research communications
and Hirshfeld surface analysis of 2-(4-chlorophenyl)-4-(dimethoxymethyl)-5-phenyl-1,3-thiazole
aKosygin State University of Russia, 117997 Moscow, Russian Federation, bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Turkey, eDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C18H16ClNO2S, the thiazole ring subtends dihedral angles of 13.12 (14) and 43.79 (14) ° with the attached chlorophenyl and phenyl rings, respectively. In the crystal, C—H⋯π interactions link the molecules, forming a three-dimensional network. The roles of the various intermolecular interactions were clarified by Hirshfeld surface analysis, which reveals that the most important contributions to the crystal packing are from H⋯H (39.2%), H⋯C/C⋯H (25.2%), Cl⋯H/H⋯Cl (11.4%) and O⋯H/H⋯O (8.0%) contacts.
Keywords: crystal structure; thiazole ring; chlorophenyl ring; C—H⋯π interactions; Hirshfeld surface analysis.
CCDC reference: 2174374
1. Chemical context
Thiazole and its derivatives have attracted much synthetic interest due to their antimicrobial, antiviral, anti-diabetic, diuretic, anticonvulsant, antioxidant, anti-HIV, analgesic, anti-inflammatory, neuroprotective and antitumor activities (Dondoni 2010; Grover & Jachak 2015). In fact, the thiazole moiety is a prominent structural feature in a variety of natural products, such as vitamin B and penicillin (Yariv et al., 2015). On the other hand, the thiazole synthon is also useful in coordination chemistry and catalytic transformations due to its coordination ability and non-covalent bond donor or acceptor character (Gurbanov et al., 2020). As part of our studies in this area, we now report the synthesis and structure of the title compound and quantify its intermolecular non-covalent interactions by Hirshfeld surface analysis.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The central 1,3-thiazolidine ring (S1/N1C1–C3) makes dihedral angles of 13.12 (14) and 43.79 (14)°, respectively, with the chlorophenyl ring (C4–C9) and the phenyl ring (C13–C18). The dimethoxymethane moiety features one anti conformation [C2—C10—O2—C12 = 172.5 (2)°] and one gauche conformation [C2—C10—O1—C11 = −78.1 (3)°] for its pendant bonds. The molecular conformation may be consolidated by a weak intramolecular C5—H5⋯S1 contact [H5⋯S1 = 2.74 Å; C5—H5⋯S1 = 106°].
3. Supramolecular features and Hirshfeld surface analysis
The extended structure features C—H⋯π interactions, forming a three-dimensional network (Table 1, Fig. 2) in which the thiazole ring accepts once such bond and the phenyl ring two, but no significant π–π stacking contacts are observed [shortest centroid–centroid separation = 4.1887 (16) Å]. A Hirshfeld surface analysis was performed, and two-dimensional fingerprint plots were created with Crystal Explorer17.5 (Turner et al., 2017) to quantify the intermolecular interactions present in the extended structure. Fig. 3 depicts the Hirshfeld surface projected on dnorm and the related colours reflecting various interactions. The C—H⋯Cl interaction is represented by the red spot on the surface. Fig. 4 depicts the two-dimensional fingerprint plots. The weak van der Waals H⋯H connections provide the most (39.2%, Fig. 4b) to the Hirshfeld surface. The other principal contributions to the overall surface are from C⋯H/H⋯C (25.2%, Fig. 4c), Cl⋯H/H⋯Cl (11.4%, Fig. 4d) and O⋯H/H⋯O (8.0%, Fig. 4e) interactions. The contributions of the remaining less important interactions are given in Table 2.
|
4. Database survey
The most closely related four structures containing the 1,3-thiazole moiety are as follows: methyl(2-(cyclopentylidenehydrazono)-4-oxo-3-phenyl-1,3-thiazolidin-5-ylidene)acetate [Cambridge Structural Database (Groom et al., 2016) refcode GUVVAW (I); Akkurt et al., 2015], 2-(5-methyl-4-phenyl-1,3-thiazol-2-yl)-1-phenylethanol [EKEZUP (II); Rybakov et al., 2003], 2-{(E)-2-[(2-chlorophenyl)methylidene]hydrazin-1-yl}-4-phenyl-1,3-thiazole [WOJKOX (III); Mague et al., 2014] and 2-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]-2,3-dihydro-1H-isoindole-1,3-dione [IQUHOT (IV); Saravanan et al., 2016].
In the crystal of (I), the thiazolidinyl ring (r.m.s. deviation = 0.024 Å) forms a dihedral angle of 65.13 (8)° with the attached phenyl ring. The molecular packing features C—H⋯O and C—H⋯π interactions, forming a three-dimensional network. In (II), molecules form extended chains through O—H⋯N hydrogen bonds and in (III), the two independent molecules are associated via complementary N—H⋯N hydrogen bonds into a dimer. These dimers are associated through weak C—H⋯Cl and C—H⋯S interactions into supramolecular chains propagating along the a-axis direction. In (IV), the molecules are linked via C—H⋯O interactions, which form C(7) chains propagating along [010]. In addition to this, weak π–π interactions are also observed.
5. Synthesis and crystallization
A mixture of 1-chloro-3,3-diethoxy-1-phenylpropan-2-one (0.769 g, 2 mmol) and 4-chlorobenzothioamide (0.514 g, 3 mmol) was refluxed in methanol (15 ml) for 3 h. Then, the solvent was distilled off in a rotary evaporator under a vacuum. The residue was recrystallized from diethyl ether. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a acetone solution. Colourless solid, yield 0.891 g (86%); m.p. 401–402 K. Analysis calculated for C18H16ClNO2S: C 62.51, H 4.66, N 4.05; found: C 62.47, H 4.61, N 4.01%. 1H NMR (300 MHz, CDCl3) δ 3.52 (6H, 2CH3), 4.62 (1H, CH), 7.22–8.90 (9H, Ar). 13C NMR (75 MHz, CDCl3) δ 169.6, 168.2, 154.4, 144.00, 142.4, 130.8, 129.6, 128.2, 127.4, 126.8, 126.00, 115.2 and 55.8. ESI–MS: m/z: 346.88 [M + H]+.
6. details
Crystal data, data collection and structure . All H atoms bonded to C atoms were positioned geometrically (C—H = 0.93–1.00 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2–1.5Ueq(C)
details are summarized in Table 3
|
Supporting information
CCDC reference: 2174374
https://doi.org/10.1107/S2056989022005564/hb8023sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022005564/hb8023Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022005564/hb8023Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C18H16ClNO2S | F(000) = 720 |
Mr = 345.83 | Dx = 1.410 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 6.6235 (1) Å | Cell parameters from 20657 reflections |
b = 25.1848 (3) Å | θ = 3.5–79.0° |
c = 9.8283 (1) Å | µ = 3.34 mm−1 |
β = 96.504 (1)° | T = 100 K |
V = 1628.92 (4) Å3 | Block, colourless |
Z = 4 | 0.2 × 0.12 × 0.04 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3497 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3304 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.064 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 79.5°, θmin = 3.5° |
ω scans | h = −7→8 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −32→32 |
Tmin = 0.638, Tmax = 1.000 | l = −12→12 |
31880 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0621P)2 + 4.0625P] where P = (Fo2 + 2Fc2)/3 |
3497 reflections | (Δ/σ)max = 0.001 |
210 parameters | Δρmax = 0.67 e Å−3 |
0 restraints | Δρmin = −0.52 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.46338 (11) | 0.46239 (3) | 0.83382 (7) | 0.0279 (2) | |
S1 | 0.51773 (10) | 0.42961 (2) | 0.43335 (7) | 0.01922 (18) | |
O1 | 0.4944 (3) | 0.23523 (8) | 0.4398 (2) | 0.0232 (4) | |
O2 | 0.2192 (3) | 0.27028 (8) | 0.5252 (2) | 0.0234 (4) | |
N1 | 0.6210 (4) | 0.33759 (9) | 0.5297 (2) | 0.0195 (5) | |
C1 | 0.6779 (4) | 0.38728 (11) | 0.5353 (3) | 0.0197 (5) | |
C2 | 0.4449 (4) | 0.33113 (11) | 0.4441 (3) | 0.0194 (5) | |
C3 | 0.3640 (4) | 0.37626 (10) | 0.3799 (3) | 0.0184 (5) | |
C4 | 0.8675 (4) | 0.40656 (11) | 0.6128 (3) | 0.0195 (5) | |
C5 | 0.9086 (4) | 0.46059 (11) | 0.6290 (3) | 0.0204 (5) | |
H5 | 0.809694 | 0.485762 | 0.593256 | 0.025* | |
C6 | 1.0909 (4) | 0.47816 (11) | 0.6960 (3) | 0.0210 (5) | |
H6 | 1.118224 | 0.515046 | 0.706735 | 0.025* | |
C7 | 1.2333 (4) | 0.44064 (12) | 0.7474 (3) | 0.0213 (6) | |
C8 | 1.1971 (4) | 0.38669 (12) | 0.7341 (3) | 0.0229 (6) | |
H8 | 1.296580 | 0.361728 | 0.770269 | 0.028* | |
C9 | 1.0129 (4) | 0.36970 (11) | 0.6669 (3) | 0.0217 (6) | |
H9 | 0.985437 | 0.332781 | 0.657512 | 0.026* | |
C10 | 0.3501 (4) | 0.27646 (11) | 0.4245 (3) | 0.0194 (5) | |
H10 | 0.270809 | 0.274179 | 0.331869 | 0.023* | |
C11 | 0.5988 (5) | 0.22879 (13) | 0.3220 (3) | 0.0296 (7) | |
H11A | 0.501099 | 0.230402 | 0.239378 | 0.044* | |
H11B | 0.667819 | 0.194318 | 0.326277 | 0.044* | |
H11C | 0.699242 | 0.257220 | 0.319221 | 0.044* | |
C12 | 0.0998 (5) | 0.22282 (13) | 0.5072 (3) | 0.0315 (7) | |
H12A | 0.051128 | 0.218272 | 0.410015 | 0.047* | |
H12B | −0.016708 | 0.225524 | 0.560094 | 0.047* | |
H12C | 0.183243 | 0.192197 | 0.539363 | 0.047* | |
C13 | 0.1824 (4) | 0.38355 (11) | 0.2793 (3) | 0.0188 (5) | |
C14 | −0.0001 (4) | 0.35859 (11) | 0.2967 (3) | 0.0201 (5) | |
H14 | −0.009865 | 0.337216 | 0.375383 | 0.024* | |
C15 | −0.1681 (5) | 0.36470 (12) | 0.2001 (3) | 0.0239 (6) | |
H15 | −0.291864 | 0.347268 | 0.212459 | 0.029* | |
C16 | −0.1560 (5) | 0.39635 (12) | 0.0848 (3) | 0.0248 (6) | |
H16 | −0.270937 | 0.400469 | 0.018481 | 0.030* | |
C17 | 0.0259 (5) | 0.42183 (12) | 0.0677 (3) | 0.0245 (6) | |
H17 | 0.034629 | 0.443579 | −0.010394 | 0.029* | |
C18 | 0.1943 (4) | 0.41573 (11) | 0.1636 (3) | 0.0213 (6) | |
H18 | 0.317831 | 0.433298 | 0.151148 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0244 (4) | 0.0301 (4) | 0.0270 (4) | −0.0046 (3) | −0.0063 (3) | 0.0036 (3) |
S1 | 0.0205 (3) | 0.0162 (3) | 0.0206 (3) | 0.0005 (2) | 0.0007 (2) | 0.0009 (2) |
O1 | 0.0250 (10) | 0.0203 (10) | 0.0236 (10) | 0.0031 (8) | −0.0004 (8) | −0.0006 (7) |
O2 | 0.0281 (11) | 0.0210 (10) | 0.0217 (10) | −0.0055 (8) | 0.0051 (8) | 0.0013 (8) |
N1 | 0.0219 (12) | 0.0199 (11) | 0.0168 (10) | 0.0006 (9) | 0.0024 (9) | 0.0009 (8) |
C1 | 0.0238 (14) | 0.0192 (13) | 0.0169 (12) | 0.0028 (10) | 0.0056 (10) | 0.0010 (10) |
C2 | 0.0216 (14) | 0.0203 (13) | 0.0167 (12) | 0.0004 (10) | 0.0044 (10) | −0.0005 (10) |
C3 | 0.0195 (13) | 0.0181 (12) | 0.0180 (12) | −0.0005 (10) | 0.0030 (10) | −0.0006 (9) |
C4 | 0.0210 (13) | 0.0216 (13) | 0.0165 (12) | 0.0016 (10) | 0.0044 (10) | −0.0005 (10) |
C5 | 0.0183 (13) | 0.0228 (13) | 0.0204 (13) | 0.0037 (10) | 0.0029 (10) | 0.0014 (10) |
C6 | 0.0230 (14) | 0.0200 (13) | 0.0205 (13) | −0.0015 (10) | 0.0047 (11) | −0.0005 (10) |
C7 | 0.0204 (13) | 0.0278 (14) | 0.0161 (12) | −0.0009 (11) | 0.0031 (10) | 0.0002 (10) |
C8 | 0.0239 (14) | 0.0242 (14) | 0.0204 (13) | 0.0045 (11) | 0.0009 (11) | 0.0013 (10) |
C9 | 0.0254 (14) | 0.0191 (13) | 0.0209 (13) | 0.0009 (10) | 0.0032 (11) | 0.0002 (10) |
C10 | 0.0193 (13) | 0.0204 (13) | 0.0180 (12) | 0.0001 (10) | 0.0000 (10) | 0.0012 (10) |
C11 | 0.0258 (15) | 0.0309 (16) | 0.0323 (16) | 0.0035 (12) | 0.0051 (12) | −0.0037 (12) |
C12 | 0.0367 (18) | 0.0257 (15) | 0.0318 (16) | −0.0109 (13) | 0.0028 (13) | 0.0037 (12) |
C13 | 0.0220 (14) | 0.0183 (12) | 0.0160 (12) | 0.0025 (10) | 0.0014 (10) | −0.0011 (9) |
C14 | 0.0205 (13) | 0.0211 (13) | 0.0191 (12) | 0.0024 (10) | 0.0044 (10) | 0.0007 (10) |
C15 | 0.0231 (14) | 0.0247 (14) | 0.0241 (14) | 0.0024 (11) | 0.0035 (11) | −0.0017 (11) |
C16 | 0.0243 (14) | 0.0275 (14) | 0.0212 (13) | 0.0075 (11) | −0.0031 (11) | −0.0015 (11) |
C17 | 0.0319 (16) | 0.0240 (14) | 0.0176 (13) | 0.0051 (12) | 0.0024 (11) | 0.0022 (10) |
C18 | 0.0238 (14) | 0.0186 (12) | 0.0224 (13) | 0.0004 (10) | 0.0057 (11) | 0.0008 (10) |
Cl1—C7 | 1.747 (3) | C8—C9 | 1.387 (4) |
S1—C1 | 1.740 (3) | C9—H9 | 0.9500 |
S1—C3 | 1.731 (3) | C10—H10 | 1.0000 |
O1—C10 | 1.408 (3) | C11—H11A | 0.9800 |
O1—C11 | 1.424 (4) | C11—H11B | 0.9800 |
O2—C10 | 1.396 (3) | C11—H11C | 0.9800 |
O2—C12 | 1.433 (4) | C12—H12A | 0.9800 |
N1—C1 | 1.306 (4) | C12—H12B | 0.9800 |
N1—C2 | 1.368 (4) | C12—H12C | 0.9800 |
C1—C4 | 1.475 (4) | C13—C14 | 1.391 (4) |
C2—C3 | 1.379 (4) | C13—C18 | 1.406 (4) |
C2—C10 | 1.517 (4) | C14—H14 | 0.9500 |
C3—C13 | 1.480 (4) | C14—C15 | 1.387 (4) |
C4—C5 | 1.393 (4) | C15—H15 | 0.9500 |
C4—C9 | 1.399 (4) | C15—C16 | 1.395 (4) |
C5—H5 | 0.9500 | C16—H16 | 0.9500 |
C5—C6 | 1.381 (4) | C16—C17 | 1.392 (4) |
C6—H6 | 0.9500 | C17—H17 | 0.9500 |
C6—C7 | 1.389 (4) | C17—C18 | 1.384 (4) |
C7—C8 | 1.383 (4) | C18—H18 | 0.9500 |
C8—H8 | 0.9500 | ||
C3—S1—C1 | 89.91 (13) | O2—C10—C2 | 107.0 (2) |
C10—O1—C11 | 112.6 (2) | O2—C10—H10 | 109.6 |
C10—O2—C12 | 112.6 (2) | C2—C10—H10 | 109.6 |
C1—N1—C2 | 111.2 (2) | O1—C11—H11A | 109.5 |
N1—C1—S1 | 114.1 (2) | O1—C11—H11B | 109.5 |
N1—C1—C4 | 124.2 (3) | O1—C11—H11C | 109.5 |
C4—C1—S1 | 121.6 (2) | H11A—C11—H11B | 109.5 |
N1—C2—C3 | 116.3 (2) | H11A—C11—H11C | 109.5 |
N1—C2—C10 | 119.9 (2) | H11B—C11—H11C | 109.5 |
C3—C2—C10 | 123.8 (3) | O2—C12—H12A | 109.5 |
C2—C3—S1 | 108.4 (2) | O2—C12—H12B | 109.5 |
C2—C3—C13 | 130.7 (3) | O2—C12—H12C | 109.5 |
C13—C3—S1 | 120.8 (2) | H12A—C12—H12B | 109.5 |
C5—C4—C1 | 121.6 (3) | H12A—C12—H12C | 109.5 |
C5—C4—C9 | 119.2 (3) | H12B—C12—H12C | 109.5 |
C9—C4—C1 | 119.2 (2) | C14—C13—C3 | 120.9 (2) |
C4—C5—H5 | 119.4 | C14—C13—C18 | 119.3 (3) |
C6—C5—C4 | 121.1 (3) | C18—C13—C3 | 119.8 (3) |
C6—C5—H5 | 119.4 | C13—C14—H14 | 119.8 |
C5—C6—H6 | 120.8 | C15—C14—C13 | 120.4 (3) |
C5—C6—C7 | 118.4 (3) | C15—C14—H14 | 119.8 |
C7—C6—H6 | 120.8 | C14—C15—H15 | 119.9 |
C6—C7—Cl1 | 118.8 (2) | C14—C15—C16 | 120.3 (3) |
C8—C7—Cl1 | 119.1 (2) | C16—C15—H15 | 119.9 |
C8—C7—C6 | 122.1 (3) | C15—C16—H16 | 120.3 |
C7—C8—H8 | 120.6 | C17—C16—C15 | 119.4 (3) |
C7—C8—C9 | 118.8 (3) | C17—C16—H16 | 120.3 |
C9—C8—H8 | 120.6 | C16—C17—H17 | 119.7 |
C4—C9—H9 | 119.8 | C18—C17—C16 | 120.6 (3) |
C8—C9—C4 | 120.5 (3) | C18—C17—H17 | 119.7 |
C8—C9—H9 | 119.8 | C13—C18—H18 | 120.0 |
O1—C10—C2 | 112.9 (2) | C17—C18—C13 | 120.0 (3) |
O1—C10—H10 | 109.6 | C17—C18—H18 | 120.0 |
O2—C10—O1 | 108.1 (2) | ||
Cl1—C7—C8—C9 | 179.2 (2) | C3—C2—C10—O1 | 150.2 (3) |
S1—C1—C4—C5 | 12.2 (4) | C3—C2—C10—O2 | −90.9 (3) |
S1—C1—C4—C9 | −165.3 (2) | C3—C13—C14—C15 | −178.5 (3) |
S1—C3—C13—C14 | −137.1 (2) | C3—C13—C18—C17 | 178.7 (2) |
S1—C3—C13—C18 | 43.4 (3) | C4—C5—C6—C7 | 0.0 (4) |
N1—C1—C4—C5 | −172.0 (3) | C5—C4—C9—C8 | −0.9 (4) |
N1—C1—C4—C9 | 10.5 (4) | C5—C6—C7—Cl1 | −179.4 (2) |
N1—C2—C3—S1 | −0.9 (3) | C5—C6—C7—C8 | −0.4 (4) |
N1—C2—C3—C13 | 177.8 (3) | C6—C7—C8—C9 | 0.2 (4) |
N1—C2—C10—O1 | −29.8 (3) | C7—C8—C9—C4 | 0.5 (4) |
N1—C2—C10—O2 | 89.1 (3) | C9—C4—C5—C6 | 0.7 (4) |
C1—S1—C3—C2 | 0.5 (2) | C10—C2—C3—S1 | 179.0 (2) |
C1—S1—C3—C13 | −178.4 (2) | C10—C2—C3—C13 | −2.2 (5) |
C1—N1—C2—C3 | 1.0 (3) | C11—O1—C10—O2 | 163.7 (2) |
C1—N1—C2—C10 | −179.0 (2) | C11—O1—C10—C2 | −78.1 (3) |
C1—C4—C5—C6 | −176.8 (2) | C12—O2—C10—O1 | −65.6 (3) |
C1—C4—C9—C8 | 176.6 (2) | C12—O2—C10—C2 | 172.5 (2) |
C2—N1—C1—S1 | −0.5 (3) | C13—C14—C15—C16 | −0.5 (4) |
C2—N1—C1—C4 | −176.6 (2) | C14—C13—C18—C17 | −0.7 (4) |
C2—C3—C13—C14 | 44.2 (4) | C14—C15—C16—C17 | −0.1 (4) |
C2—C3—C13—C18 | −135.2 (3) | C15—C16—C17—C18 | 0.4 (4) |
C3—S1—C1—N1 | 0.0 (2) | C16—C17—C18—C13 | 0.1 (4) |
C3—S1—C1—C4 | 176.2 (2) | C18—C13—C14—C15 | 1.0 (4) |
Cg1 and Cg3 are the centroids of the C1–C3/S1/N1 and C13–C18 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···S1 | 0.95 | 2.74 | 3.143 (3) | 106 |
C6—H6···Cg3i | 0.95 | 2.81 | 3.620 (3) | 144 |
C12—H12C···Cg3ii | 0.98 | 2.81 | 3.406 (3) | 120 |
C15—H15···Cg1iii | 0.95 | 2.95 | 3.481 (3) | 117 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−1/2; (iii) x−1, y, z. |
Contact | Percentage contribution |
H···H | 39.2 |
H···C/C···H | 25.2 |
Cl···H/H···Cl | 11.4 |
O···H/H···O | 8.0 |
S···H/H···S | 5.1 |
N···H/H···N | 3.9 |
C···C | 2.4 |
Cl···C/C···Cl | 1.7 |
S···C/C···S | 1.5 |
Cl···Cl | 0.6 |
S···S | 0.2 |
O···C/C···O | 0.1 |
Contact | Distance | Symmetry operation |
Cl1···H16 | 2.85 | 2 + x, y, 1 + z |
H18···Cl1 | 3.00 | 2 - x, 1 - y, 1 - z |
H11C···H15 | 2.50 | 1 + x, y, z |
H6···C17 | 2.97 | 1 - x, 1 - y, 1 - z |
O2···H11A | 2.65 | x, 1/2 - y, 1/2 + z |
C7···H17 | 2.85 | 1 + x, y, 1 + z |
C11···H8 | 3.04 | -1 + x, 1/2 - y, -1/2 + z |
Acknowledgements
The authors' contributions are as follows. Conceptualization, FIG, MA and AB; synthesis, FIG and KIK; X-ray analysis, EVS, EIT, MA and SÖY; writing (review and editing of the manuscript), FIG, MA, SÖY and AB.
References
Akkurt, M., Smolenski, V. A., Mohamed, S. K., Jasinski, J. P., Hassan, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o776–o777. CSD CrossRef IUCr Journals Google Scholar
Dondoni, A. (2010). Org. Biomol. Chem. 8, 3366–3385. CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Grover, J. & Jachak, S. M. (2015). RSC Adv. 5, 38892–38905. CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o907–o908. CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rybakov, V. B., Liakina, A. Y., Popova, I. S., Formanovsky, A. A. & Aslanov, L. A. (2003). Acta Cryst. E59, o1293–o1295. Web of Science CSD CrossRef IUCr Journals Google Scholar
Saravanan, K., Archana, K., Lakshmithendral, K., Kabilan, S. & Selvanayagam, S. (2016). IUCrData, 1, x161053. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Yariv, I., Lipovsky, A., Gedanken, A., Lubart, R. & Fixler, D. (2015). Int. J. Nanomedicine, 10, 3593–3601. CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.