.026 (3)0.008 (3)0.008 (3)0.000 (3)
C170.038 (3)0.030 (3)0.021 (3)0.010 (3)0.004 (2)0.004 (2)
C180.039 (4)0.037 (3)0.030 (3)0.013 (3)0.002 (3)0.009 (3)
C190.037 (4)0.043 (4)0.036 (3)0.016 (3)0.002 (3)0.009 (3)
C200.040 (4)0.033 (3)0.022 (3)0.022 (3)0.001 (3)0.002 (2)
C210.069 (5)0.041 (4)0.026 (3)0.025 (3)0.003 (3)0.012 (3)
C220.043 (4)0.046 (4)0.041 (4)0.020 (3)0.009 (3)0.013 (3)
C230.057 (4)0.038 (4)0.026 (3)0.027 (3)0.010 (3)0.003 (3)
Zn20.0392 (6)0.0365 (6)0.0346 (6)0.0141 (5)0.0030 (5)0.0053 (4)
O1W0.044 (3)0.053 (3)0.024 (2)0.012 (2)0.0033 (19)0.0136 (19)
N30.064 (4)0.046 (4)0.022 (2)0.023 (4)0.001 (3)0.011 (3)
N40.064 (4)0.046 (4)0.022 (2)0.023 (4)0.001 (3)0.011 (3)
C60.081 (5)0.051 (4)0.040 (4)0.018 (4)0.018 (3)0.011 (3)
C70.081 (5)0.051 (4)0.040 (4)0.018 (4)0.018 (3)0.011 (3)
C80.081 (5)0.051 (4)0.040 (4)0.018 (4)0.018 (3)0.011 (3)
C90.068 (6)0.096 (7)0.030 (4)0.054 (5)0.017 (5)0.019 (5)
C100.068 (6)0.096 (7)0.030 (4)0.054 (5)0.017 (5)0.019 (5)
N3X0.064 (4)0.046 (4)0.022 (2)0.023 (4)0.001 (3)0.011 (3)
N4X0.064 (4)0.046 (4)0.022 (2)0.023 (4)0.001 (3)0.011 (3)
C6X0.081 (5)0.051 (4)0.040 (4)0.018 (4)0.018 (3)0.011 (3)
C7X0.081 (5)0.051 (4)0.040 (4)0.018 (4)0.018 (3)0.011 (3)
C8X0.081 (5)0.051 (4)0.040 (4)0.018 (4)0.018 (3)0.011 (3)
C9X0.068 (6)0.096 (7)0.030 (4)0.054 (5)0.017 (5)0.019 (5)
C10X0.068 (6)0.096 (7)0.030 (4)0.054 (5)0.017 (5)0.019 (5)
Geometric parameters (Å, º) top
Zn1—O1i2.189 (4)C21—C221.385 (8)
Zn1—O12.189 (4)C22—H220.9300
Zn1—N1i2.099 (5)Zn2—O1Wii2.295 (4)
Zn1—N12.099 (5)Zn2—O1W2.295 (4)
Zn1—N2i2.125 (4)Zn2—N32.104 (7)
Zn1—N22.125 (4)Zn2—N3ii2.104 (7)
P1—O11.503 (4)Zn2—N4ii2.092 (7)
P1—O21.511 (4)Zn2—N42.092 (7)
P1—O31.583 (4)Zn2—N3Xii2.107 (7)
P1—C111.818 (5)Zn2—N3X2.107 (7)
O3—H3C0.8597Zn2—N4Xii2.099 (7)
O4—C231.251 (8)Zn2—N4X2.099 (7)
O5—C231.258 (8)O1W—H1WA0.8666
N1—H10.9800O1W—H1WB0.8636
N1—C11.454 (8)N3—H30.9800
N1—C51.493 (8)N3—C61.471 (9)
N2—H20.9800N3—C101.447 (8)
N2—C31.487 (8)N4—H40.9800
N2—C41.459 (8)N4—C81.443 (8)
C1—H1A0.9700N4—C91.461 (9)
C1—H1B0.9700C6—H6A0.9696
C1—C21.531 (9)C6—H6B0.9700
C2—H2A0.9700C6—C71.522 (11)
C2—H2B0.9700C7—H7A0.9697
C2—C31.490 (9)C7—H7B0.9701
C3—H3A0.9700C7—C81.514 (11)
C3—H3B0.9700C8—H8A0.9699
C4—H4A0.9700C8—H8B0.9701
C4—H4B0.9700C9—H9A0.9700
C4—C5i1.522 (9)C9—H9B0.9700
C5—H5A0.9700C9—C10ii1.48 (2)
C5—H5B0.9700C10—H10A0.9697
C11—C121.384 (8)C10—H10B0.9702
C11—C161.389 (7)N3X—H3X0.9800
C12—H120.9300N3X—C6X1.475 (8)
C12—C131.382 (8)N3X—C10X1.460 (10)
C13—H130.9300N4X—H4X0.9800
C13—C141.394 (8)N4X—C8X1.462 (9)
C14—C151.388 (8)N4X—C9X1.473 (8)
C14—C171.496 (7)C6X—H6XA0.9702
C15—H150.9300C6X—H6XB0.9699
C15—C161.379 (8)C6X—C7X1.544 (11)
C16—H160.9300C7X—H7XA0.9700
C17—C181.401 (8)C7X—H7XB0.9700
C17—C221.381 (8)C7X—C8X1.527 (11)
C18—H180.9300C8X—H8XA0.9700
C18—C191.382 (8)C8X—H8XB0.9694
C19—H190.9300C9X—H9XA0.9700
C19—C201.363 (8)C9X—H9XB0.9700
C20—C211.383 (8)C9X—C10Xii1.58 (3)
C20—C231.513 (8)C10X—H10C0.9699
C21—H210.9300C10X—H10D0.9699
O1i—Zn1—O1180.0N3ii—Zn2—N3180.0
N1i—Zn1—O188.15 (16)N3ii—Zn2—N3Xii21.5 (3)
N1—Zn1—O191.85 (16)N3—Zn2—N3Xii158.5 (3)
N1i—Zn1—O1i91.85 (16)N4ii—Zn2—O1W83.7 (3)
N1—Zn1—O1i88.15 (16)N4—Zn2—O1Wii83.7 (3)
N1i—Zn1—N1180.0N4—Zn2—O1W96.3 (3)
N1i—Zn1—N285.27 (19)N4ii—Zn2—O1Wii96.3 (3)
N1—Zn1—N2i85.27 (19)N4—Zn2—N396.8 (4)
N1i—Zn1—N2i94.73 (18)N4ii—Zn2—N3ii96.8 (4)
N1—Zn1—N294.73 (18)N4—Zn2—N3ii83.2 (4)
N2—Zn1—O1i90.00 (15)N4ii—Zn2—N383.2 (4)
N2—Zn1—O190.00 (15)N4ii—Zn2—N4180.0
N2i—Zn1—O190.00 (15)N4—Zn2—N3Xii62.3 (4)
N2i—Zn1—O1i90.00 (15)N4ii—Zn2—N3Xii117.7 (4)
N2i—Zn1—N2180.0 (2)N4—Zn2—N4Xii155.7 (3)
O1—P1—O2116.2 (2)N4ii—Zn2—N4Xii24.3 (3)
O1—P1—O3110.1 (2)N3X—Zn2—O1W90.3 (3)
O1—P1—C11109.0 (2)N3Xii—Zn2—O1W89.7 (3)
O2—P1—O3110.9 (2)N3Xii—Zn2—N3X180.00 (19)
O2—P1—C11107.0 (2)N4X—Zn2—O1W88.2 (3)
O3—P1—C11102.6 (2)N4Xii—Zn2—O1W91.8 (3)
P1—O1—Zn1135.3 (2)N4Xii—Zn2—N3X85.0 (4)
P1—O3—H3C104.2N4X—Zn2—N3X95.0 (4)
Zn1—N1—H1107.3Zn2—O1W—H1WA102.4
C1—N1—Zn1115.2 (4)Zn2—O1W—H1WB107.2
C1—N1—H1107.3H1WA—O1W—H1WB88.9
C1—N1—C5114.3 (5)Zn2—N3—H3106.9
C5—N1—Zn1105.1 (4)C6—N3—Zn2117.6 (8)
C5—N1—H1107.3C6—N3—H3106.9
Zn1—N2—H2108.4C10—N3—Zn2107.4 (8)
C3—N2—Zn1112.3 (4)C10—N3—H3106.9
C3—N2—H2108.4C10—N3—C6110.5 (11)
C4—N2—Zn1104.6 (4)Zn2—N4—H4106.5
C4—N2—H2108.4C8—N4—Zn2115.6 (9)
C4—N2—C3114.4 (5)C8—N4—H4106.5
N1—C1—H1A109.2C8—N4—C9116.2 (12)
N1—C1—H1B109.2C9—N4—Zn2105.0 (9)
N1—C1—C2112.1 (5)C9—N4—H4106.5
H1A—C1—H1B107.9N3—C6—H6A109.0
C2—C1—H1A109.2N3—C6—H6B109.5
C2—C1—H1B109.2N3—C6—C7112.2 (12)
C1—C2—H2A108.0H6A—C6—H6B107.7
C1—C2—H2B108.0C7—C6—H6A107.4
H2A—C2—H2B107.3C7—C6—H6B110.9
C3—C2—C1117.1 (5)C6—C7—H7A103.5
C3—C2—H2A108.0C6—C7—H7B104.6
C3—C2—H2B108.0H7A—C7—H7B109.5
N2—C3—C2111.6 (5)C8—C7—C6130.5 (14)
N2—C3—H3A109.3C8—C7—H7A103.1
N2—C3—H3B109.3C8—C7—H7B104.7
C2—C3—H3A109.3N4—C8—C7113.1 (12)
C2—C3—H3B109.3N4—C8—H8A109.8
H3A—C3—H3B108.0N4—C8—H8B108.4
N2—C4—H4A109.6C7—C8—H8A111.0
N2—C4—H4B109.6C7—C8—H8B106.8
N2—C4—C5i110.3 (5)H8A—C8—H8B107.6
H4A—C4—H4B108.1N4—C9—H9A109.0
C5i—C4—H4A109.6N4—C9—H9B109.0
C5i—C4—H4B109.6N4—C9—C10ii113.0 (14)
N1—C5—C4i109.3 (5)H9A—C9—H9B107.8
N1—C5—H5A109.8C10ii—C9—H9A109.0
N1—C5—H5B109.8C10ii—C9—H9B109.0
C4i—C5—H5A109.8N3—C10—C9ii106.5 (14)
C4i—C5—H5B109.8N3—C10—H10A110.4
H5A—C5—H5B108.3N3—C10—H10B110.5
C12—C11—P1124.4 (4)C9ii—C10—H10A109.7
C12—C11—C16118.0 (5)C9ii—C10—H10B110.2
C16—C11—P1117.6 (4)H10A—C10—H10B109.5
C11—C12—H12119.6Zn2—N3X—H3X106.4
C13—C12—C11120.9 (5)C6X—N3X—Zn2112.4 (8)
C13—C12—H12119.6C6X—N3X—H3X106.4
C12—C13—H13119.5C10X—N3X—Zn2108.7 (9)
C12—C13—C14121.0 (6)C10X—N3X—H3X106.4
C14—C13—H13119.5C10X—N3X—C6X115.9 (12)
C13—C14—C17121.6 (5)Zn2—N4X—H4X108.9
C15—C14—C13118.0 (5)C8X—N4X—Zn2113.3 (8)
C15—C14—C17120.4 (5)C8X—N4X—H4X108.9
C14—C15—H15119.7C8X—N4X—C9X112.4 (10)
C16—C15—C14120.6 (5)C9X—N4X—Zn2104.2 (8)
C16—C15—H15119.7C9X—N4X—H4X108.9
C11—C16—H16119.3N3X—C6X—H6XA108.3
C15—C16—C11121.5 (6)N3X—C6X—H6XB108.4
C15—C16—H16119.3N3X—C6X—C7X116.4 (13)
C18—C17—C14120.9 (5)H6XA—C6X—H6XB107.4
C22—C17—C14121.5 (6)C7X—C6X—H6XA107.7
C22—C17—C18117.6 (5)C7X—C6X—H6XB108.3
C17—C18—H18119.8C6X—C7X—H7XA109.6
C19—C18—C17120.4 (5)C6X—C7X—H7XB109.6
C19—C18—H18119.8H7XA—C7X—H7XB108.1
C18—C19—H19119.1C8X—C7X—C6X110.4 (13)
C20—C19—C18121.8 (6)C8X—C7X—H7XA109.6
C20—C19—H19119.1C8X—C7X—H7XB109.6
C19—C20—C21118.1 (5)N4X—C8X—C7X112.2 (12)
C19—C20—C23121.5 (6)N4X—C8X—H8XA108.6
C21—C20—C23120.3 (6)N4X—C8X—H8XB110.0
C20—C21—H21119.5C7X—C8X—H8XA108.6
C20—C21—C22121.1 (6)C7X—C8X—H8XB109.4
C22—C21—H21119.5H8XA—C8X—H8XB107.9
C17—C22—C21121.0 (6)N4X—C9X—H9XA109.3
C17—C22—H22119.5N4X—C9X—H9XB109.4
C21—C22—H22119.5N4X—C9X—C10Xii111.5 (14)
O4—C23—O5125.7 (6)H9XA—C9X—H9XB108.0
O4—C23—C20117.1 (6)C10Xii—C9X—H9XA108.9
O5—C23—C20117.3 (6)C10Xii—C9X—H9XB109.6
O1Wii—Zn2—O1W180.0N3X—C10X—H10C110.9
N3—Zn2—O1Wii92.6 (3)N3X—C10X—H10D110.4
N3ii—Zn2—O1Wii87.4 (3)C9Xii—C10X—H10C110.9
N3ii—Zn2—O1W92.6 (3)C9Xii—C10X—H10D110.2
N3—Zn2—O1W87.4 (3)H10C—C10X—H10D108.8
Zn1—N1—C1—C254.5 (6)C17—C14—C15—C16179.5 (5)
Zn1—N1—C5—C4i40.5 (5)C17—C18—C19—C202.4 (9)
Zn1—N2—C3—C258.8 (5)C18—C17—C22—C211.9 (9)
Zn1—N2—C4—C5i41.9 (5)C18—C19—C20—C212.6 (9)
P1—C11—C12—C13179.7 (4)C18—C19—C20—C23174.7 (5)
P1—C11—C16—C15179.5 (4)C19—C20—C21—C220.5 (9)
O1—P1—C11—C1273.1 (5)C19—C20—C23—O413.2 (8)
O1—P1—C11—C16107.0 (4)C19—C20—C23—O5167.7 (6)
O2—P1—O1—Zn16.4 (4)C20—C21—C22—C171.7 (9)
O2—P1—C11—C12160.4 (4)C21—C20—C23—O4169.6 (6)
O2—P1—C11—C1619.5 (5)C21—C20—C23—O59.5 (8)
O3—P1—O1—Zn1120.7 (3)C22—C17—C18—C190.1 (8)
O3—P1—C11—C1243.6 (5)C23—C20—C21—C22176.8 (5)
O3—P1—C11—C16136.3 (4)Zn2—N3—C6—C741.4 (15)
N1—C1—C2—C372.0 (7)Zn2—N3—C10—C9ii42.7 (14)
C1—N1—C5—C4i167.7 (5)Zn2—N4—C8—C748.3 (14)
C1—C2—C3—N274.9 (7)Zn2—N4—C9—C10ii39.5 (19)
C3—N2—C4—C5i165.2 (5)Zn2—N3X—C6X—C7X56.2 (14)
C4—N2—C3—C2177.8 (5)Zn2—N3X—C10X—C9Xii38.2 (17)
C5—N1—C1—C2176.4 (5)Zn2—N4X—C8X—C7X63.1 (13)
C11—P1—O1—Zn1127.4 (3)Zn2—N4X—C9X—C10Xii43.1 (13)
C11—C12—C13—C140.5 (9)N3—C6—C7—C853 (2)
C12—C11—C16—C150.4 (8)C6—N3—C10—C9ii172.2 (12)
C12—C13—C14—C150.2 (8)C6—C7—C8—N458 (2)
C12—C13—C14—C17178.7 (5)C8—N4—C9—C10ii168.5 (14)
C13—C14—C15—C161.0 (8)C9—N4—C8—C7172.0 (13)
C13—C14—C17—C1840.4 (8)C10—N3—C6—C7165.1 (12)
C13—C14—C17—C22139.4 (6)N3X—C6X—C7X—C8X73.0 (16)
C14—C15—C16—C111.1 (9)C6X—N3X—C10X—C9Xii166.0 (12)
C14—C17—C18—C19179.9 (5)C6X—C7X—C8X—N4X75.3 (16)
C14—C17—C22—C21177.9 (5)C8X—N4X—C9X—C10Xii166.2 (12)
C15—C14—C17—C18141.2 (6)C9X—N4X—C8X—C7X179.0 (11)
C15—C14—C17—C2239.0 (8)C10X—N3X—C6X—C7X177.9 (14)
C16—C11—C12—C130.4 (8)
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.981.982.923 (6)161
N2—H2···O4iii0.982.263.220 (6)166
N3—H3···O30.982.113.076 (10)168
N4—H4···O5iii0.981.842.815 (11)178
N3X—H3X···O30.982.333.239 (11)155
N4X—H4X···O5iii0.982.193.075 (11)150
O3—H3C···O4iii0.861.752.597 (6)167
O1W—H1WA···O2ii0.872.082.735 (5)132
O1W—H1WB···O5iv0.861.822.668 (6)169
Symmetry codes: (ii) x+2, y, z+1; (iii) x+1, y1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

VL is indebted for support of the project by Agenţia Natională pentru Cercetare şi Dezvoltare.

Funding information

Funding for this research was provided by: Agenţia Natională pentru Cercetare şi Dezvoltare (award No. 20.80009.5007.04).

References

First citationBosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationGagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Chem. Rev. 112, 1034–1054.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeering, C., Francis, B., Nateghi, B., Makhloufi, G., Lüdeke, S. & Janiak, C. (2016b). CrystEngComm, 18, 5209–5223.  Web of Science CSD CrossRef CAS Google Scholar
First citationHeering, C., Nateghi, B. & Janiak, C. (2016a). Crystals, 6, 22–35.  Web of Science CSD CrossRef Google Scholar
First citationKaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH.  Google Scholar
First citationLampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.  CrossRef CAS Google Scholar
First citationMacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials. Hoboken: John Wiley and Sons.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.  Web of Science CrossRef CAS Google Scholar
First citationSuh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.  Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355–2370.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. (In Russian.)  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds