research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-amino-5,6,7,8-tetra­hydro-7,7-di­methyl-4-(naphthalen-2-yl)-5-oxo-4H-chromene-3-carbo­nitrile

crossmark logo

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 April 2022; accepted 13 May 2022; online 20 May 2022)

In the title compound, C22H20N2O2, both six-membered rings of the fused heterocyclic system display envelope conformations; the two carbon atoms bearing the methyl groups and the naphthyl substituent both lie outside the planes of the other atoms of each ring. In the crystal, the amino group forms hydrogen bonds of the types N—H⋯O=C and N—H⋯N≡C, leading to the formation of a double layer structure propagating parallel to the bc plane. Weak C—H⋯O and C—H⋯π inter­actions may reinforce the layers.

1. Chemical context

Six-membered heterocycles involving 4H-pyran units represent an important class of biologically active synthetic and natural products, many of which attract the inter­est of the drug industry (Lega et al., 2016[Lega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V. & Shemchuk, L. A. (2016). RSC Adv. 6, 16087-16099.]). Pyrans possess anti­microbial (Dazmiri et al., 2020[Dazmiri, M. G., Alinezhad, H., Hossaini, Z. & Bekhradnia, A. R. (2020). Appl. Organomet. Chem. 34, e5731. https://doi.org/10.1002/aoc.5731]), anti­tuberculosis (Kalaria et al., 2014[Kalaria, P. N., Satasia, S. P. & Raval, D. K. (2014). New J. Chem. 38, 1512-1521.]) and anti­tumor (Wang et al., 2014[Wang, D. C., Xie, Y. M., Fan, C., Yao, S. & Song, H. (2014). Chin. Chem. Lett. 25, 1011-1013.]) activities, whereby 4H-pyrans are moieties in a series of natural products (Singh et al., 1996[Singh, K., Singh, J. & Singh, H. (1996). Tetrahedron, 52, 14273-14280.]). A number of 4H-pyrans are used, for example, as photoactive ingredients (Armesto et al., 1989[Armesto, D., Horspool, W. M., Martin, N., Ramos, A. & Seoane, C. (1989). J. Org. Chem. 54, 3069-3072.]) or agrochemicals (Kumar et al., 2009[Kumar, D., Reddy, V. B., Sharad, S., Dube, U. & Kapur, S. (2009). Eur. J. Med. Chem. 44, 3805-3809.]). Synthetically, they are inter­mediates for the synthesis of heterocyclic compounds such as pyran­opyrimidines and pyran­opyrazoles (Elgemeie et al., 1987[Elgemeie, G. H., Riad, B. Y., Nawwar, G. A. & Elgamal, S. (1987). Arch. Pharm. Pharm. Med. Chem. 320, 223-228.], 1988[Elgemeie, G. H., El-Kerim, A., Gohar, M., Regaila, H. A. & Elfahham, H. A. (1988). Arch. Pharm. Pharm. Med. Chem. 321, 131-133.]) and consequently the synthesis of 4H-pyrans themselves is of inter­est to organic chemists.

Some time ago, we reported the synthesis of pyridine-2(1H)-thio­nes and their condensed derivatives from the reactions of aryl­methyl­ene­cyano­thio­acetamides with suitable active methyl­ene compounds (Elgemeie et al., 2002[Elgemeie, G. H., Hussein, M. M. & Jones, P. G. (2002). Acta Cryst. E58, o1244-o1246.]).We also described the reaction of the dimedone 1 with naphthyl­methyl­ene­cyano­thio­acetamide to produce a condensed pyridine-2(1H)-thione (Attia et al., 1997[Attia, A., Elgemeie, G. H. & Shahada, L. A. (1997). Tetrahedron, 53, 17441-17448.]). The course of this reaction prompted us to investigate how 1 would react with naphthyl­methyl­ene­cyano­acetamide [2-cyano-3-(naphthalen-2-yl)acryl­amide, 2] in boiling ethanol containing tri­ethyl­amine. The product was shown to be neither of the expected condensed pyridin-2(1H)-ones 3 or 4 but rather the condensed pyran nitrile 5 (Scheme 1[link]). The latter structure was inferred on the basis of elemental analysis and spectroscopic data: thus, the mass spectrum of 5 was compatible with the mol­ecular formula C22H20N2O2 (M+, 344), and the 1H NMR spectrum had signals at 4.37 (pyran-4H), 7.06 (br, NH2) and 7.29–7.90 (m, ArH).

[Scheme 1]

We assume that the formation of 5 proceeds via addition of the active methyl­ene group of 1 to the double bond of 2 to give the inter­mediates 6, 7 and then 8, the latter finally losing one mol­ecule of water to give the final product 5 (Scheme 2[link]). In order to establish the structure of this compound unambiguously, its crystal structure was determined and is reported here.

[Scheme 2]

2. Structural commentary

The mol­ecular structure of 5 is shown in Fig. 1[link] and it confirms the postulated structure noted above. Both six-membered rings display envelope conformations in which five atoms are reasonably coplanar (for torsion angles see Table 1[link]): C4 deviates by 0.317 (1) Å from the mean plane (I)[link] of atoms O1/C2/C3/C4A/C8A (r.m.s. deviation = 0.031 Å), and C7 lies 0.653 (2) Å outside the mean plane (II) of C4A/C5–C8 (r.m.s. deviation = 0.030 Å). The inter­planar angle I/II is 9.97 (4)°. The naphthyl ring system (r.m.s. deviation = 0.012 Å) is effectively perpendicular to plane I [inter­planar angle = 86.56 (3)°]. The amino group is almost planar (r.m.s. deviation of C2/N1/H01/H02 = 0.01 Å) and deviates slightly from plane I [inter­planar angle = 10.0 (6)°].

Table 1
Selected torsion angles (°)

C8A—O1—C2—C3 −8.36 (13) C5—C6—C7—C8 54.40 (11)
O1—C2—C3—C4 −9.65 (14) C6—C7—C8—C8A −47.78 (11)
C2—C3—C4—C4A 22.65 (13) C4—C4A—C8A—O1 5.99 (15)
C3—C4—C4A—C8A −20.86 (12) C5—C4A—C8A—C8 5.73 (15)
C8A—C4A—C5—C6 0.61 (14) C2—O1—C8A—C4A 10.40 (13)
C4A—C5—C6—C7 −31.83 (13) C7—C8—C8A—C4A 19.52 (14)
[Figure 1]
Figure 1
The mol­ecular structure of 5 in the crystal. Ellipsoids represent 50% probability levels.

3. Supra­molecular features

In the crystal, the amino group acts as donor for two classical hydrogen bonds (Table 2[link]). This leads to a double layer structure (Fig. 2[link]) propagating parallel to the bc plane. The H⋯O separation of the weak hydrogen bond C6—H6B⋯N2 (x, −1 + y, z) is rather long at 2.69 Å but acceptably linear (160°) and presumably reinforces the layer structure, but is not shown in Fig. 2[link]. The short contact C10—H10BCg (C12–16/C21), with H⋯Cg 2.79 Å and a C—H⋯Cg angle of 139°, may represent a C—H⋯π inter­action between the double layers. There are no short ππ stacking contacts.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯N2i 0.90 (1) 2.11 (1) 2.9948 (12) 170 (1)
N1—H02⋯O2ii 0.90 (1) 1.94 (1) 2.8404 (11) 176 (1)
C6—H6B⋯N2iii 0.99 2.69 3.6366 (14) 160
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x, y-1, z].
[Figure 2]
Figure 2
Crystal packing of 5 viewed parallel to the a axis in the region x ≃ 0.5. Dashed lines indicate classical hydrogen bonds. Naphthyl rings are reduced to the ipso carbon atoms for clarity. Hydrogen atoms not involved in classical hydrogen bonding are omitted. The figure is depth-coded; mol­ecules of the lower layer are drawn with thinner bonds. Atom labels indicate the asymmetric unit (which lies in the lower layer).

4. Database survey

A search of the Cambridge Database (Version 2021.3.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed that the motif of a 4-substituted 2-amino-5,6,7,8-tetra­hydro-7,7-dimethyl-5-oxo-4H-chromene-3-carbo­nitrile has been the subject of many structure determinations. A total of 54 hits with variously substituted phenyl groups was found, which reduces to 32 when duplicate structure determinations, various solvates and polymorphs are not considered. For all but one of these structures, the 4-position also bears a hydrogen atom, the exception being the 4-methyl, 4-nitro­phenyl derivative (Cai et al., 2012[Cai, P., Guo, X., Huo, J. & Shi, C. (2012). Z. Kristallogr. New Cryst. Struct. 227, 529-530.]; refcode TESNEM). Additionally, the 4-(1-naphth­yl) derivative was found (Nesterov et al., 2004[Nesterov, V. N., Wiedenfeld, D. J., Nesterova, S. V. & Minton, M. A. (2004). Acta Cryst. C60, o334-o337.]; refcode ETOKIH), which is an isomer of the title compound 5. The packing of ETOKIH is quite different from that of 5; the hydrogen atom corresponding to H01 in 5 forms N—H⋯N hydrogen bonds, leading to inversion dimers, whereas the other NH hydrogen atom is not involved in hydrogen bonding. A least-squares overlay of 5 and ETOKIH (excluding methyl groups and all naphthyl carbon atoms except the ipso C atom) gave an r.m.s. deviation of 0.15 Å; Fig. 3[link] shows the slight differences in ring conformation.

[Figure 3]
Figure 3
A least-squares fit of 5 (violet, full bonds) to ETOKIH (Nesterov et al., 2004[Nesterov, V. N., Wiedenfeld, D. J., Nesterova, S. V. & Minton, M. A. (2004). Acta Cryst. C60, o334-o337.]; green, dashed bonds). Hydrogen atoms were not considered.

5. Synthesis and crystallization

A mixture of dimedone 1 (0.010 mol), 2-cyano-3-(naphthalen-2-yl)acryl­amide 2 (0.010 mol) and tri­ethyl­amine (0.010 mol) in ethanol (10 ml) was refluxed for 2 h. The solid precipitate that formed was filtered off and recrystallized from ethanol solution to give pale yellow crystals of 5 in 90% yield, m.p. 474–475 K; IR (KBr, cm−1): υ 3345, 3258 (NH2), 2188 (CN), 1683 (C=O). 1H NMR (400 MHz DMSO-d6) δ: 1.11 (s, 3H, CH3), 1.53 (s, 3H, CH3), 2.07 (d, 2H, CH2), 2.14 (d, 2H, CH2), 4.37 (s, 1H, CH-pyran), 7.06 (s, br, 2H, NH2), 7.29–7.90 (m, 7H, C10H7). 13C NMR (100 MHz, DMSO-d6) δ: 27.2, 28.8, 32.2, 36.3, 50.4, 58.6 (aliphatic C), 120.2 (CN), 113.0, 142.2, 158.9, 163.0 (ethyl­ene C), 120.2-133.3 (aromatic C), 196.2 (C=O). MS (EI): m/z 344 [M+]. Analysis calculated for C22H20N2O2: C 76.72; H 5.85; N 8.13%. Found: C 76.6; H 5.7; N 8.1%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms of the NH2 group were refined freely, but with N—H distances restrained to be approximately equal using a SADI instruction in SHELXL. The methyl groups were included as idealised rigid groups allowed to rotate but not tip (C—H = 0.98 Å; H—C—H = 109.5°). The other hydrogen atoms were included using a riding model starting from calculated positions (C—H = 0.95, 0.98 and 1.00 Å for aromatic, methyl­ene and methine H atoms, respectively). The Uiso(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for the methyl groups and 1.2 × Ueq for other hydrogen atoms.

Table 3
Experimental details

Crystal data
Chemical formula C22H20N2O2
Mr 344.40
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 25.3144 (3), 9.25765 (11), 15.6778 (2)
β (°) 97.8724 (10)
V3) 3639.51 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.65
Crystal size (mm) 0.08 × 0.05 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.826, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 61093, 3856, 3694
Rint 0.030
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.086, 1.07
No. of reflections 3856
No. of parameters 245
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.20
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

2-Amino-5,6,7,8-tetrahydro-7,7-dimethyl-4-(naphthalen-2-yl)-5-oxo-4H-chromene-3-carbonitrile top
Crystal data top
C22H20N2O2F(000) = 1456
Mr = 344.40Dx = 1.257 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 25.3144 (3) ÅCell parameters from 35871 reflections
b = 9.25765 (11) Åθ = 3.5–77.4°
c = 15.6778 (2) ŵ = 0.65 mm1
β = 97.8724 (10)°T = 100 K
V = 3639.51 (8) Å3Lath, colourless
Z = 80.08 × 0.05 × 0.02 mm
Data collection top
XtaLAB Synergy, HyPix
diffractometer
3856 independent reflections
Radiation source: micro-focus sealed X-ray tube3694 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.030
ω scansθmax = 77.6°, θmin = 3.5°
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2021)
h = 3131
Tmin = 0.826, Tmax = 1.000k = 1111
61093 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0362P)2 + 2.6486P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3856 reflectionsΔρmax = 0.22 e Å3
245 parametersΔρmin = 0.20 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

24.6913 (0.0028) x - 2.0266 (0.0045) y - 2.5063 (0.0065) z = 7.9737 (0.0050)

* -0.0099 (0.0006) C4A * -0.0265 (0.0007) C5 * 0.0300 (0.0005) C6 * -0.0353 (0.0005) C8 * 0.0417 (0.0007) C8A -0.6525 (0.0015) C7

Rms deviation of fitted atoms = 0.0306

23.4020 (0.0039) x - 3.5289 (0.0034) y - 1.8463 (0.0073) z = 7.1162 (0.0054)

Angle to previous plane (with approximate esd) = 9.967 ( 0.036 )

* -0.0423 (0.0006) O1 * 0.0228 (0.0006) C2 * -0.0021 (0.0005) C3 * -0.0200 (0.0005) C4A * 0.0415 (0.0006) C8A -0.3166 (0.0014) C4

Rms deviation of fitted atoms = 0.0298

- 6.0033 (0.0056) x - 6.6409 (0.0023) y + 10.6832 (0.0042) z = 0.1010 (0.0050)

Angle to previous plane (with approximate esd) = 86.556 ( 0.027 )

* -0.0188 (0.0008) C12 * -0.0048 (0.0008) C13 * 0.0149 (0.0009) C14 * 0.0098 (0.0010) C15 * -0.0015 (0.0011) C16 * -0.0151 (0.0011) C17 * -0.0093 (0.0011) C18 * 0.0169 (0.0011) C19 * 0.0111 (0.0010) C20 * -0.0032 (0.0010) C21

Rms deviation of fitted atoms = 0.0119

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42046 (3)0.54277 (7)0.46059 (4)0.01878 (16)
C20.44459 (4)0.67304 (10)0.48220 (6)0.01719 (19)
N10.45324 (4)0.74447 (10)0.41141 (6)0.02197 (19)
H010.4646 (6)0.8361 (15)0.4146 (9)0.038 (4)*
H020.4446 (6)0.7028 (15)0.3594 (8)0.036 (4)*
C30.45648 (4)0.71509 (10)0.56594 (6)0.0174 (2)
C40.43643 (4)0.63303 (11)0.63906 (6)0.0175 (2)
H40.4656170.6295680.6889270.021*
C4A0.42383 (4)0.48120 (10)0.60884 (6)0.0172 (2)
C50.42044 (4)0.36809 (11)0.67350 (6)0.0198 (2)
O20.42982 (3)0.39810 (8)0.75024 (5)0.02716 (18)
C60.40710 (4)0.21643 (11)0.64222 (7)0.0231 (2)
H6A0.3896020.1648110.6860410.028*
H6B0.4406040.1647290.6360560.028*
C70.37033 (4)0.21205 (11)0.55576 (7)0.0223 (2)
C80.39608 (4)0.30239 (11)0.49014 (6)0.0204 (2)
H8A0.4268320.2487840.4731530.025*
H8B0.3698560.3166140.4378830.025*
C8A0.41454 (4)0.44589 (10)0.52524 (6)0.01697 (19)
C90.48381 (4)0.84661 (11)0.58446 (6)0.0183 (2)
N20.50703 (4)0.95261 (10)0.60116 (6)0.0238 (2)
C100.36359 (5)0.05655 (12)0.52270 (8)0.0311 (3)
H10A0.3389670.0550870.4687240.047*
H10B0.3492100.0032960.5656600.047*
H10C0.3983000.0183610.5125550.047*
C110.31556 (4)0.27340 (14)0.56747 (8)0.0312 (3)
H11A0.3200320.3688190.5945630.047*
H11B0.2980050.2084400.6041740.047*
H11C0.2936160.2821850.5111490.047*
C120.33761 (4)0.68876 (11)0.62556 (6)0.0203 (2)
H120.3321170.6221110.5791110.024*
C130.38823 (4)0.70882 (11)0.66778 (6)0.0189 (2)
C140.39613 (5)0.80926 (12)0.73650 (7)0.0265 (2)
H140.4309470.8235400.7665420.032*
C150.35431 (5)0.88596 (13)0.76020 (7)0.0330 (3)
H150.3606370.9534610.8060980.040*
C160.30184 (5)0.86665 (13)0.71766 (7)0.0308 (3)
C170.25720 (6)0.94476 (16)0.73986 (9)0.0462 (4)
H170.2624231.0143100.7847760.055*
C180.20725 (6)0.92164 (18)0.69796 (10)0.0517 (4)
H180.1780370.9752210.7135720.062*
C190.19874 (5)0.81873 (17)0.63165 (10)0.0460 (4)
H190.1636320.8017590.6034160.055*
C200.24071 (5)0.74252 (14)0.60733 (8)0.0336 (3)
H200.2344660.6741760.5618640.040*
C210.29329 (4)0.76481 (12)0.64938 (7)0.0249 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0252 (4)0.0155 (3)0.0155 (3)0.0050 (3)0.0022 (3)0.0003 (3)
C20.0174 (4)0.0155 (4)0.0189 (5)0.0018 (3)0.0030 (3)0.0002 (4)
N10.0322 (5)0.0182 (4)0.0159 (4)0.0071 (4)0.0049 (3)0.0012 (3)
C30.0179 (4)0.0165 (5)0.0176 (5)0.0017 (4)0.0024 (3)0.0004 (4)
C40.0204 (5)0.0176 (5)0.0141 (4)0.0018 (4)0.0005 (3)0.0008 (4)
C4A0.0162 (4)0.0164 (5)0.0190 (5)0.0003 (3)0.0025 (3)0.0014 (4)
C50.0195 (5)0.0199 (5)0.0204 (5)0.0019 (4)0.0036 (4)0.0030 (4)
O20.0386 (4)0.0249 (4)0.0177 (4)0.0001 (3)0.0028 (3)0.0039 (3)
C60.0281 (5)0.0175 (5)0.0238 (5)0.0008 (4)0.0038 (4)0.0050 (4)
C70.0246 (5)0.0179 (5)0.0247 (5)0.0042 (4)0.0042 (4)0.0025 (4)
C80.0238 (5)0.0171 (5)0.0207 (5)0.0023 (4)0.0042 (4)0.0006 (4)
C8A0.0163 (4)0.0160 (4)0.0189 (5)0.0003 (3)0.0036 (3)0.0030 (4)
C90.0196 (5)0.0203 (5)0.0148 (4)0.0007 (4)0.0023 (3)0.0008 (4)
N20.0290 (5)0.0208 (4)0.0210 (4)0.0049 (4)0.0018 (3)0.0004 (3)
C100.0423 (7)0.0197 (5)0.0308 (6)0.0092 (5)0.0036 (5)0.0022 (4)
C110.0219 (5)0.0343 (6)0.0380 (6)0.0061 (5)0.0062 (5)0.0034 (5)
C120.0256 (5)0.0172 (5)0.0188 (5)0.0001 (4)0.0054 (4)0.0007 (4)
C130.0265 (5)0.0162 (5)0.0148 (4)0.0013 (4)0.0057 (4)0.0018 (4)
C140.0361 (6)0.0251 (5)0.0183 (5)0.0046 (4)0.0041 (4)0.0030 (4)
C150.0524 (7)0.0264 (6)0.0228 (5)0.0005 (5)0.0143 (5)0.0063 (4)
C160.0433 (7)0.0259 (6)0.0274 (6)0.0071 (5)0.0193 (5)0.0043 (5)
C170.0621 (9)0.0411 (8)0.0421 (7)0.0186 (7)0.0304 (7)0.0038 (6)
C180.0496 (8)0.0577 (9)0.0551 (9)0.0287 (7)0.0329 (7)0.0181 (7)
C190.0308 (7)0.0577 (9)0.0527 (8)0.0146 (6)0.0174 (6)0.0211 (7)
C200.0270 (6)0.0363 (6)0.0391 (7)0.0045 (5)0.0098 (5)0.0102 (5)
C210.0291 (5)0.0219 (5)0.0261 (5)0.0029 (4)0.0121 (4)0.0071 (4)
Geometric parameters (Å, º) top
O1—C21.3733 (11)C17—C181.359 (2)
O1—C8A1.3769 (11)C18—C191.405 (2)
C2—N11.3355 (13)C19—C201.3724 (18)
C2—C31.3628 (13)C20—C211.4172 (17)
C3—C91.4109 (13)N1—H010.895 (13)
C3—C41.5193 (13)N1—H020.901 (13)
C4—C4A1.5035 (13)C4—H41.0000
C4—C131.5278 (14)C6—H6A0.9900
C4A—C8A1.3400 (14)C6—H6B0.9900
C4A—C51.4681 (13)C8—H8A0.9900
C5—O21.2259 (13)C8—H8B0.9900
C5—C61.5101 (14)C10—H10A0.9800
C6—C71.5362 (15)C10—H10B0.9800
C7—C101.5316 (15)C10—H10C0.9800
C7—C111.5323 (15)C11—H11A0.9800
C7—C81.5384 (14)C11—H11B0.9800
C8—C8A1.4885 (13)C11—H11C0.9800
C9—N21.1553 (13)C12—H120.9500
C12—C131.3721 (14)C14—H140.9500
C12—C211.4173 (14)C15—H150.9500
C13—C141.4164 (14)C17—H170.9500
C14—C151.3678 (17)C18—H180.9500
C15—C161.4135 (18)C19—H190.9500
C16—C211.4206 (17)C20—H200.9500
C16—C171.4244 (17)
C2—O1—C8A118.69 (7)C12—C21—C16118.93 (10)
N1—C2—C3128.28 (9)C2—N1—H01120.8 (9)
N1—C2—O1110.35 (8)C2—N1—H02119.5 (9)
C3—C2—O1121.37 (9)H01—N1—H02119.5 (13)
C2—C3—C9118.82 (9)C4A—C4—H4108.6
C2—C3—C4122.11 (9)C3—C4—H4108.6
C9—C3—C4118.77 (8)C13—C4—H4108.6
C4A—C4—C3107.94 (8)C5—C6—H6A109.0
C4A—C4—C13112.25 (8)C7—C6—H6A109.0
C3—C4—C13110.83 (8)C5—C6—H6B109.0
C8A—C4A—C5118.84 (9)C7—C6—H6B109.0
C8A—C4A—C4122.52 (9)H6A—C6—H6B107.8
C5—C4A—C4118.63 (8)C8A—C8—H8A109.2
O2—C5—C4A119.62 (9)C7—C8—H8A109.2
O2—C5—C6122.28 (9)C8A—C8—H8B109.2
C4A—C5—C6118.07 (9)C7—C8—H8B109.2
C5—C6—C7113.12 (8)H8A—C8—H8B107.9
C10—C7—C11109.17 (9)C7—C10—H10A109.5
C10—C7—C6110.45 (9)C7—C10—H10B109.5
C11—C7—C6109.48 (9)H10A—C10—H10B109.5
C10—C7—C8108.80 (9)C7—C10—H10C109.5
C11—C7—C8110.60 (9)H10A—C10—H10C109.5
C6—C7—C8108.34 (8)H10B—C10—H10C109.5
C8A—C8—C7112.23 (8)C7—C11—H11A109.5
C4A—C8A—O1122.61 (9)C7—C11—H11B109.5
C4A—C8A—C8125.70 (9)H11A—C11—H11B109.5
O1—C8A—C8111.69 (8)C7—C11—H11C109.5
N2—C9—C3178.34 (11)H11A—C11—H11C109.5
C13—C12—C21121.76 (10)H11B—C11—H11C109.5
C12—C13—C14118.75 (10)C13—C12—H12119.1
C12—C13—C4121.77 (9)C21—C12—H12119.1
C14—C13—C4119.37 (9)C15—C14—H14119.5
C15—C14—C13120.90 (11)C13—C14—H14119.5
C14—C15—C16121.22 (11)C14—C15—H15119.4
C15—C16—C21118.42 (10)C16—C15—H15119.4
C15—C16—C17123.10 (12)C18—C17—H17119.4
C21—C16—C17118.48 (13)C16—C17—H17119.4
C18—C17—C16121.23 (14)C17—C18—H18119.9
C17—C18—C19120.17 (12)C19—C18—H18119.9
C20—C19—C18120.53 (14)C20—C19—H19119.7
C19—C20—C21120.63 (13)C18—C19—H19119.7
C20—C21—C12122.14 (11)C19—C20—H20119.7
C20—C21—C16118.93 (11)C21—C20—H20119.7
C8A—O1—C2—N1171.82 (8)C4—C4A—C8A—C8172.89 (9)
C8A—O1—C2—C38.36 (13)C2—O1—C8A—C4A10.40 (13)
N1—C2—C3—C93.54 (16)C2—O1—C8A—C8170.59 (8)
O1—C2—C3—C9176.67 (9)C7—C8—C8A—C4A19.52 (14)
N1—C2—C3—C4170.13 (10)C7—C8—C8A—O1159.46 (8)
O1—C2—C3—C49.65 (14)C21—C12—C13—C140.51 (15)
C2—C3—C4—C4A22.65 (13)C21—C12—C13—C4176.64 (9)
C9—C3—C4—C4A163.67 (8)C4A—C4—C13—C1237.80 (12)
C2—C3—C4—C13100.65 (11)C3—C4—C13—C1282.98 (11)
C9—C3—C4—C1373.03 (11)C4A—C4—C13—C14146.09 (9)
C3—C4—C4A—C8A20.86 (12)C3—C4—C13—C1493.12 (11)
C13—C4—C4A—C8A101.57 (11)C12—C13—C14—C150.50 (16)
C3—C4—C4A—C5160.51 (8)C4—C13—C14—C15175.72 (10)
C13—C4—C4A—C577.05 (11)C13—C14—C15—C160.66 (17)
C8A—C4A—C5—O2178.62 (9)C14—C15—C16—C210.19 (17)
C4—C4A—C5—O22.71 (14)C14—C15—C16—C17179.62 (12)
C8A—C4A—C5—C60.61 (14)C15—C16—C17—C18179.19 (13)
C4—C4A—C5—C6179.28 (8)C21—C16—C17—C180.99 (19)
O2—C5—C6—C7150.21 (10)C16—C17—C18—C190.3 (2)
C4A—C5—C6—C731.83 (13)C17—C18—C19—C201.2 (2)
C5—C6—C7—C10173.48 (9)C18—C19—C20—C210.8 (2)
C5—C6—C7—C1166.28 (11)C19—C20—C21—C12179.56 (11)
C5—C6—C7—C854.40 (11)C19—C20—C21—C160.47 (17)
C10—C7—C8—C8A167.89 (9)C13—C12—C21—C20178.63 (10)
C11—C7—C8—C8A72.21 (11)C13—C12—C21—C161.34 (15)
C6—C7—C8—C8A47.78 (11)C15—C16—C21—C20178.82 (10)
C5—C4A—C8A—O1175.40 (8)C17—C16—C21—C201.36 (16)
C4—C4A—C8A—O15.99 (15)C15—C16—C21—C121.16 (16)
C5—C4A—C8A—C85.73 (15)C17—C16—C21—C12178.66 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···N2i0.90 (1)2.11 (1)2.9948 (12)170 (1)
N1—H02···O2ii0.90 (1)1.94 (1)2.8404 (11)176 (1)
C6—H6B···N2iii0.992.693.6366 (14)160
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z1/2; (iii) x, y1, z.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationArmesto, D., Horspool, W. M., Martin, N., Ramos, A. & Seoane, C. (1989). J. Org. Chem. 54, 3069–3072.  CrossRef CAS Web of Science Google Scholar
First citationAttia, A., Elgemeie, G. H. & Shahada, L. A. (1997). Tetrahedron, 53, 17441–17448.  CrossRef CAS Google Scholar
First citationCai, P., Guo, X., Huo, J. & Shi, C. (2012). Z. Kristallogr. New Cryst. Struct. 227, 529–530.  CSD CrossRef CAS Google Scholar
First citationDazmiri, M. G., Alinezhad, H., Hossaini, Z. & Bekhradnia, A. R. (2020). Appl. Organomet. Chem. 34, e5731. https://doi.org/10.1002/aoc.5731  Google Scholar
First citationElgemeie, G. H., El-Kerim, A., Gohar, M., Regaila, H. A. & Elfahham, H. A. (1988). Arch. Pharm. Pharm. Med. Chem. 321, 131–133.  CrossRef CAS Google Scholar
First citationElgemeie, G. H., Hussein, M. M. & Jones, P. G. (2002). Acta Cryst. E58, o1244–o1246.  CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H., Riad, B. Y., Nawwar, G. A. & Elgamal, S. (1987). Arch. Pharm. Pharm. Med. Chem. 320, 223–228.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKalaria, P. N., Satasia, S. P. & Raval, D. K. (2014). New J. Chem. 38, 1512–1521.  CrossRef CAS Google Scholar
First citationKumar, D., Reddy, V. B., Sharad, S., Dube, U. & Kapur, S. (2009). Eur. J. Med. Chem. 44, 3805–3809.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V. & Shemchuk, L. A. (2016). RSC Adv. 6, 16087–16099.  CSD CrossRef CAS Google Scholar
First citationNesterov, V. N., Wiedenfeld, D. J., Nesterova, S. V. & Minton, M. A. (2004). Acta Cryst. C60, o334–o337.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationSingh, K., Singh, J. & Singh, H. (1996). Tetrahedron, 52, 14273–14280.  CrossRef CAS Web of Science Google Scholar
First citationWang, D. C., Xie, Y. M., Fan, C., Yao, S. & Song, H. (2014). Chin. Chem. Lett. 25, 1011–1013.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds