research communications
H-chromene-3-carbonitrile
of 2-amino-5,6,7,8-tetrahydro-7,7-dimethyl-4-(naphthalen-2-yl)-5-oxo-4aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de
In the title compound, C22H20N2O2, both six-membered rings of the fused heterocyclic system display envelope conformations; the two carbon atoms bearing the methyl groups and the naphthyl substituent both lie outside the planes of the other atoms of each ring. In the crystal, the amino group forms hydrogen bonds of the types N—H⋯O=C and N—H⋯N≡C, leading to the formation of a double layer structure propagating parallel to the bc plane. Weak C—H⋯O and C—H⋯π interactions may reinforce the layers.
Keywords: chromene; naphthyl; crystal structure.
CCDC reference: 2172530
1. Chemical context
Six-membered heterocycles involving 4H-pyran units represent an important class of biologically active synthetic and natural products, many of which attract the interest of the drug industry (Lega et al., 2016). Pyrans possess antimicrobial (Dazmiri et al., 2020), antituberculosis (Kalaria et al., 2014) and antitumor (Wang et al., 2014) activities, whereby 4H-pyrans are moieties in a series of natural products (Singh et al., 1996). A number of 4H-pyrans are used, for example, as photoactive ingredients (Armesto et al., 1989) or agrochemicals (Kumar et al., 2009). Synthetically, they are intermediates for the synthesis of such as pyranopyrimidines and pyranopyrazoles (Elgemeie et al., 1987, 1988) and consequently the synthesis of 4H-pyrans themselves is of interest to organic chemists.
Some time ago, we reported the synthesis of pyridine-2(1H)-thiones and their condensed derivatives from the reactions of arylmethylenecyanothioacetamides with suitable active methylene compounds (Elgemeie et al., 2002).We also described the reaction of the dimedone 1 with naphthylmethylenecyanothioacetamide to produce a condensed pyridine-2(1H)-thione (Attia et al., 1997). The course of this reaction prompted us to investigate how 1 would react with naphthylmethylenecyanoacetamide [2-cyano-3-(naphthalen-2-yl)acrylamide, 2] in boiling ethanol containing triethylamine. The product was shown to be neither of the expected condensed pyridin-2(1H)-ones 3 or 4 but rather the condensed pyran nitrile 5 (Scheme 1). The latter structure was inferred on the basis of elemental analysis and spectroscopic data: thus, the of 5 was compatible with the molecular formula C22H20N2O2 (M+, 344), and the 1H NMR spectrum had signals at 4.37 (pyran-4H), 7.06 (br, NH2) and 7.29–7.90 (m, ArH).
We assume that the formation of 5 proceeds via addition of the active methylene group of 1 to the double bond of 2 to give the intermediates 6, 7 and then 8, the latter finally losing one molecule of water to give the final product 5 (Scheme 2). In order to establish the structure of this compound unambiguously, its was determined and is reported here.
2. Structural commentary
The molecular structure of 5 is shown in Fig. 1 and it confirms the postulated structure noted above. Both six-membered rings display envelope conformations in which five atoms are reasonably coplanar (for torsion angles see Table 1): C4 deviates by 0.317 (1) Å from the mean plane (I) of atoms O1/C2/C3/C4A/C8A (r.m.s. deviation = 0.031 Å), and C7 lies 0.653 (2) Å outside the mean plane (II) of C4A/C5–C8 (r.m.s. deviation = 0.030 Å). The interplanar angle I/II is 9.97 (4)°. The naphthyl ring system (r.m.s. deviation = 0.012 Å) is effectively perpendicular to plane I [interplanar angle = 86.56 (3)°]. The amino group is almost planar (r.m.s. deviation of C2/N1/H01/H02 = 0.01 Å) and deviates slightly from plane I [interplanar angle = 10.0 (6)°].
|
3. Supramolecular features
In the crystal, the amino group acts as donor for two classical hydrogen bonds (Table 2). This leads to a double layer structure (Fig. 2) propagating parallel to the bc plane. The H⋯O separation of the weak hydrogen bond C6—H6B⋯N2 (x, −1 + y, z) is rather long at 2.69 Å but acceptably linear (160°) and presumably reinforces the layer structure, but is not shown in Fig. 2. The short contact C10—H10B⋯Cg (C12–16/C21), with H⋯Cg 2.79 Å and a C—H⋯Cg angle of 139°, may represent a C—H⋯π interaction between the double layers. There are no short π–π stacking contacts.
4. Database survey
A search of the Cambridge Database (Version 2021.3.0; Groom et al., 2016) showed that the motif of a 4-substituted 2-amino-5,6,7,8-tetrahydro-7,7-dimethyl-5-oxo-4H-chromene-3-carbonitrile has been the subject of many structure determinations. A total of 54 hits with variously substituted phenyl groups was found, which reduces to 32 when duplicate structure determinations, various solvates and polymorphs are not considered. For all but one of these structures, the 4-position also bears a hydrogen atom, the exception being the 4-methyl, 4-nitrophenyl derivative (Cai et al., 2012; refcode TESNEM). Additionally, the 4-(1-naphthyl) derivative was found (Nesterov et al., 2004; refcode ETOKIH), which is an isomer of the title compound 5. The packing of ETOKIH is quite different from that of 5; the hydrogen atom corresponding to H01 in 5 forms N—H⋯N hydrogen bonds, leading to inversion dimers, whereas the other NH hydrogen atom is not involved in hydrogen bonding. A least-squares overlay of 5 and ETOKIH (excluding methyl groups and all naphthyl carbon atoms except the ipso C atom) gave an r.m.s. deviation of 0.15 Å; Fig. 3 shows the slight differences in ring conformation.
5. Synthesis and crystallization
A mixture of dimedone 1 (0.010 mol), 2-cyano-3-(naphthalen-2-yl)acrylamide 2 (0.010 mol) and triethylamine (0.010 mol) in ethanol (10 ml) was refluxed for 2 h. The solid precipitate that formed was filtered off and recrystallized from ethanol solution to give pale yellow crystals of 5 in 90% yield, m.p. 474–475 K; IR (KBr, cm−1): υ 3345, 3258 (NH2), 2188 (CN), 1683 (C=O). 1H NMR (400 MHz DMSO-d6) δ: 1.11 (s, 3H, CH3), 1.53 (s, 3H, CH3), 2.07 (d, 2H, CH2), 2.14 (d, 2H, CH2), 4.37 (s, 1H, CH-pyran), 7.06 (s, br, 2H, NH2), 7.29–7.90 (m, 7H, C10H7). 13C NMR (100 MHz, DMSO-d6) δ: 27.2, 28.8, 32.2, 36.3, 50.4, 58.6 (aliphatic C), 120.2 (CN), 113.0, 142.2, 158.9, 163.0 (ethylene C), 120.2-133.3 (aromatic C), 196.2 (C=O). MS (EI): m/z 344 [M+]. Analysis calculated for C22H20N2O2: C 76.72; H 5.85; N 8.13%. Found: C 76.6; H 5.7; N 8.1%.
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms of the NH2 group were refined freely, but with N—H distances restrained to be approximately equal using a SADI instruction in SHELXL. The methyl groups were included as idealised rigid groups allowed to rotate but not tip (C—H = 0.98 Å; H—C—H = 109.5°). The other hydrogen atoms were included using a riding model starting from calculated positions (C—H = 0.95, 0.98 and 1.00 Å for aromatic, methylene and methine H atoms, respectively). The Uiso(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for the methyl groups and 1.2 × Ueq for other hydrogen atoms.
details are summarized in Table 3Supporting information
CCDC reference: 2172530
https://doi.org/10.1107/S2056989022005199/hb8021sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022005199/hb8021Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).C22H20N2O2 | F(000) = 1456 |
Mr = 344.40 | Dx = 1.257 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 25.3144 (3) Å | Cell parameters from 35871 reflections |
b = 9.25765 (11) Å | θ = 3.5–77.4° |
c = 15.6778 (2) Å | µ = 0.65 mm−1 |
β = 97.8724 (10)° | T = 100 K |
V = 3639.51 (8) Å3 | Lath, colourless |
Z = 8 | 0.08 × 0.05 × 0.02 mm |
XtaLAB Synergy, HyPix diffractometer | 3856 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 3694 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.030 |
ω scans | θmax = 77.6°, θmin = 3.5° |
Absorption correction: multi-scan (CrysalisPro; Rigaku OD, 2021) | h = −31→31 |
Tmin = 0.826, Tmax = 1.000 | k = −11→11 |
61093 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0362P)2 + 2.6486P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
3856 reflections | Δρmax = 0.22 e Å−3 |
245 parameters | Δρmin = −0.20 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 24.6913 (0.0028) x - 2.0266 (0.0045) y - 2.5063 (0.0065) z = 7.9737 (0.0050) * -0.0099 (0.0006) C4A * -0.0265 (0.0007) C5 * 0.0300 (0.0005) C6 * -0.0353 (0.0005) C8 * 0.0417 (0.0007) C8A -0.6525 (0.0015) C7 Rms deviation of fitted atoms = 0.0306 23.4020 (0.0039) x - 3.5289 (0.0034) y - 1.8463 (0.0073) z = 7.1162 (0.0054) Angle to previous plane (with approximate esd) = 9.967 ( 0.036 ) * -0.0423 (0.0006) O1 * 0.0228 (0.0006) C2 * -0.0021 (0.0005) C3 * -0.0200 (0.0005) C4A * 0.0415 (0.0006) C8A -0.3166 (0.0014) C4 Rms deviation of fitted atoms = 0.0298 - 6.0033 (0.0056) x - 6.6409 (0.0023) y + 10.6832 (0.0042) z = 0.1010 (0.0050) Angle to previous plane (with approximate esd) = 86.556 ( 0.027 ) * -0.0188 (0.0008) C12 * -0.0048 (0.0008) C13 * 0.0149 (0.0009) C14 * 0.0098 (0.0010) C15 * -0.0015 (0.0011) C16 * -0.0151 (0.0011) C17 * -0.0093 (0.0011) C18 * 0.0169 (0.0011) C19 * 0.0111 (0.0010) C20 * -0.0032 (0.0010) C21 Rms deviation of fitted atoms = 0.0119 |
x | y | z | Uiso*/Ueq | ||
O1 | 0.42046 (3) | 0.54277 (7) | 0.46059 (4) | 0.01878 (16) | |
C2 | 0.44459 (4) | 0.67304 (10) | 0.48220 (6) | 0.01719 (19) | |
N1 | 0.45324 (4) | 0.74447 (10) | 0.41141 (6) | 0.02197 (19) | |
H01 | 0.4646 (6) | 0.8361 (15) | 0.4146 (9) | 0.038 (4)* | |
H02 | 0.4446 (6) | 0.7028 (15) | 0.3594 (8) | 0.036 (4)* | |
C3 | 0.45648 (4) | 0.71509 (10) | 0.56594 (6) | 0.0174 (2) | |
C4 | 0.43643 (4) | 0.63303 (11) | 0.63906 (6) | 0.0175 (2) | |
H4 | 0.465617 | 0.629568 | 0.688927 | 0.021* | |
C4A | 0.42383 (4) | 0.48120 (10) | 0.60884 (6) | 0.0172 (2) | |
C5 | 0.42044 (4) | 0.36809 (11) | 0.67350 (6) | 0.0198 (2) | |
O2 | 0.42982 (3) | 0.39810 (8) | 0.75024 (5) | 0.02716 (18) | |
C6 | 0.40710 (4) | 0.21643 (11) | 0.64222 (7) | 0.0231 (2) | |
H6A | 0.389602 | 0.164811 | 0.686041 | 0.028* | |
H6B | 0.440604 | 0.164729 | 0.636056 | 0.028* | |
C7 | 0.37033 (4) | 0.21205 (11) | 0.55576 (7) | 0.0223 (2) | |
C8 | 0.39608 (4) | 0.30239 (11) | 0.49014 (6) | 0.0204 (2) | |
H8A | 0.426832 | 0.248784 | 0.473153 | 0.025* | |
H8B | 0.369856 | 0.316614 | 0.437883 | 0.025* | |
C8A | 0.41454 (4) | 0.44589 (10) | 0.52524 (6) | 0.01697 (19) | |
C9 | 0.48381 (4) | 0.84661 (11) | 0.58446 (6) | 0.0183 (2) | |
N2 | 0.50703 (4) | 0.95261 (10) | 0.60116 (6) | 0.0238 (2) | |
C10 | 0.36359 (5) | 0.05655 (12) | 0.52270 (8) | 0.0311 (3) | |
H10A | 0.338967 | 0.055087 | 0.468724 | 0.047* | |
H10B | 0.349210 | −0.003296 | 0.565660 | 0.047* | |
H10C | 0.398300 | 0.018361 | 0.512555 | 0.047* | |
C11 | 0.31556 (4) | 0.27340 (14) | 0.56747 (8) | 0.0312 (3) | |
H11A | 0.320032 | 0.368819 | 0.594563 | 0.047* | |
H11B | 0.298005 | 0.208440 | 0.604174 | 0.047* | |
H11C | 0.293616 | 0.282185 | 0.511149 | 0.047* | |
C12 | 0.33761 (4) | 0.68876 (11) | 0.62556 (6) | 0.0203 (2) | |
H12 | 0.332117 | 0.622111 | 0.579111 | 0.024* | |
C13 | 0.38823 (4) | 0.70882 (11) | 0.66778 (6) | 0.0189 (2) | |
C14 | 0.39613 (5) | 0.80926 (12) | 0.73650 (7) | 0.0265 (2) | |
H14 | 0.430947 | 0.823540 | 0.766542 | 0.032* | |
C15 | 0.35431 (5) | 0.88596 (13) | 0.76020 (7) | 0.0330 (3) | |
H15 | 0.360637 | 0.953461 | 0.806098 | 0.040* | |
C16 | 0.30184 (5) | 0.86665 (13) | 0.71766 (7) | 0.0308 (3) | |
C17 | 0.25720 (6) | 0.94476 (16) | 0.73986 (9) | 0.0462 (4) | |
H17 | 0.262423 | 1.014310 | 0.784776 | 0.055* | |
C18 | 0.20725 (6) | 0.92164 (18) | 0.69796 (10) | 0.0517 (4) | |
H18 | 0.178037 | 0.975221 | 0.713572 | 0.062* | |
C19 | 0.19874 (5) | 0.81873 (17) | 0.63165 (10) | 0.0460 (4) | |
H19 | 0.163632 | 0.801759 | 0.603416 | 0.055* | |
C20 | 0.24071 (5) | 0.74252 (14) | 0.60733 (8) | 0.0336 (3) | |
H20 | 0.234466 | 0.674176 | 0.561864 | 0.040* | |
C21 | 0.29329 (4) | 0.76481 (12) | 0.64938 (7) | 0.0249 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0252 (4) | 0.0155 (3) | 0.0155 (3) | −0.0050 (3) | 0.0022 (3) | 0.0003 (3) |
C2 | 0.0174 (4) | 0.0155 (4) | 0.0189 (5) | −0.0018 (3) | 0.0030 (3) | −0.0002 (4) |
N1 | 0.0322 (5) | 0.0182 (4) | 0.0159 (4) | −0.0071 (4) | 0.0049 (3) | −0.0012 (3) |
C3 | 0.0179 (4) | 0.0165 (5) | 0.0176 (5) | −0.0017 (4) | 0.0024 (3) | 0.0004 (4) |
C4 | 0.0204 (5) | 0.0176 (5) | 0.0141 (4) | −0.0018 (4) | 0.0005 (3) | 0.0008 (4) |
C4A | 0.0162 (4) | 0.0164 (5) | 0.0190 (5) | 0.0003 (3) | 0.0025 (3) | 0.0014 (4) |
C5 | 0.0195 (5) | 0.0199 (5) | 0.0204 (5) | 0.0019 (4) | 0.0036 (4) | 0.0030 (4) |
O2 | 0.0386 (4) | 0.0249 (4) | 0.0177 (4) | 0.0001 (3) | 0.0028 (3) | 0.0039 (3) |
C6 | 0.0281 (5) | 0.0175 (5) | 0.0238 (5) | −0.0008 (4) | 0.0038 (4) | 0.0050 (4) |
C7 | 0.0246 (5) | 0.0179 (5) | 0.0247 (5) | −0.0042 (4) | 0.0042 (4) | 0.0025 (4) |
C8 | 0.0238 (5) | 0.0171 (5) | 0.0207 (5) | −0.0023 (4) | 0.0042 (4) | −0.0006 (4) |
C8A | 0.0163 (4) | 0.0160 (4) | 0.0189 (5) | 0.0003 (3) | 0.0036 (3) | 0.0030 (4) |
C9 | 0.0196 (5) | 0.0203 (5) | 0.0148 (4) | 0.0007 (4) | 0.0023 (3) | 0.0008 (4) |
N2 | 0.0290 (5) | 0.0208 (4) | 0.0210 (4) | −0.0049 (4) | 0.0018 (3) | −0.0004 (3) |
C10 | 0.0423 (7) | 0.0197 (5) | 0.0308 (6) | −0.0092 (5) | 0.0036 (5) | 0.0022 (4) |
C11 | 0.0219 (5) | 0.0343 (6) | 0.0380 (6) | −0.0061 (5) | 0.0062 (5) | 0.0034 (5) |
C12 | 0.0256 (5) | 0.0172 (5) | 0.0188 (5) | 0.0001 (4) | 0.0054 (4) | 0.0007 (4) |
C13 | 0.0265 (5) | 0.0162 (5) | 0.0148 (4) | −0.0013 (4) | 0.0057 (4) | 0.0018 (4) |
C14 | 0.0361 (6) | 0.0251 (5) | 0.0183 (5) | −0.0046 (4) | 0.0041 (4) | −0.0030 (4) |
C15 | 0.0524 (7) | 0.0264 (6) | 0.0228 (5) | 0.0005 (5) | 0.0143 (5) | −0.0063 (4) |
C16 | 0.0433 (7) | 0.0259 (6) | 0.0274 (6) | 0.0071 (5) | 0.0193 (5) | 0.0043 (5) |
C17 | 0.0621 (9) | 0.0411 (8) | 0.0421 (7) | 0.0186 (7) | 0.0304 (7) | 0.0038 (6) |
C18 | 0.0496 (8) | 0.0577 (9) | 0.0551 (9) | 0.0287 (7) | 0.0329 (7) | 0.0181 (7) |
C19 | 0.0308 (7) | 0.0577 (9) | 0.0527 (8) | 0.0146 (6) | 0.0174 (6) | 0.0211 (7) |
C20 | 0.0270 (6) | 0.0363 (6) | 0.0391 (7) | 0.0045 (5) | 0.0098 (5) | 0.0102 (5) |
C21 | 0.0291 (5) | 0.0219 (5) | 0.0261 (5) | 0.0029 (4) | 0.0121 (4) | 0.0071 (4) |
O1—C2 | 1.3733 (11) | C17—C18 | 1.359 (2) |
O1—C8A | 1.3769 (11) | C18—C19 | 1.405 (2) |
C2—N1 | 1.3355 (13) | C19—C20 | 1.3724 (18) |
C2—C3 | 1.3628 (13) | C20—C21 | 1.4172 (17) |
C3—C9 | 1.4109 (13) | N1—H01 | 0.895 (13) |
C3—C4 | 1.5193 (13) | N1—H02 | 0.901 (13) |
C4—C4A | 1.5035 (13) | C4—H4 | 1.0000 |
C4—C13 | 1.5278 (14) | C6—H6A | 0.9900 |
C4A—C8A | 1.3400 (14) | C6—H6B | 0.9900 |
C4A—C5 | 1.4681 (13) | C8—H8A | 0.9900 |
C5—O2 | 1.2259 (13) | C8—H8B | 0.9900 |
C5—C6 | 1.5101 (14) | C10—H10A | 0.9800 |
C6—C7 | 1.5362 (15) | C10—H10B | 0.9800 |
C7—C10 | 1.5316 (15) | C10—H10C | 0.9800 |
C7—C11 | 1.5323 (15) | C11—H11A | 0.9800 |
C7—C8 | 1.5384 (14) | C11—H11B | 0.9800 |
C8—C8A | 1.4885 (13) | C11—H11C | 0.9800 |
C9—N2 | 1.1553 (13) | C12—H12 | 0.9500 |
C12—C13 | 1.3721 (14) | C14—H14 | 0.9500 |
C12—C21 | 1.4173 (14) | C15—H15 | 0.9500 |
C13—C14 | 1.4164 (14) | C17—H17 | 0.9500 |
C14—C15 | 1.3678 (17) | C18—H18 | 0.9500 |
C15—C16 | 1.4135 (18) | C19—H19 | 0.9500 |
C16—C21 | 1.4206 (17) | C20—H20 | 0.9500 |
C16—C17 | 1.4244 (17) | ||
C2—O1—C8A | 118.69 (7) | C12—C21—C16 | 118.93 (10) |
N1—C2—C3 | 128.28 (9) | C2—N1—H01 | 120.8 (9) |
N1—C2—O1 | 110.35 (8) | C2—N1—H02 | 119.5 (9) |
C3—C2—O1 | 121.37 (9) | H01—N1—H02 | 119.5 (13) |
C2—C3—C9 | 118.82 (9) | C4A—C4—H4 | 108.6 |
C2—C3—C4 | 122.11 (9) | C3—C4—H4 | 108.6 |
C9—C3—C4 | 118.77 (8) | C13—C4—H4 | 108.6 |
C4A—C4—C3 | 107.94 (8) | C5—C6—H6A | 109.0 |
C4A—C4—C13 | 112.25 (8) | C7—C6—H6A | 109.0 |
C3—C4—C13 | 110.83 (8) | C5—C6—H6B | 109.0 |
C8A—C4A—C5 | 118.84 (9) | C7—C6—H6B | 109.0 |
C8A—C4A—C4 | 122.52 (9) | H6A—C6—H6B | 107.8 |
C5—C4A—C4 | 118.63 (8) | C8A—C8—H8A | 109.2 |
O2—C5—C4A | 119.62 (9) | C7—C8—H8A | 109.2 |
O2—C5—C6 | 122.28 (9) | C8A—C8—H8B | 109.2 |
C4A—C5—C6 | 118.07 (9) | C7—C8—H8B | 109.2 |
C5—C6—C7 | 113.12 (8) | H8A—C8—H8B | 107.9 |
C10—C7—C11 | 109.17 (9) | C7—C10—H10A | 109.5 |
C10—C7—C6 | 110.45 (9) | C7—C10—H10B | 109.5 |
C11—C7—C6 | 109.48 (9) | H10A—C10—H10B | 109.5 |
C10—C7—C8 | 108.80 (9) | C7—C10—H10C | 109.5 |
C11—C7—C8 | 110.60 (9) | H10A—C10—H10C | 109.5 |
C6—C7—C8 | 108.34 (8) | H10B—C10—H10C | 109.5 |
C8A—C8—C7 | 112.23 (8) | C7—C11—H11A | 109.5 |
C4A—C8A—O1 | 122.61 (9) | C7—C11—H11B | 109.5 |
C4A—C8A—C8 | 125.70 (9) | H11A—C11—H11B | 109.5 |
O1—C8A—C8 | 111.69 (8) | C7—C11—H11C | 109.5 |
N2—C9—C3 | 178.34 (11) | H11A—C11—H11C | 109.5 |
C13—C12—C21 | 121.76 (10) | H11B—C11—H11C | 109.5 |
C12—C13—C14 | 118.75 (10) | C13—C12—H12 | 119.1 |
C12—C13—C4 | 121.77 (9) | C21—C12—H12 | 119.1 |
C14—C13—C4 | 119.37 (9) | C15—C14—H14 | 119.5 |
C15—C14—C13 | 120.90 (11) | C13—C14—H14 | 119.5 |
C14—C15—C16 | 121.22 (11) | C14—C15—H15 | 119.4 |
C15—C16—C21 | 118.42 (10) | C16—C15—H15 | 119.4 |
C15—C16—C17 | 123.10 (12) | C18—C17—H17 | 119.4 |
C21—C16—C17 | 118.48 (13) | C16—C17—H17 | 119.4 |
C18—C17—C16 | 121.23 (14) | C17—C18—H18 | 119.9 |
C17—C18—C19 | 120.17 (12) | C19—C18—H18 | 119.9 |
C20—C19—C18 | 120.53 (14) | C20—C19—H19 | 119.7 |
C19—C20—C21 | 120.63 (13) | C18—C19—H19 | 119.7 |
C20—C21—C12 | 122.14 (11) | C19—C20—H20 | 119.7 |
C20—C21—C16 | 118.93 (11) | C21—C20—H20 | 119.7 |
C8A—O1—C2—N1 | 171.82 (8) | C4—C4A—C8A—C8 | −172.89 (9) |
C8A—O1—C2—C3 | −8.36 (13) | C2—O1—C8A—C4A | 10.40 (13) |
N1—C2—C3—C9 | −3.54 (16) | C2—O1—C8A—C8 | −170.59 (8) |
O1—C2—C3—C9 | 176.67 (9) | C7—C8—C8A—C4A | 19.52 (14) |
N1—C2—C3—C4 | 170.13 (10) | C7—C8—C8A—O1 | −159.46 (8) |
O1—C2—C3—C4 | −9.65 (14) | C21—C12—C13—C14 | −0.51 (15) |
C2—C3—C4—C4A | 22.65 (13) | C21—C12—C13—C4 | −176.64 (9) |
C9—C3—C4—C4A | −163.67 (8) | C4A—C4—C13—C12 | −37.80 (12) |
C2—C3—C4—C13 | −100.65 (11) | C3—C4—C13—C12 | 82.98 (11) |
C9—C3—C4—C13 | 73.03 (11) | C4A—C4—C13—C14 | 146.09 (9) |
C3—C4—C4A—C8A | −20.86 (12) | C3—C4—C13—C14 | −93.12 (11) |
C13—C4—C4A—C8A | 101.57 (11) | C12—C13—C14—C15 | −0.50 (16) |
C3—C4—C4A—C5 | 160.51 (8) | C4—C13—C14—C15 | 175.72 (10) |
C13—C4—C4A—C5 | −77.05 (11) | C13—C14—C15—C16 | 0.66 (17) |
C8A—C4A—C5—O2 | 178.62 (9) | C14—C15—C16—C21 | 0.19 (17) |
C4—C4A—C5—O2 | −2.71 (14) | C14—C15—C16—C17 | −179.62 (12) |
C8A—C4A—C5—C6 | 0.61 (14) | C15—C16—C17—C18 | −179.19 (13) |
C4—C4A—C5—C6 | 179.28 (8) | C21—C16—C17—C18 | 0.99 (19) |
O2—C5—C6—C7 | 150.21 (10) | C16—C17—C18—C19 | 0.3 (2) |
C4A—C5—C6—C7 | −31.83 (13) | C17—C18—C19—C20 | −1.2 (2) |
C5—C6—C7—C10 | 173.48 (9) | C18—C19—C20—C21 | 0.8 (2) |
C5—C6—C7—C11 | −66.28 (11) | C19—C20—C21—C12 | −179.56 (11) |
C5—C6—C7—C8 | 54.40 (11) | C19—C20—C21—C16 | 0.47 (17) |
C10—C7—C8—C8A | −167.89 (9) | C13—C12—C21—C20 | −178.63 (10) |
C11—C7—C8—C8A | 72.21 (11) | C13—C12—C21—C16 | 1.34 (15) |
C6—C7—C8—C8A | −47.78 (11) | C15—C16—C21—C20 | 178.82 (10) |
C5—C4A—C8A—O1 | −175.40 (8) | C17—C16—C21—C20 | −1.36 (16) |
C4—C4A—C8A—O1 | 5.99 (15) | C15—C16—C21—C12 | −1.16 (16) |
C5—C4A—C8A—C8 | 5.73 (15) | C17—C16—C21—C12 | 178.66 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H01···N2i | 0.90 (1) | 2.11 (1) | 2.9948 (12) | 170 (1) |
N1—H02···O2ii | 0.90 (1) | 1.94 (1) | 2.8404 (11) | 176 (1) |
C6—H6B···N2iii | 0.99 | 2.69 | 3.6366 (14) | 160 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, −y+1, z−1/2; (iii) x, y−1, z. |
Acknowledgements
The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.
References
Armesto, D., Horspool, W. M., Martin, N., Ramos, A. & Seoane, C. (1989). J. Org. Chem. 54, 3069–3072. CrossRef CAS Web of Science Google Scholar
Attia, A., Elgemeie, G. H. & Shahada, L. A. (1997). Tetrahedron, 53, 17441–17448. CrossRef CAS Google Scholar
Cai, P., Guo, X., Huo, J. & Shi, C. (2012). Z. Kristallogr. New Cryst. Struct. 227, 529–530. CSD CrossRef CAS Google Scholar
Dazmiri, M. G., Alinezhad, H., Hossaini, Z. & Bekhradnia, A. R. (2020). Appl. Organomet. Chem. 34, e5731. https://doi.org/10.1002/aoc.5731 Google Scholar
Elgemeie, G. H., El-Kerim, A., Gohar, M., Regaila, H. A. & Elfahham, H. A. (1988). Arch. Pharm. Pharm. Med. Chem. 321, 131–133. CrossRef CAS Google Scholar
Elgemeie, G. H., Hussein, M. M. & Jones, P. G. (2002). Acta Cryst. E58, o1244–o1246. CSD CrossRef IUCr Journals Google Scholar
Elgemeie, G. H., Riad, B. Y., Nawwar, G. A. & Elgamal, S. (1987). Arch. Pharm. Pharm. Med. Chem. 320, 223–228. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kalaria, P. N., Satasia, S. P. & Raval, D. K. (2014). New J. Chem. 38, 1512–1521. CrossRef CAS Google Scholar
Kumar, D., Reddy, V. B., Sharad, S., Dube, U. & Kapur, S. (2009). Eur. J. Med. Chem. 44, 3805–3809. Web of Science CrossRef PubMed CAS Google Scholar
Lega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V. & Shemchuk, L. A. (2016). RSC Adv. 6, 16087–16099. CSD CrossRef CAS Google Scholar
Nesterov, V. N., Wiedenfeld, D. J., Nesterova, S. V. & Minton, M. A. (2004). Acta Cryst. C60, o334–o337. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA. Google Scholar
Singh, K., Singh, J. & Singh, H. (1996). Tetrahedron, 52, 14273–14280. CrossRef CAS Web of Science Google Scholar
Wang, D. C., Xie, Y. M., Fan, C., Yao, S. & Song, H. (2014). Chin. Chem. Lett. 25, 1011–1013. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.