research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-(4-chloro­phen­yl)-4-(di­meth­­oxy­meth­yl)-5-phenyl-1,3-thia­zole

crossmark logo

aKosygin State University of Russia, 117997 Moscow, Russian Federation, bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Turkey, eDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 May 2022; accepted 22 May 2022; online 27 May 2022)

In the title compound, C18H16ClNO2S, the thia­zole ring subtends dihedral angles of 13.12 (14) and 43.79 (14) ° with the attached chloro­phenyl and phenyl rings, respectively. In the crystal, C—H⋯π inter­actions link the mol­ecules, forming a three-dimensional network. The roles of the various inter­molecular inter­actions were clarified by Hirshfeld surface analysis, which reveals that the most important contributions to the crystal packing are from H⋯H (39.2%), H⋯C/C⋯H (25.2%), Cl⋯H/H⋯Cl (11.4%) and O⋯H/H⋯O (8.0%) contacts.

1. Chemical context

Thia­zole and its derivatives have attracted much synthetic inter­est due to their anti­microbial, anti­viral, anti-diabetic, diuretic, anti­convulsant, anti­oxidant, anti-HIV, analgesic, anti-inflammatory, neuroprotective and anti­tumor activities (Dondoni 2010[Dondoni, A. (2010). Org. Biomol. Chem. 8, 3366-3385.]; Grover & Jachak 2015[Grover, J. & Jachak, S. M. (2015). RSC Adv. 5, 38892-38905.]). In fact, the thia­zole moiety is a prominent structural feature in a variety of natural products, such as vitamin B and penicillin (Yariv et al., 2015[Yariv, I., Lipovsky, A., Gedanken, A., Lubart, R. & Fixler, D. (2015). Int. J. Nanomedicine, 10, 3593-3601.]). On the other hand, the thia­zole synthon is also useful in coordination chemistry and catalytic transformations due to its coordination ability and non-covalent bond donor or acceptor character (Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628-633.]). As part of our studies in this area, we now report the synthesis and structure of the title compound and qu­antify its inter­molecular non-covalent inter­actions by Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The central 1,3-thia­zolidine ring (S1/N1C1–C3) makes dihedral angles of 13.12 (14) and 43.79 (14)°, respectively, with the chloro­phenyl ring (C4–C9) and the phenyl ring (C13–C18). The di­meth­oxy­methane moiety features one anti conformation [C2—C10—O2—C12 = 172.5 (2)°] and one gauche conformation [C2—C10—O1—C11 = −78.1 (3)°] for its pendant bonds. The mol­ecular conformation may be consolidated by a weak intra­molecular C5—H5⋯S1 contact [H5⋯S1 = 2.74 Å; C5—H5⋯S1 = 106°].

[Figure 1]
Figure 1
The title mol­ecule with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

The extended structure features C—H⋯π inter­actions, forming a three-dimensional network (Table 1[link], Fig. 2[link]) in which the thia­zole ring accepts once such bond and the phenyl ring two, but no significant ππ stacking contacts are observed [shortest centroid–centroid separation = 4.1887 (16) Å]. A Hirshfeld surface analysis was performed, and two-dimensional fingerprint plots were created with Crystal Explorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]) to qu­antify the inter­molecular inter­actions present in the extended structure. Fig. 3[link] depicts the Hirshfeld surface projected on dnorm and the related colours reflecting various inter­actions. The C—H⋯Cl inter­action is represented by the red spot on the surface. Fig. 4[link] depicts the two-dimensional fingerprint plots. The weak van der Waals H⋯H connections provide the most (39.2%, Fig. 4[link]b) to the Hirshfeld surface. The other principal contributions to the overall surface are from C⋯H/H⋯C (25.2%, Fig. 4[link]c), Cl⋯H/H⋯Cl (11.4%, Fig. 4[link]d) and O⋯H/H⋯O (8.0%, Fig. 4[link]e) inter­actions. The contributions of the remaining less important inter­actions are given in Table 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the C1–C3/S1/N1 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯S1 0.95 2.74 3.143 (3) 106
C6—H6⋯Cg3i 0.95 2.81 3.620 (3) 144
C12—H12CCg3ii 0.98 2.81 3.406 (3) 120
C15—H15⋯Cg1iii 0.95 2.95 3.481 (3) 117
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-1, y, z].

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 39.2
H⋯C/C⋯H 25.2
Cl⋯H/H⋯Cl 11.4
O⋯H/H⋯O 8.0
S⋯H/H⋯S 5.1
N⋯H/H⋯N 3.9
C⋯C 2.4
Cl⋯C/C⋯Cl 1.7
S⋯C/C⋯S 1.5
Cl⋯Cl 0.6
S⋯S 0.2
O⋯C/C⋯O 0.1
[Figure 2]
Figure 2
The packing viewed along the a-axis direction with the C—H⋯π inter­actions indicated by dashed lines.
[Figure 3]
Figure 3
The three-dimensional Hirshfeld surface for the title compound, plotted over dnorm in the range −0.08 to +1.30 a.u.
[Figure 4]
Figure 4
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) Cl⋯H/H⋯Cl and (e) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

The most closely related four structures containing the 1,3-thia­zole moiety are as follows: meth­yl(2-(cyclo­pentyl­idenehydrazono)-4-oxo-3-phenyl-1,3-thia­zolidin-5-yl­idene)acetate [Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode GUVVAW (I)[link]; Akkurt et al., 2015[Akkurt, M., Smolenski, V. A., Mohamed, S. K., Jasinski, J. P., Hassan, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o776-o777.]], 2-(5-methyl-4-phenyl-1,3-thia­zol-2-yl)-1-phenyl­ethanol [EKEZUP (II); Rybakov et al., 2003[Rybakov, V. B., Liakina, A. Y., Popova, I. S., Formanovsky, A. A. & Aslanov, L. A. (2003). Acta Cryst. E59, o1293-o1295.]], 2-{(E)-2-[(2-chloro­phen­yl)methyl­idene]hydrazin-1-yl}-4-phenyl-1,3-thia­zole [WOJKOX (III); Mague et al., 2014[Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o907-o908.]] and 2-[4-(4-meth­oxy­phen­yl)-1,3-thia­zol-2-yl]-2,3-di­hydro-1H-iso­indole-1,3-dione [IQUHOT (IV); Saravanan et al., 2016[Saravanan, K., Archana, K., Lakshmithendral, K., Kabilan, S. & Selvanayagam, S. (2016). IUCrData, 1, x161053.]].

In the crystal of (I)[link], the thia­zolidinyl ring (r.m.s. deviation = 0.024 Å) forms a dihedral angle of 65.13 (8)° with the attached phenyl ring. The mol­ecular packing features C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional network. In (II), mol­ecules form extended chains through O—H⋯N hydrogen bonds and in (III), the two independent mol­ecules are associated via complementary N—H⋯N hydrogen bonds into a dimer. These dimers are associated through weak C—H⋯Cl and C—H⋯S inter­actions into supra­molecular chains propagating along the a-axis direction. In (IV), the mol­ecules are linked via C—H⋯O inter­actions, which form C(7) chains propagating along [010]. In addition to this, weak ππ inter­actions are also observed.

5. Synthesis and crystallization

A mixture of 1-chloro-3,3-dieth­oxy-1-phenyl­propan-2-one (0.769 g, 2 mmol) and 4-chloro­benzo­thio­amide (0.514 g, 3 mmol) was refluxed in methanol (15 ml) for 3 h. Then, the solvent was distilled off in a rotary evaporator under a vacuum. The residue was recrystallized from diethyl ether. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a acetone solution. Colourless solid, yield 0.891 g (86%); m.p. 401–402 K. Analysis calculated for C18H16ClNO2S: C 62.51, H 4.66, N 4.05; found: C 62.47, H 4.61, N 4.01%. 1H NMR (300 MHz, CDCl3) δ 3.52 (6H, 2CH3), 4.62 (1H, CH), 7.22–8.90 (9H, Ar). 13C NMR (75 MHz, CDCl3) δ 169.6, 168.2, 154.4, 144.00, 142.4, 130.8, 129.6, 128.2, 127.4, 126.8, 126.00, 115.2 and 55.8. ESI–MS: m/z: 346.88 [M + H]+.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms bonded to C atoms were positioned geometrically (C—H = 0.93–1.00 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2–1.5Ueq(C)

Table 3
Experimental details

Crystal data
Chemical formula C18H16ClNO2S
Mr 345.83
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 6.6235 (1), 25.1848 (3), 9.8283 (1)
β (°) 96.504 (1)
V3) 1628.92 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.34
Crystal size (mm) 0.2 × 0.12 × 0.04
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.638, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 31880, 3497, 3304
Rint 0.064
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.153, 1.12
No. of reflections 3497
No. of parameters 210
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −0.52
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

2-(4-Chlorophenyl)-4-(dimethoxymethyl)-5-phenyl-1,3-thiazole top
Crystal data top
C18H16ClNO2SF(000) = 720
Mr = 345.83Dx = 1.410 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 6.6235 (1) ÅCell parameters from 20657 reflections
b = 25.1848 (3) Åθ = 3.5–79.0°
c = 9.8283 (1) ŵ = 3.34 mm1
β = 96.504 (1)°T = 100 K
V = 1628.92 (4) Å3Block, colourless
Z = 40.2 × 0.12 × 0.04 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3497 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3304 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.064
Detector resolution: 10.0000 pixels mm-1θmax = 79.5°, θmin = 3.5°
ω scansh = 78
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 3232
Tmin = 0.638, Tmax = 1.000l = 1212
31880 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0621P)2 + 4.0625P]
where P = (Fo2 + 2Fc2)/3
3497 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.46338 (11)0.46239 (3)0.83382 (7)0.0279 (2)
S10.51773 (10)0.42961 (2)0.43335 (7)0.01922 (18)
O10.4944 (3)0.23523 (8)0.4398 (2)0.0232 (4)
O20.2192 (3)0.27028 (8)0.5252 (2)0.0234 (4)
N10.6210 (4)0.33759 (9)0.5297 (2)0.0195 (5)
C10.6779 (4)0.38728 (11)0.5353 (3)0.0197 (5)
C20.4449 (4)0.33113 (11)0.4441 (3)0.0194 (5)
C30.3640 (4)0.37626 (10)0.3799 (3)0.0184 (5)
C40.8675 (4)0.40656 (11)0.6128 (3)0.0195 (5)
C50.9086 (4)0.46059 (11)0.6290 (3)0.0204 (5)
H50.8096940.4857620.5932560.025*
C61.0909 (4)0.47816 (11)0.6960 (3)0.0210 (5)
H61.1182240.5150460.7067350.025*
C71.2333 (4)0.44064 (12)0.7474 (3)0.0213 (6)
C81.1971 (4)0.38669 (12)0.7341 (3)0.0229 (6)
H81.2965800.3617280.7702690.028*
C91.0129 (4)0.36970 (11)0.6669 (3)0.0217 (6)
H90.9854370.3327810.6575120.026*
C100.3501 (4)0.27646 (11)0.4245 (3)0.0194 (5)
H100.2708090.2741790.3318690.023*
C110.5988 (5)0.22879 (13)0.3220 (3)0.0296 (7)
H11A0.5010990.2304020.2393780.044*
H11B0.6678190.1943180.3262770.044*
H11C0.6992420.2572200.3192210.044*
C120.0998 (5)0.22282 (13)0.5072 (3)0.0315 (7)
H12A0.0511280.2182720.4100150.047*
H12B0.0167080.2255240.5600940.047*
H12C0.1832430.1921970.5393630.047*
C130.1824 (4)0.38355 (11)0.2793 (3)0.0188 (5)
C140.0001 (4)0.35859 (11)0.2967 (3)0.0201 (5)
H140.0098650.3372160.3753830.024*
C150.1681 (5)0.36470 (12)0.2001 (3)0.0239 (6)
H150.2918640.3472680.2124590.029*
C160.1560 (5)0.39635 (12)0.0848 (3)0.0248 (6)
H160.2709370.4004690.0184810.030*
C170.0259 (5)0.42183 (12)0.0677 (3)0.0245 (6)
H170.0346290.4435790.0103940.029*
C180.1943 (4)0.41573 (11)0.1636 (3)0.0213 (6)
H180.3178310.4332980.1511480.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0244 (4)0.0301 (4)0.0270 (4)0.0046 (3)0.0063 (3)0.0036 (3)
S10.0205 (3)0.0162 (3)0.0206 (3)0.0005 (2)0.0007 (2)0.0009 (2)
O10.0250 (10)0.0203 (10)0.0236 (10)0.0031 (8)0.0004 (8)0.0006 (7)
O20.0281 (11)0.0210 (10)0.0217 (10)0.0055 (8)0.0051 (8)0.0013 (8)
N10.0219 (12)0.0199 (11)0.0168 (10)0.0006 (9)0.0024 (9)0.0009 (8)
C10.0238 (14)0.0192 (13)0.0169 (12)0.0028 (10)0.0056 (10)0.0010 (10)
C20.0216 (14)0.0203 (13)0.0167 (12)0.0004 (10)0.0044 (10)0.0005 (10)
C30.0195 (13)0.0181 (12)0.0180 (12)0.0005 (10)0.0030 (10)0.0006 (9)
C40.0210 (13)0.0216 (13)0.0165 (12)0.0016 (10)0.0044 (10)0.0005 (10)
C50.0183 (13)0.0228 (13)0.0204 (13)0.0037 (10)0.0029 (10)0.0014 (10)
C60.0230 (14)0.0200 (13)0.0205 (13)0.0015 (10)0.0047 (11)0.0005 (10)
C70.0204 (13)0.0278 (14)0.0161 (12)0.0009 (11)0.0031 (10)0.0002 (10)
C80.0239 (14)0.0242 (14)0.0204 (13)0.0045 (11)0.0009 (11)0.0013 (10)
C90.0254 (14)0.0191 (13)0.0209 (13)0.0009 (10)0.0032 (11)0.0002 (10)
C100.0193 (13)0.0204 (13)0.0180 (12)0.0001 (10)0.0000 (10)0.0012 (10)
C110.0258 (15)0.0309 (16)0.0323 (16)0.0035 (12)0.0051 (12)0.0037 (12)
C120.0367 (18)0.0257 (15)0.0318 (16)0.0109 (13)0.0028 (13)0.0037 (12)
C130.0220 (14)0.0183 (12)0.0160 (12)0.0025 (10)0.0014 (10)0.0011 (9)
C140.0205 (13)0.0211 (13)0.0191 (12)0.0024 (10)0.0044 (10)0.0007 (10)
C150.0231 (14)0.0247 (14)0.0241 (14)0.0024 (11)0.0035 (11)0.0017 (11)
C160.0243 (14)0.0275 (14)0.0212 (13)0.0075 (11)0.0031 (11)0.0015 (11)
C170.0319 (16)0.0240 (14)0.0176 (13)0.0051 (12)0.0024 (11)0.0022 (10)
C180.0238 (14)0.0186 (12)0.0224 (13)0.0004 (10)0.0057 (11)0.0008 (10)
Geometric parameters (Å, º) top
Cl1—C71.747 (3)C8—C91.387 (4)
S1—C11.740 (3)C9—H90.9500
S1—C31.731 (3)C10—H101.0000
O1—C101.408 (3)C11—H11A0.9800
O1—C111.424 (4)C11—H11B0.9800
O2—C101.396 (3)C11—H11C0.9800
O2—C121.433 (4)C12—H12A0.9800
N1—C11.306 (4)C12—H12B0.9800
N1—C21.368 (4)C12—H12C0.9800
C1—C41.475 (4)C13—C141.391 (4)
C2—C31.379 (4)C13—C181.406 (4)
C2—C101.517 (4)C14—H140.9500
C3—C131.480 (4)C14—C151.387 (4)
C4—C51.393 (4)C15—H150.9500
C4—C91.399 (4)C15—C161.395 (4)
C5—H50.9500C16—H160.9500
C5—C61.381 (4)C16—C171.392 (4)
C6—H60.9500C17—H170.9500
C6—C71.389 (4)C17—C181.384 (4)
C7—C81.383 (4)C18—H180.9500
C8—H80.9500
C3—S1—C189.91 (13)O2—C10—C2107.0 (2)
C10—O1—C11112.6 (2)O2—C10—H10109.6
C10—O2—C12112.6 (2)C2—C10—H10109.6
C1—N1—C2111.2 (2)O1—C11—H11A109.5
N1—C1—S1114.1 (2)O1—C11—H11B109.5
N1—C1—C4124.2 (3)O1—C11—H11C109.5
C4—C1—S1121.6 (2)H11A—C11—H11B109.5
N1—C2—C3116.3 (2)H11A—C11—H11C109.5
N1—C2—C10119.9 (2)H11B—C11—H11C109.5
C3—C2—C10123.8 (3)O2—C12—H12A109.5
C2—C3—S1108.4 (2)O2—C12—H12B109.5
C2—C3—C13130.7 (3)O2—C12—H12C109.5
C13—C3—S1120.8 (2)H12A—C12—H12B109.5
C5—C4—C1121.6 (3)H12A—C12—H12C109.5
C5—C4—C9119.2 (3)H12B—C12—H12C109.5
C9—C4—C1119.2 (2)C14—C13—C3120.9 (2)
C4—C5—H5119.4C14—C13—C18119.3 (3)
C6—C5—C4121.1 (3)C18—C13—C3119.8 (3)
C6—C5—H5119.4C13—C14—H14119.8
C5—C6—H6120.8C15—C14—C13120.4 (3)
C5—C6—C7118.4 (3)C15—C14—H14119.8
C7—C6—H6120.8C14—C15—H15119.9
C6—C7—Cl1118.8 (2)C14—C15—C16120.3 (3)
C8—C7—Cl1119.1 (2)C16—C15—H15119.9
C8—C7—C6122.1 (3)C15—C16—H16120.3
C7—C8—H8120.6C17—C16—C15119.4 (3)
C7—C8—C9118.8 (3)C17—C16—H16120.3
C9—C8—H8120.6C16—C17—H17119.7
C4—C9—H9119.8C18—C17—C16120.6 (3)
C8—C9—C4120.5 (3)C18—C17—H17119.7
C8—C9—H9119.8C13—C18—H18120.0
O1—C10—C2112.9 (2)C17—C18—C13120.0 (3)
O1—C10—H10109.6C17—C18—H18120.0
O2—C10—O1108.1 (2)
Cl1—C7—C8—C9179.2 (2)C3—C2—C10—O1150.2 (3)
S1—C1—C4—C512.2 (4)C3—C2—C10—O290.9 (3)
S1—C1—C4—C9165.3 (2)C3—C13—C14—C15178.5 (3)
S1—C3—C13—C14137.1 (2)C3—C13—C18—C17178.7 (2)
S1—C3—C13—C1843.4 (3)C4—C5—C6—C70.0 (4)
N1—C1—C4—C5172.0 (3)C5—C4—C9—C80.9 (4)
N1—C1—C4—C910.5 (4)C5—C6—C7—Cl1179.4 (2)
N1—C2—C3—S10.9 (3)C5—C6—C7—C80.4 (4)
N1—C2—C3—C13177.8 (3)C6—C7—C8—C90.2 (4)
N1—C2—C10—O129.8 (3)C7—C8—C9—C40.5 (4)
N1—C2—C10—O289.1 (3)C9—C4—C5—C60.7 (4)
C1—S1—C3—C20.5 (2)C10—C2—C3—S1179.0 (2)
C1—S1—C3—C13178.4 (2)C10—C2—C3—C132.2 (5)
C1—N1—C2—C31.0 (3)C11—O1—C10—O2163.7 (2)
C1—N1—C2—C10179.0 (2)C11—O1—C10—C278.1 (3)
C1—C4—C5—C6176.8 (2)C12—O2—C10—O165.6 (3)
C1—C4—C9—C8176.6 (2)C12—O2—C10—C2172.5 (2)
C2—N1—C1—S10.5 (3)C13—C14—C15—C160.5 (4)
C2—N1—C1—C4176.6 (2)C14—C13—C18—C170.7 (4)
C2—C3—C13—C1444.2 (4)C14—C15—C16—C170.1 (4)
C2—C3—C13—C18135.2 (3)C15—C16—C17—C180.4 (4)
C3—S1—C1—N10.0 (2)C16—C17—C18—C130.1 (4)
C3—S1—C1—C4176.2 (2)C18—C13—C14—C151.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C1–C3/S1/N1 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···S10.952.743.143 (3)106
C6—H6···Cg3i0.952.813.620 (3)144
C12—H12C···Cg3ii0.982.813.406 (3)120
C15—H15···Cg1iii0.952.953.481 (3)117
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x1, y, z.
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H39.2
H···C/C···H25.2
Cl···H/H···Cl11.4
O···H/H···O8.0
S···H/H···S5.1
N···H/H···N3.9
C···C2.4
Cl···C/C···Cl1.7
S···C/C···S1.5
Cl···Cl0.6
S···S0.2
O···C/C···O0.1
Summary of short interatomic contacts (Å) in the title compound. top
ContactDistanceSymmetry operation
Cl1···H162.852 + x, y, 1 + z
H18···Cl13.002 - x, 1 - y, 1 - z
H11C···H152.501 + x, y, z
H6···C172.971 - x, 1 - y, 1 - z
O2···H11A2.65x, 1/2 - y, 1/2 + z
C7···H172.851 + x, y, 1 + z
C11···H83.04-1 + x, 1/2 - y, -1/2 + z

Acknowledgements

The authors' contributions are as follows. Conceptualization, FIG, MA and AB; synthesis, FIG and KIK; X-ray analysis, EVS, EIT, MA and SÖY; writing (review and editing of the manuscript), FIG, MA, SÖY and AB.

References

First citationAkkurt, M., Smolenski, V. A., Mohamed, S. K., Jasinski, J. P., Hassan, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o776–o777.  CSD CrossRef IUCr Journals Google Scholar
First citationDondoni, A. (2010). Org. Biomol. Chem. 8, 3366–3385.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrover, J. & Jachak, S. M. (2015). RSC Adv. 5, 38892–38905.  CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o907–o908.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRybakov, V. B., Liakina, A. Y., Popova, I. S., Formanovsky, A. A. & Aslanov, L. A. (2003). Acta Cryst. E59, o1293–o1295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaravanan, K., Archana, K., Lakshmithendral, K., Kabilan, S. & Selvanayagam, S. (2016). IUCrData, 1, x161053.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationYariv, I., Lipovsky, A., Gedanken, A., Lubart, R. & Fixler, D. (2015). Int. J. Nanomedicine, 10, 3593–3601.  CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds