research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A study of the crystal structures, supra­molecular patterns and Hirshfeld surfaces of bromide salts of hypoxanthine and xanthine

crossmark logo

aCentre for Research and Development, PRIST Deemed to be University, Thanjavur, 613 403, Tamil Nadu, India, bDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Thanjavur 613 403, Tamil Nadu, India, and cX-ray Crystallography Unit, School of Physics, University Sains Malaysia, 11800, USM, Penang, Malaysia
*Correspondence e-mail: nirmalramjs@gmail.com

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 7 March 2022; accepted 18 May 2022; online 20 May 2022)

Two new crystalline salts, namely, hypoxanthinium bromide monohydrate, C5H5N4O+·Br·H2O (I) and xanthinium bromide monohydrate, C5H5N4O2+·Br·H2O (II), were synthesized and characterized by single-crystal X-ray diffraction technique and Hirshfeld surface analysis. The hypoxanthinium and xanthinium cations in salts I and II are both in the oxo-N(9)–H tautomeric form. The crystal packing of the two salts is governed predominantly by N–H⋯O, N–H⋯Br, C–H⋯Br and O–H⋯Br inter­actions described by R23(9) and R22(8) synthons. The crystal packing is also consolidated by carbon­yl⋯π inter­actions between symmetry-related hypoxanthinium (HX+) cations in salt I and xanthinium cations (XA+) in salt II. The combination of all these inter­actions leads to the formation of wave- and staircase-like architectures in salts I and II, respectively. The largest contributions to the overall Hirshfeld surface are from Br⋯H/H⋯Br contacts (22.3% in I and 25.4% in II) .

1. Chemical context

Over the past several decades, non-covalent inter­actions have been found to play a prominent role in coordination chemistry, materials science and pharmaceutical science (Černý & Hobza, 2007[Černý, J. & Hobza, P. (2007). Phys. Chem. Chem. Phys. 9, 5291-5303.]; Desiraju, 2013[Desiraju, G. R. (2013). J. Am. Chem. Soc. 135, 9952-9967.]; Perumalla & Sun, 2014[Perumalla, S. R. & Sun, C. C. (2014). J. Pharm. Sci. 103, 1126-1132.]). Understanding the role of non-covalent inter­actions is important in the context of crystal engineering (Aakeröy et al., 2010[Aakeröy, C. B., Champness, N. R. & Janiak, C. (2010). CrystEngComm, 12, 22-43.]; Pogoda et al., 2018[Pogoda, D., Matera-Witkiewicz, A., Listowski, M., Janczak, J. & Videnova-Adrabinska, V. (2018). Acta Cryst. C74, 372-380.]; Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]; Desiraju et al., 2013[Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711-1713.]) in order to design solids with desired properties. When it comes to pharmaceutics, active pharmaceutical ingredients (APIs) are known to exist in different solid forms such as salts, co-crystals, solvates, polymorphs and amorphous solids (Aaltonen et al., 2009[Aaltonen, J., Allesø, M., Mirza, S., Koradia, V., Gordon, K. C. & Rantanen, J. (2009). Eur. J. Pharm. Biopharm. 71, 23-37.]). The salt and co-crystal forms of APIs have improved their solubility and bioavailability when compared to pure APIs (Thackaberry, 2012[Thackaberry, E. A. (2012). Expert Opin. Drug Metab. Toxicol. 8, 1419-1433.]; Xu, et al., 2014[Xu, Y., Jiang, L. & Mei, X. (2014). Acta Cryst. B70, 750-760.]). Drugs with low solubility/bioavailability are usually converted to their salts or crystallized in their co-crystal/polymorphic/solvate forms to enhance their properties. Herein, we report two new salts of hypoxanthine (HX) and xanthine (XA).

Hypoxanthine (C5H4N4O) [systematic name: 1,9-di­hydro-purine-6-one] and xanthine (C5H4N4O2) [systematic name: 3,7-di­hydro-purine-2,6-dione] are well-known purine-based nucleotides (Emel'yanenko et al., 2017[Emel'yanenko, V. N., Zaitsau, D. H. & Verevkin, S. P. (2017). J. Chem. Eng. Data, 62, 2606-2609.]) present in t-RNA and DNA in the form of the nucleoside inosine (Plekan et al., 2012[Plekan, O., Feyer, V., Richter, R., Moise, A., Coreno, M., Prince, K. C., Zaytseva, I. L., Moskovskaya, T. E., Soshnikov, D. Y. & Trofimov, A. B. (2012). J. Phys. Chem. A, 116, 5653-5664.]). Purine derivatives are widely known for their therapeutic applications such as antagonization of the adenosine receptor, anti-inflammatory, anti­microbial, anti­oxidant, anti-tumour, anti-asthmatic and psycho-stimulant drug activity (Meskini et al., 1994[Meskini, N., Némoz, G., Okyayuz-Baklouti, I., Lagarde, M. & Prigent, A. F. (1994). Biochem. Pharmacol. 47, 781-788.]; Burbiel et al., 2006[Burbiel, J. C., Hockemeyer, J. & Muller, C. E. (2006). Beilstein J. Org. Chem. 2, 1-7.]). HX and XA are also found as inter­mediates in the biological degradation of nucleic acid to uric acid. Furthermore, HX is used as an indicator of hypoxia and it is known to inhibit the effect of several drugs (Dubler et al., 1987a[Dubler, E., Hänggi, G. & Bensch, W. (1987a). J. Inorg. Biochem. 29, 269-288.],b[Dubler, E., Hänggi, G. & Schmalle, H. (1987b). Acta Cryst. C43, 1872-1875.]). It is also used to destroy harmful agents such as cancer cells (Susithra et al., 2018[Susithra, G., Ramalingam, S., Periandy, S. & Aarthi, R. (2018). Egypt. J. Basic Appl. Sci. 5, 313-326.]). Purine-based derivatives of HX and XA bind with the DNA base pairs through weak hydrogen bonds (Latosińska et al., 2014[Latosińska, J. N., Latosińska, M., Seliger, J., Žagar, V. & Kazimierczuk, Z. (2014). J. Phys. Chem. B, 118, 10837-10853.]; Rutledge et al., 2007[Rutledge, L. R., Wheaton, C. A. & Wetmore, S. D. (2007). Phys. Chem. Chem. Phys. 9, 497-509.]). Additionally, hypoxanthine-guanine phospho­ribosyl transferase plays an important role in activating anti­viral drugs in the human body and xanthine has been used as a mild stimulant drug (Faheem et al., 2020[Faheem, B. K., Kumar, K., Sekhar, K. V. G. C., Kunjiappan, S., Jamalis, J., Balaña-Fouce, R., Tekwani, B. L. & Sankaranarayanan, M. (2020). Bioorg. Chem. 104, 104269-104269.]).

The structure of hypoxanthine and xanthine consists of fused six-membered pyrimidine and five-membered imidazole rings. HX and XA can exist in two tautomeric forms, oxo-N(7)–H and oxo-N(9)–H (Plekan et al., 2012[Plekan, O., Feyer, V., Richter, R., Moise, A., Coreno, M., Prince, K. C., Zaytseva, I. L., Moskovskaya, T. E., Soshnikov, D. Y. & Trofimov, A. B. (2012). J. Phys. Chem. A, 116, 5653-5664.]; Gulevskaya & Pozharskii, 1991[Gulevskaya, A. V. & Pozharskii, A. F. (1991). Chem. Heterocycl. Compd. 27, 1-23.]), as shown below. So far, two polymorphic forms of HX (Schmalle et al., 1988[Schmalle, H. W., Hänggi, G. & Dubler, E. (1988). Acta Cryst. C44, 732-736.]; Yang & Xie, 2007[Yang, R.-Q. & Xie, Y.-R. (2007). Acta Cryst. E63, o3309.]) and a limited number of hypoxanthinium and xanthinium salts have been reported in the literature; hypoxanthinium nitrate monohydrate, hypoxanthinium chloride monohydrate (Cabaj et al., 2019[Cabaj, M. K., Gajda, R., Hoser, A., Makal, A. & Dominiak, P. M. (2019). Acta Cryst. C75, 1036-1044.]; Schmalle et al., 1990[Schmalle, H. W., Hänggi, G. & Dubler, E. (1990). Acta Cryst. C46, 340-342.]; Sletten & Jensen, 1969[Sletten, J. & Jensen, L. H. (1969). Acta Cryst. B25, 1608-1614.]), xanthinium nitrate monohydrate and xanthinium hydrogensulfate monohydrate (Sridhar, 2011[Sridhar, B. (2011). Acta Cryst. C67, o382-o386.]).

[Scheme 2]

In the hypoxanthinium salts, the hypoxanthine mol­ecule is usually also protonated at the N7 position, resulting in the oxo-N(9)–H tautomer. Similarly, xanthinium nitrate monohydrate, xanthinium hydrogensulfate monohydrate (Sridhar, 2011[Sridhar, B. (2011). Acta Cryst. C67, o382-o386.]) and xanthinium perchlorate dihydrate (Biradha et al., 2010[Biradha, K., Samai, S., Maity, A. C. & Goswami, S. (2010). Cryst. Growth Des. 10, 937-942.]) are also in the oxo-N(9)–H tautomeric form and are therefore protonated on the N7 position. Studies of non-covalent inter­actions involving hypoxanthine and xanthine bases with inorganic acids have increased because their hydrogen-bonding patterns are similar to those of purine bases (Maixner & Zachova, 1991[Maixner, J. & Zachová, J. (1991). Acta Cryst. C47, 2474-2476.]; Sridhar, 2011[Sridhar, B. (2011). Acta Cryst. C67, o382-o386.]; Kistenmancher & Shigematsu, 1974[Kistenmacher, T. J. & Shigematsu, T. (1974). Acta Cryst. B30, 166-168.]). In the current work, the crystal structures, supra­molecular packing patterns and Hirshfeld surface analyses of hypoxanthinium bromide monohydrate (I) and xanthinium bromide monohydrate (II) are reported.

[Scheme 1]

2. Structural commentary

Hypoxanthinium bromide monohydrate (I) crystallizes in the monoclinic space group P21/c with one hypoxanthinium cation (HX+), one bromide anion (Br) and one water mol­ecule in the asymmetric unit, as shown in Fig. 1[link]. Here, the HX+ cation exists in the oxo-N(9)–H tautomeric form with the N7 atom of the purine ring protonated, as can be seen from the N—C bond distance [N7—C8 = 1.3219 (17) Å vs N9—C8 = 1.3419 (18) Å] and C—N—C bond angles [C5—N7—C8 = 107.98 (11)° and C4—N9—C8 = 108.32 (10)°]. Those values are similar to those in the crystal structure of hypoxanthinium chloride monohydrate [N7—C8 = 1.325 (2) Å and N9—C8 = 1.336 (2) Å, C5—N7—C8 = 107.35 (16)° and C4—N9—(C8 = 108.28 (15)°; Kalyanaraman et al., 2007[Kalyanaraman, S., Krishnakumar, V. & Ganesan, K. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 67, 750-755.]; Sletten & Jensen, 1969[Sletten, J. & Jensen, L. H. (1969). Acta Cryst. B25, 1608-1614.]]. The N3—C4—C5—N7 and N9—C4—C5—C6 torsion angles are 179.07 (12) and −179.58 (12)°, respectively. These values are similar to those observed in the crystal structure of the neutral hypoxanthine mol­ecule (Schmalle et al., 1988[Schmalle, H. W., Hänggi, G. & Dubler, E. (1988). Acta Cryst. C44, 732-736.]; Yang & Xie, 2007[Yang, R.-Q. & Xie, Y.-R. (2007). Acta Cryst. E63, o3309.]). The HX+ cation, Br anion and the water mol­ecule inter­act through N—H⋯Br, N—H⋯O and C—H⋯Br hydrogen bonds with donor–acceptor distances N⋯Br = 3.2419 (13) Å, N9⋯O6 = 2.7579 (14) Å and C8⋯Br1 = 3.4875 (15) Å (Table 1[link]), forming an [R_{3}^{2}](9) motif. The water mol­ecule present in the lattice prevents the formation of base pairs (Varani & McClain, 2000[Varani, G. & McClain, W. H. (2000). EMBO Rep. 1, 18-23.]) between the HX+ cations.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯Br1i 0.85 (1) 3.08 (2) 3.5397 (12) 117 (2)
N9—H9⋯O6i 0.85 (1) 1.98 (2) 2.7579 (14) 153 (2)
N1—H1⋯Br1 0.84 (1) 2.41 (1) 3.2419 (12) 170 (2)
N7—H7⋯O1Wii 0.85 (1) 1.81 (2) 2.6401 (16) 165 (2)
O1W—H1W⋯N3iii 0.86 (1) 2.08 (1) 2.9200 (16) 165 (2)
O1W—H2W⋯Br1 0.85 (1) 2.48 (1) 3.2894 (12) 161 (2)
C8—H8⋯Br1i 0.93 2.89 3.4875 (15) 123
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x-1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, -y+1, -z+1].
[Figure 1]
Figure 1
ORTEP view of the mol­ecular components of salts I and II, showing the atom-labelling scheme. Displacement ellipsoids are drawn at 50% probability level. Hydrogen bonds are shown as dashed lines.

Xanthinium bromide monohydrate (II) also crystallizes in the monoclinic space group P21/c with one xanthinium cation (XA+), one bromide anion (Br) and one water mol­ecule in the asymmetric unit (Fig. 1[link]). The XA+ cation has the N7—C8 bond [1.312 (5) Å] shorter than N9–C8 one [1.344 (5) Å]. The C—N—C bond angles are C5—N7—C8 = 108.2 (3)° and C4—N9—C8 = 107.7 (3)° and, therefore, the cation can also be described as the oxo-N(9)–H tautomer. These values are similar to those in xanthinium perchlorate dihydrate [N7—C8 = 1.314 (3) Å, N9—C8 = 1.341 (3) Å, C5—N7—C8 = 108.3 (16)° and C4—N9—C8 = 107.58 (15)°; Biradha et al., 2010[Biradha, K., Samai, S., Maity, A. C. & Goswami, S. (2010). Cryst. Growth Des. 10, 937-942.]). The N3—C4—C5—N7 and N9—C4—C5—C6 torsion angles in II are 179.07 (12)° and −179.58 (12)°, respectively. Finally, the two symmetry-related XA+ cations in II form a base pair similar to that observed between guanine and uracil (Varani & McClain, 2000[Varani, G. & McClain, W. H. (2000). EMBO Rep. 1, 18-23.]).

3. Supra­molecular features

In I, the protonated HX+ cation inter­acts with another inversion-related HX+ and Br pair via N1—H1⋯Br1, C8—H8⋯Br1ii and N9—H9⋯O6ii hydrogen bonds (Table 1[link]). These inter­actions lead to the formation of a nine-membered ring with [R_{3}^{2}](9) (type D[link]) primary graph-set motif (Sletten & Jensen, 1969[Sletten, J. & Jensen, L. H. (1969). Acta Cryst. B25, 1608-1614.]). Along with this, the HX+ cation inter­acts with another inversion-related HX+ cation and a water mol­ecule through O1W—H1W⋯N3iii and N7—H7⋯O1Wii hydrogen bonds. The combination of these inter­actions leads to the formation of an eleven-membered R33(11) (type I[link]) ring motif. The inter­action is very similar to the water-mediated base pairs observed in the crystal structure of hypoxanthinium chloride and the nucleobase pairs in DNA and RNA (Sletten & Jensen, 1969[Sletten, J. & Jensen, L. H. (1969). Acta Cryst. B25, 1608-1614.]; Reddy et al., 2001[Reddy, C., Das, A. & Jayaram, B. (2001). J. Mol. Biol. 314, 619-632.]; Brandl et al., 2000[Brandl, M., Meyer, M. & Sühnel, J. (2000). J. Phys. Chem. A, 104, 11177-11187.]). Here the O1W atom of the water mol­ecule acts as both a hydrogen-bond donor and a hydrogen-bond acceptor. The [R_{3}^{2}](9) and R33(11) ring motifs combine to form a supra­molecular ribbon. Adjacent ribbons are connected through pairs of O1W—H2W⋯Br1 hydrogen bonds with R64(16) and R64(14) (types N and O motifs[link]) ring motifs, respectively, through pairs of C8—H8⋯Br1i and N7—H7⋯O1Wii hydrogen bonds (Fig. 2[link]). The combination of all these inter­actions leads to the formation of a wave-like supra­molecular architecture that extends along the b-axis direction (Fig. 3[link]). The crystal structure is further consolidated by carbon­yl⋯π inter­actions (C6=O6 and π cloud of the imidazole (centroid Cg1) and pyridine (centroid Cg2) rings of the HX+ cation) between symmetry-related cations with C=O⋯Cg1iv, C=O⋯Cg1v, C=O⋯Cg2iv and C=O⋯Cg2v distances of 3.5796 (12), 3.2478 (12) Å, 3.3862 (12) and 3.4747 (12) Å, respectively, and angles of 101.58 (8), 91.45 (8), 105.03 (8) and 103.46 (8)°, respectively [symmetry codes: (iv) −1 + x, y, z; (v) x, [{1\over 2}] − y, [{1\over 2}] + z] (Fig. 4[link]). Salt I is isomorphous with hypoxanthinium chloride monohydrate (Sletten & Jensen, 1969[Sletten, J. & Jensen, L. H. (1969). Acta Cryst. B25, 1608-1614.]).

[Scheme 3]
[Figure 2]
Figure 2
Hypoxanthinium and bromide ions in salt I forming ribbons together with water mol­ecules through O—H⋯Br, N—H⋯Br and C—H⋯Br inter­action. [Symmetry codes: (i) −1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; (ii) 1 + x, [{1\over 2}] − y, −[{1\over 2}] + z; (iii) −x, 1 − y, 1 − z].
[Figure 3]
Figure 3
A view of three-dimensional wave-like supra­molecular architecture along the b-axis direction.
[Figure 4]
Figure 4
A view of the C=O(carbon­yl)⋯π inter­actions (dashed lines) between the HX+ cations in salt I. [Symmetry codes: (i) −1 + x, y, z; (ii) x, [{1\over 2}] − y, [{1\over 2}] + z].

In the crystal structure of salt II, the XA+ cation inter­acts with its inversion-related equivalent to form a dimer through a pair of N1—H1⋯O2i hydrogen bonds (Table 2[link]) with an [R_{2}^{2}](8) graph-set motif (type C in the scheme above). The dimer is flanked on both sides by a water mol­ecule (O1W), forming a pair of O1W—H2W⋯O2iv and O1W—H1W⋯O6ii hydrogen bonds with an [R_{3}^{2}](8) graph-set motif (type H[link]), leading to the formation of a tetra­meric unit. The tetra­meric unit is formed by an alternate arrangement of [R_{2}^{2}](8) and [R_{3}^{2}](8) ring motifs, which extend as DADA array (dimeric units held together by four hydrogen bonds between the self-complementary DADA arrays; D = donor and A = acceptor) along the ac plane. Neighbouring tetra­meric units are then connected through two sets of [R_{2}^{2}](7) motifs (Jeffrey & Saenger, 1991[Jeffrey, J. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin Heidelberg: Springer.]) formed by N7—H7⋯O1W and O1W—H1W⋯O6ii hydrogen bonds and an [R_{2}^{2}](4) (type L) motif formed by a pair of O1W—H1W⋯O6ii inter­actions. The tetra­meric units combine into a supra­molecular ribbon extended along the ac plane (Fig. 5[link]). Neighbouring perpendicular supra­molecular ribbons are then inter­connected through pairs of N3—H3⋯Br1iii and N9—H9⋯Br1 hydrogen bonds with an R86(28) ring motif, which assembles them into a staircase-like supra­molecular architecture as shown in Figs. 6[link] and 7[link]. The crystal structure is further consolidated by carbon­yl⋯π inter­actions between symmetry-related XA+ cations [C6=O6 and π cloud of the pyridine ring (centroid Cg2) of the XA+ unit) with C=O⋯Cg2vi and C=O⋯Cg2vii distances of 3.366 (3) and 3.477 (3) Å, respectively, and angles of 108.2 (2) and 118.7 (2)° [symmetry codes: (vi) 1 + x, y, z; (vii) 1 − x, 1 − y, 1 − z; Fig. 8[link]).

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.82 (2) 2.09 (2) 2.903 (4) 175 (4)
N3—H3⋯Br1ii 0.82 (2) 2.48 (2) 3.301 (3) 176 (4)
N7—H7⋯O1W 0.82 (2) 1.81 (2) 2.609 (4) 163 (4)
N9—H9⋯Br1 0.82 (2) 2.43 (2) 3.237 (3) 172 (4)
O1W—H1WA⋯O6iii 0.86 (1) 1.95 (1) 2.802 (4) 171 (5)
O1W—H1WB⋯Br1iv 0.86 (1) 3.03 (4) 3.490 (3) 115 (3)
O1W—H1WB⋯O2v 0.86 (1) 2.05 (3) 2.816 (4) 149 (4)
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, -y+1, -z+1]; (iv) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x+1, y, z-1].
[Figure 5]
Figure 5
Formation of a supra­molecular ribbon with a DADA array in salt II via N—H⋯O and O—H⋯O hydrogen bonds between cations and water mol­ecules.
[Figure 6]
Figure 6
Supra­molecular ribbons connecting adjacent ribbons through N—H⋯Br inter­actions. [Symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) 2 − x, 1 − y, 1 − z; (iii) x, [{1\over 2}] − y, [{1\over 2}] + z; (iv) 1 + x, y, −1 + z].
[Figure 7]
Figure 7
The formation of a three-dimensional supra­molecular staircase structure along the ac plane.
[Figure 8]
Figure 8
A view of the C=O(carbon­yl)⋯π inter­actions between XA+ cations in salt II. [Symmetry codes: (i) 1 + x, y, z; (ii) 1 − x, 1 − y, 1 − z].

4. Hirshfeld surface analysis

Hirshfeld surface analyses and their associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) were generated using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surfaces of the title compounds mapped over dnorm feature several red spots in the regions of DA (D = donor, A = acceptor) inter­actions (Cárdenas-Valenzuela et al., 2018[Cárdenas-Valenzuela, A. J., González-García, G., Zárraga- Nuñez, R., Höpfl, H., Campos-Gaxiola, J. J. & Cruz-Enríquez, A. (2018). Acta Cryst. E74, 441-444.]; Atioğlu et al., 2018[Atioğlu, Z., Akkurt, M., Toze, F. A. A., Mammadova, G. Z. & Panahova, H. M. (2018). Acta Cryst. E74, 1035-1038.]). In this regard, the contribution of the inter­atomic contacts to the dnorm surface map can help differentiate whether the contact is longer (blue) or shorter (red) than the sum of the van der Waals radii of the two inter­acting atoms. The Hirshfeld surfaces of salts I and II are shown in Fig. 9[link]a and 10a[link], respectively and the hydrogen-bonding inter­actions between the hydrated ion pairs I and II and the respective neighbouring moieties are shown in Fig. 9[link]b and 10b[link], respectively. The intense red spots on the Hirshfeld surface indicate the shortest inter­atomic distances corresponding to the hydrogen bonds. They are also clearly identified by the two long spikes in the fingerprint plots and can be qu­anti­fied using the percentage distribution of the inter­acting types. Such analyses of the salts I and II are shown in Figs. 11[link] and 12[link] giving the following contributions: All (100%), O⋯H/H⋯O (I 19.7%, II 23.4%), N⋯H/H⋯N (I 13.5%, II 7.5%) C⋯H/H⋯C (I 6.4%, II 9.6%), H⋯H/H⋯H (I 23.4%, II 15.9%) and C⋯C/C⋯C (I 0.9%, II 0.1%) (Table 5), indicating that the most abundant contact is Br⋯H/H⋯Br with 22.3% in I and 25.4% in II, respectively.

[Figure 9]
Figure 9
(a) Hirshfeld surface mapped over dnorm for salt I. (b) Inter­molecular inter­actions and the three-dimensional Hirshfeld surface for salt I.
[Figure 10]
Figure 10
(a) Hirshfeld surface mapped over dnorm for salt II. (b) Inter­molecular inter­actions and the three-dimensional Hirshfeld surface for salt II.
[Figure 11]
Figure 11
Hirshfeld surface analysis and two-dimensional fingerprint plots for salt I plotted over dnorm, with inter­actions to neighbouring fragments shown as dashed lines.
[Figure 12]
Figure 12
Hirshfeld surface analysis and two-dimensional fingerprint plots for salt II plotted over dnorm, with inter­actions to neighbouring fragments shown as dashed lines.

5. Comparative analysis

The data obtained by comparative analysis of the crystal structures, supra­molecular inter­actions, hydrogen-bonding motifs and packing patterns of structurally similar halide salts such as adeninium bromide, adeninium chloride, guaninium bromide, guaninium chloride and hypoxanthinium chloride (Maixner & Zachova, 1991[Maixner, J. & Zachová, J. (1991). Acta Cryst. C47, 2474-2476.]; Sridhar, 2011[Sridhar, B. (2011). Acta Cryst. C67, o382-o386.]; Kistenmancher & Shigematsu, 1974[Kistenmacher, T. J. & Shigematsu, T. (1974). Acta Cryst. B30, 166-168.]; Langer & Huml, 1978[Langer, V. & Huml, K. (1978). Acta Cryst. B34, 1881-1884.]) are listed and compared in Table 3[link].

Table 3
Comparison of purine derivatives with hydro­bromic acid and hydro­chloric acid

  Adeninium bromide hemihydrate Adeninium chloride monohydrate Guaninium chloride monohydrate Guaninium bromide monohydrate Hypoxanthinium chloride monohydrate Hypoxanthinium bromide monohydrate (I) Xanthinium bromide monohydrate (II)
Cell parameters (a, b, c, β; Å, °) 9.018 (2), 4.845 (2), 19.693 (5), 112.8 8.771 (2), 4.834 (2), 19.46 (1), 114.25 4.591 (1), 9.886 (2), 18.985 (1), 99.62 4.8708 (7), 13.237 (3), 14.638 (2), 93.906 (10) 4.8295 (9), 17.7285 (22), 9.0077 (21), 94.59 (3) 4.8487 (4), 18.4455 (15), 9.0782 (7), 94.808 (1) 4.9225 (2), 22.7572 (17), 7.5601 (5) 103.003 (3)
Crystal system Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic
Space group P2/c P2/c P21/c P21/c P21/c P21/c P21/c
Protonation site N1 N1 N7 N7 N7 N7 N9
Type of hydrogen bonding N—H⋯O, N—H⋯Br, N—H⋯N, O—H⋯O, C—H⋯Br N—H⋯O, N—H⋯Cl, N—H⋯N, O—H⋯Cl, C—H⋯Cl N—H⋯O, N—H⋯Br, N—H⋯N, O—H⋯Br, C—H⋯Br N—H⋯O, N—H⋯Cl, N—H⋯N, O—H⋯Cl, C—H⋯Cl N—H⋯Cl, N—H⋯O, O—H⋯N, O—H⋯Cl, C—H⋯Cl N—H⋯Br, N—H⋯O, O—H⋯N, O—H⋯Br, C—H⋯Br N—H⋯O, N—H⋯Br, O—H⋯O
Type of stacking C=O⋯π C=O⋯π C=O⋯π C=O⋯π C=O⋯π
Primary motif [R_{2}^{2}](10) [R_{2}^{2}](10) [R_{2}^{2}](8) [R_{2}^{2}](8) [R_{3}^{2}](9) [R_{3}^{2}](9) [R_{2}^{2}](8)
Secondary motif [R_{3}^{2}](7), R42(14) [R_{3}^{2}](7), R42(14) [R_{3}^{2}](7), [R_{2}^{2}](10), R43(11) [R_{3}^{2}](7), [R_{2}^{2}](10), R43(11) R33(11), R64(16), R64(14) R33(11), R64(16), R64(14) [R_{2}^{2}](7), [R_{2}^{2}](4)
Type of packing architecture Ribbon Ribbon Ribbon Ribbon Wave Wave Staircase

Salt I has similar unit-cell parameters and packing patterns to the hypoxanthinium chloride salt. The mol­ecular recog­nition between the hypoxanthine base and acid happens via N—H⋯O, C—H⋯Br/Cl and N—H⋯Br/Cl hydrogen-bond motifs with [R_{3}^{2}](9) (type D[link]), R33(11) (type I[link]), R64(16) (type N[link]) and R64(14) (type O[link]) graph-set motifs. Salt II forms base pairs via N—H⋯O hydrogen bonds described by [R_{2}^{2}](8) (type C[link]), R23(8) (type H[link]) (Wei, 1977[Wei, C. H. (1977). Cryst. Struct. Commun. 6, 525-529.]; Maixner & Zachova, 1991[Maixner, J. & Zachová, J. (1991). Acta Cryst. C47, 2474-2476.]), [R_{2}^{2}](7) (type F[link]) and [R_{2}^{2}](4) (type L[link]) graph-set motifs. Salt II cannot be compared with its chloride analogue since its crystal structure has not yet been reported.

A comparison between some related purine-based chloride and bromide salts revealed that type A[link], B[link] and C[link] hydrogen-bond motifs are predominant. The commonly observed motifs in purine based salts are shown in the scheme. A comparison of salts I and II with the reported crystal structures revealed that the bromide and chloride salts of I are isomorphous and therefore, one might predict, the unreported xanthinium chloride monohydrate could be isomorphous with its bromide salt II.

6. Database survey

A survey of the Cambridge Structural Database (CSD, version 5.43, update of March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for reported structures of hypoxanthine and xanthine derivatives identified the hypoxanthine mol­ecule (CSD refcodes GEBTUC and GETBUC01; Schmalle et al., 1988[Schmalle, H. W., Hänggi, G. & Dubler, E. (1988). Acta Cryst. C44, 732-736.]; Yang & Xie, 2007[Yang, R.-Q. & Xie, Y.-R. (2007). Acta Cryst. E63, o3309.]) and the following salts: hypoxanthinium nitrate monohydrate (BONKOE and BONKOE54; Cabaj et al., 2019[Cabaj, M. K., Gajda, R., Hoser, A., Makal, A. & Dominiak, P. M. (2019). Acta Cryst. C75, 1036-1044.]; Schmalle et al., 1990[Schmalle, H. W., Hänggi, G. & Dubler, E. (1990). Acta Cryst. C46, 340-342.]), hypoxanthinium chloride monohydrate (HYPXCL and HYPXCL01; Sletten & Jensen, 1969[Sletten, J. & Jensen, L. H. (1969). Acta Cryst. B25, 1608-1614.]; Kalyanaraman et al., 2007[Kalyanaraman, S., Krishnakumar, V. & Ganesan, K. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 67, 750-755.]) as well as three xanthine salts, viz. xanthinium perchlorate monohydrate (VURMUR; Biradha et al., 2010[Biradha, K., Samai, S., Maity, A. C. & Goswami, S. (2010). Cryst. Growth Des. 10, 937-942.]), xanthinium nitrate monohydrate (YADJAQ; Sridhar, 2011[Sridhar, B. (2011). Acta Cryst. C67, o382-o386.]) and xanthinium hydrogensulfate monohydrate (YADJEU; Sridhar, 2011[Sridhar, B. (2011). Acta Cryst. C67, o382-o386.]). In all of the hypoxanthinium salts, the hypoxanthine mol­ecule is protonated at the N7 position and inter­acts with the anion through N—H⋯Cl/O and C=O⋯π inter­actions. In the xanthinium salts, the xanthine mol­ecules are protonated at the N7 position in xanthinium nitrate monohydrate and xanthinium hydrogensulfate monohydrate and at the N9 position in xanthinium perchlorate monohydrate. In all of the crystal structures, the xanthinium cation inter­acts with the anion through N—H⋯O, O—H⋯O and C=O⋯π inter­actions.

7. Synthesis and crystallization

A general method was used for the preparation and crystallization of the hypoxanthinium bromide monohydrate (I) and xanthinium bromide monohydrate (II) using the following qu­anti­ties: 0.0340 mg (0.25mmol) of hypoxanthine for I and 0.0380 mg (0.25 mmol) of xanthine for II.

The indicated amount of the base was dissolved in 20 mL of distilled water and 2 mL of hydro­bromic acid (5% in water) were added. The reaction mixture was heated to 358 K for 30 min using a water bath. The resulting solution was allowed to slowly evaporate at room temperature. After a few days, colourless plate-like crystals were obtained.

8. Refinement

Crystal data, data collection and structure refinement details for salts I and II are summarized in Table 4[link]. All C-bound hydrogen atoms were placed in idealized positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq (C). The H atoms of the water mol­ecule were located in a difference-Fourier map and refined with the O—H distance restrained to 0.85–0.86 Å and with Uiso(H) = 1.5 Ueq(O). The hydrogen atoms bound to the nitro­gen atoms in salts I and II were located in difference-Fourier maps and either refined freely (in I) or with the distance restraint N—H = 0.82 Å and with Uiso(H) = 1.2Ueq(N) (in II).

Table 4
Experimental details

  I II
Crystal data
Chemical formula C5H5N4O+·Br·H2O C5H5N4O2+·Br·H2O
Mr 235.06 251.06
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 296 303
a, b, c (Å) 4.8487 (4), 18.4455 (15), 9.0782 (7) 4.9225 (2), 22.7572 (17), 7.5601 (5)
β (°) 94.808 (1) 103.003 (3)
V3) 809.07 (11) 825.18 (9)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 5.05 4.96
Crystal size (mm) 0.46 × 0.26 × 0.21 0.55 × 0.37 × 0.31
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.403, 0.641 0.316, 0.561
No. of measured, independent and observed [I > 2σ(I)] reflections 17895, 2383, 2037 5810, 1855, 1418
Rint 0.028 0.045
(sin θ/λ)max−1) 0.707 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.05 0.036, 0.080, 1.10
No. of reflections 2383 1855
No. of parameters 128 139
No. of restraints 6 9
H-atom treatment H atoms treated by a mixture of independent and constrained refinement Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.34, −0.29 0.42, −0.62
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), POVRay (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Ptv. Ltd, Victoria, Australia. URL:https://www.povray.org]) and publCIF (Westrip,2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016). Program(s) used to solve structure: SHELXS97 (Sheldrick 2008) for (I); SHELXT2014/5 (Sheldrick, 2015a) for (II). For both structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and POVRay (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip,2010).

6-Oxo-6,9-dihydro-1H-purin-7-ium bromide monohydrate (I) top
Crystal data top
C5H5N4O+·Br·H2OF(000) = 464
Mr = 235.06Dx = 1.930 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.8487 (4) ÅCell parameters from 2383 reflections
b = 18.4455 (15) Åθ = 2.2–30.2°
c = 9.0782 (7) ŵ = 5.05 mm1
β = 94.808 (1)°T = 296 K
V = 809.07 (11) Å3Plate, colourless
Z = 40.46 × 0.26 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
2037 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 30.2°, θmin = 2.2°
Tmin = 0.403, Tmax = 0.641h = 66
17895 measured reflectionsk = 2526
2383 independent reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0273P)2 + 0.2516P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2383 reflectionsΔρmax = 0.34 e Å3
128 parametersΔρmin = 0.29 e Å3
6 restraintsExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0080 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.30053 (4)0.47161 (2)0.77208 (2)0.04456 (8)
O60.2120 (2)0.27474 (6)0.73221 (11)0.0337 (2)
N90.4049 (2)0.18412 (7)0.42420 (13)0.0278 (2)
H90.529 (3)0.1816 (10)0.3639 (18)0.041 (5)*
N30.3696 (2)0.31647 (6)0.43388 (13)0.0288 (2)
N10.0413 (3)0.35239 (6)0.59830 (14)0.0293 (2)
H10.035 (4)0.3873 (9)0.638 (2)0.045 (5)*
N70.1015 (3)0.15533 (6)0.57823 (13)0.0283 (2)
H70.000 (4)0.1316 (10)0.6329 (19)0.044 (5)*
C50.1107 (3)0.22987 (7)0.57102 (14)0.0232 (2)
C80.2792 (3)0.12926 (8)0.48894 (16)0.0309 (3)
H80.3121190.0803030.4733490.037*
C20.2315 (3)0.36593 (8)0.50019 (16)0.0309 (3)
H20.2664020.4141660.4784420.037*
O1W0.7539 (3)0.60447 (7)0.73814 (15)0.0447 (3)
H1W0.653 (4)0.6346 (10)0.695 (2)0.067*
H2W0.671 (4)0.5639 (7)0.741 (2)0.067*
C40.3015 (3)0.24822 (7)0.47360 (13)0.0235 (2)
C60.0384 (3)0.28405 (7)0.64259 (14)0.0245 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05176 (12)0.02567 (9)0.06016 (13)0.00535 (6)0.02789 (9)0.00045 (7)
O60.0347 (5)0.0341 (5)0.0352 (5)0.0018 (4)0.0205 (5)0.0004 (4)
N90.0272 (5)0.0312 (6)0.0267 (5)0.0032 (4)0.0122 (5)0.0009 (4)
N30.0292 (6)0.0287 (6)0.0299 (6)0.0017 (5)0.0116 (5)0.0026 (5)
N10.0325 (6)0.0257 (5)0.0316 (6)0.0025 (5)0.0133 (5)0.0016 (5)
N70.0311 (6)0.0251 (5)0.0301 (6)0.0029 (4)0.0123 (5)0.0005 (4)
C50.0223 (6)0.0259 (6)0.0224 (6)0.0010 (5)0.0072 (5)0.0009 (5)
C80.0344 (7)0.0267 (6)0.0328 (7)0.0024 (5)0.0105 (6)0.0019 (5)
C20.0333 (7)0.0273 (6)0.0334 (7)0.0011 (5)0.0103 (6)0.0033 (5)
O1W0.0458 (7)0.0321 (6)0.0608 (8)0.0075 (5)0.0319 (6)0.0077 (5)
C40.0216 (6)0.0282 (6)0.0215 (6)0.0006 (5)0.0066 (5)0.0008 (5)
C60.0234 (6)0.0285 (6)0.0223 (6)0.0012 (5)0.0060 (5)0.0014 (5)
Geometric parameters (Å, º) top
O6—C61.2308 (15)N7—C81.3219 (17)
N9—C81.3419 (18)N7—C51.3774 (17)
N9—C41.3741 (16)N7—H70.849 (14)
N9—H90.847 (14)C5—C41.3748 (17)
N3—C21.3078 (18)C5—C61.4221 (17)
N3—C41.3579 (16)C8—H80.9300
N1—C21.3581 (17)C2—H20.9300
N1—C61.3879 (17)O1W—H1W0.857 (9)
N1—H10.840 (14)O1W—H2W0.848 (9)
C8—N9—C4108.32 (10)N7—C8—N9109.73 (12)
C8—N9—H9127.8 (13)N7—C8—H8125.1
C4—N9—H9123.8 (13)N9—C8—H8125.1
C2—N3—C4112.29 (11)N3—C2—N1125.15 (13)
C2—N1—C6125.30 (12)N3—C2—H2117.4
C2—N1—H1119.4 (14)N1—C2—H2117.4
C6—N1—H1115.3 (14)H1W—O1W—H2W107.4 (17)
C8—N7—C5107.98 (11)N3—C4—N9127.42 (11)
C8—N7—H7127.6 (13)N3—C4—C5126.22 (12)
C5—N7—H7124.4 (13)N9—C4—C5106.36 (11)
C4—C5—N7107.61 (11)O6—C6—N1122.73 (12)
C4—C5—C6121.08 (12)O6—C6—C5127.31 (13)
N7—C5—C6131.31 (11)N1—C6—C5109.96 (11)
C8—N7—C5—C40.02 (16)N7—C5—C4—N3179.07 (12)
C8—N7—C5—C6179.24 (14)C6—C5—C4—N30.3 (2)
C5—N7—C8—N90.27 (17)N7—C5—C4—N90.23 (15)
C4—N9—C8—N70.42 (17)C6—C5—C4—N9179.58 (12)
C4—N3—C2—N10.2 (2)C2—N1—C6—O6179.92 (14)
C6—N1—C2—N30.6 (2)C2—N1—C6—C50.5 (2)
C2—N3—C4—N9179.41 (14)C4—C5—C6—O6179.46 (14)
C2—N3—C4—C50.3 (2)N7—C5—C6—O61.4 (3)
C8—N9—C4—N3178.90 (14)C4—C5—C6—N10.12 (18)
C8—N9—C4—C50.39 (16)N7—C5—C6—N1179.30 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···Br1i0.85 (1)3.08 (2)3.5397 (12)117 (2)
N9—H9···O6i0.85 (1)1.98 (2)2.7579 (14)153 (2)
N1—H1···Br10.84 (1)2.41 (1)3.2419 (12)170 (2)
N7—H7···O1Wii0.85 (1)1.81 (2)2.6401 (16)165 (2)
O1W—H1W···N3iii0.86 (1)2.08 (1)2.9200 (16)165 (2)
O1W—H2W···Br10.85 (1)2.48 (1)3.2894 (12)161 (2)
C8—H8···Br1i0.932.893.4875 (15)123
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x1, y1/2, z+3/2; (iii) x, y+1, z+1.
2,6-Dioxo-2,3,6,9-tetrahydro-1H-purin-7-ium bromide monohydrate (II) top
Crystal data top
C5H5N4O2+·Br·H2OF(000) = 496
Mr = 251.06Dx = 2.021 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.9225 (2) ÅCell parameters from 1418 reflections
b = 22.7572 (17) Åθ = 2.9–29.6°
c = 7.5601 (5) ŵ = 4.96 mm1
β = 103.003 (3)°T = 303 K
V = 825.18 (9) Å3Plate, colourless
Z = 40.55 × 0.37 × 0.31 mm
Data collection top
Bruker APEXII CCD
diffractometer
1418 reflections with I > 2σ(I)
φ and ω scansRint = 0.045
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 29.7°, θmin = 2.9°
Tmin = 0.316, Tmax = 0.561h = 66
5810 measured reflectionsk = 3030
1855 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.080Only H-atom coordinates refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0151P)2 + 1.7175P]
where P = (Fo2 + 2Fc2)/3
1855 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.42 e Å3
9 restraintsΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.16454 (8)0.20412 (2)0.47569 (6)0.03200 (14)
O60.8033 (5)0.47823 (12)0.6033 (4)0.0318 (6)
C60.6301 (7)0.44615 (16)0.6465 (5)0.0241 (8)
N10.5267 (7)0.45642 (14)0.7988 (4)0.0273 (7)
H10.578 (8)0.4867 (13)0.855 (5)0.033*
C20.3313 (8)0.42399 (16)0.8628 (5)0.0254 (8)
O20.2541 (6)0.43894 (13)0.9992 (4)0.0380 (7)
N30.2278 (6)0.37489 (13)0.7647 (4)0.0251 (7)
H30.126 (7)0.3545 (16)0.812 (5)0.030*
C40.3212 (7)0.36166 (15)0.6147 (5)0.0238 (8)
C50.5108 (7)0.39456 (16)0.5538 (5)0.0237 (8)
N70.5509 (7)0.36852 (14)0.3972 (4)0.0273 (7)
H70.651 (8)0.3804 (18)0.332 (5)0.033*
C80.3919 (8)0.32168 (18)0.3652 (6)0.0304 (9)
H80.384 (9)0.2947 (18)0.265 (6)0.036*
N90.2477 (7)0.31597 (14)0.4956 (5)0.0279 (7)
H90.148 (7)0.2876 (14)0.503 (6)0.033*
O1W0.8947 (7)0.42353 (14)0.2374 (4)0.0434 (8)
H1WA0.983 (9)0.4523 (16)0.298 (6)0.065*
H1WB0.980 (9)0.415 (2)0.154 (5)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0307 (2)0.0253 (2)0.0413 (2)0.00152 (17)0.01087 (16)0.00286 (18)
O60.0317 (15)0.0309 (15)0.0360 (16)0.0110 (12)0.0147 (13)0.0028 (12)
C60.0231 (18)0.0217 (18)0.028 (2)0.0001 (14)0.0057 (16)0.0046 (15)
N10.0294 (17)0.0253 (17)0.0292 (19)0.0097 (14)0.0111 (15)0.0046 (14)
C20.0255 (19)0.0224 (19)0.029 (2)0.0030 (15)0.0079 (17)0.0042 (16)
O20.0431 (17)0.0432 (18)0.0338 (17)0.0118 (14)0.0216 (14)0.0079 (14)
N30.0246 (16)0.0232 (16)0.0305 (18)0.0041 (12)0.0128 (14)0.0050 (13)
C40.0236 (18)0.0193 (17)0.027 (2)0.0011 (14)0.0028 (15)0.0039 (15)
C50.0231 (18)0.0246 (18)0.0232 (19)0.0018 (14)0.0050 (15)0.0008 (15)
N70.0291 (17)0.0286 (17)0.0265 (18)0.0023 (14)0.0109 (14)0.0005 (14)
C80.035 (2)0.028 (2)0.028 (2)0.0013 (17)0.0051 (18)0.0048 (17)
N90.0299 (17)0.0186 (15)0.0346 (19)0.0040 (13)0.0061 (15)0.0000 (14)
O1W0.0484 (19)0.0449 (19)0.046 (2)0.0199 (15)0.0290 (16)0.0172 (15)
Geometric parameters (Å, º) top
O6—C61.221 (4)C4—N91.370 (5)
C6—N11.380 (5)C5—N71.378 (5)
C6—C51.425 (5)N7—C81.312 (5)
N1—C21.383 (5)N7—H70.82 (2)
N1—H10.82 (2)C8—N91.344 (5)
C2—O21.224 (5)C8—H80.97 (4)
C2—N31.374 (5)N9—H90.82 (2)
N3—C41.350 (5)O1W—H1WA0.857 (10)
N3—H30.82 (2)O1W—H1WB0.860 (10)
C4—C51.355 (5)
O6—C6—N1122.2 (3)C5—C4—N9107.2 (3)
O6—C6—C5126.6 (4)C4—C5—N7107.3 (3)
N1—C6—C5111.2 (3)C4—C5—C6121.8 (3)
C6—N1—C2128.1 (3)N7—C5—C6130.9 (3)
C6—N1—H1116 (3)C8—N7—C5108.2 (3)
C2—N1—H1115 (3)C8—N7—H7125 (3)
O2—C2—N3122.2 (3)C5—N7—H7127 (3)
O2—C2—N1121.2 (3)N7—C8—N9109.6 (4)
N3—C2—N1116.6 (3)N7—C8—H8125 (3)
C4—N3—C2118.7 (3)N9—C8—H8125 (3)
C4—N3—H3126 (3)C8—N9—C4107.7 (3)
C2—N3—H3115 (3)C8—N9—H9123 (3)
N3—C4—C5123.6 (3)C4—N9—H9129 (3)
N3—C4—N9129.2 (3)H1WA—O1W—H1WB107 (2)
O6—C6—N1—C2179.8 (4)N9—C4—C5—C6179.6 (3)
C5—C6—N1—C20.7 (5)O6—C6—C5—C4179.3 (4)
C6—N1—C2—O2178.6 (4)N1—C6—C5—C40.1 (5)
C6—N1—C2—N30.8 (6)O6—C6—C5—N71.2 (7)
O2—C2—N3—C4179.3 (4)N1—C6—C5—N7179.3 (4)
N1—C2—N3—C40.1 (5)C4—C5—N7—C80.1 (4)
C2—N3—C4—C50.6 (5)C6—C5—N7—C8179.6 (4)
C2—N3—C4—N9179.3 (4)C5—N7—C8—N90.1 (5)
N3—C4—C5—N7178.8 (3)N7—C8—N9—C40.0 (4)
N9—C4—C5—N70.1 (4)N3—C4—N9—C8178.7 (4)
N3—C4—C5—C60.8 (6)C5—C4—N9—C80.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.82 (2)2.09 (2)2.903 (4)175 (4)
N3—H3···Br1ii0.82 (2)2.48 (2)3.301 (3)176 (4)
N7—H7···O1W0.82 (2)1.81 (2)2.609 (4)163 (4)
N9—H9···Br10.82 (2)2.43 (2)3.237 (3)172 (4)
O1W—H1WA···O6iii0.86 (1)1.95 (1)2.802 (4)171 (5)
O1W—H1WB···Br1iv0.86 (1)3.03 (4)3.490 (3)115 (3)
O1W—H1WB···O2v0.86 (1)2.05 (3)2.816 (4)149 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z+1; (iv) x+1, y+1/2, z1/2; (v) x+1, y, z1.
Comparison of purine derivatives with hydrobromic acid and hydrochloric acid top
Adeninium bromide hemihydrateAdeninium chloride monohydrateGuaninium chloride monohydrateGuaninium bromide monohydrateHypoxanthinium chloride monohydrateHypoxanthinium bromide monohydrate (I)Xanthinium bromide monohydrate (II)
Cell parameters (a, b, c, β; Å, °)9.018 (2), 4.845 (2), 19.693 (5), 112.88.771 (2), 4.834 (2), 19.46 (1), 114.254.591 (1), 9.886 (2), 18.985 (1), 99.624.8708 (7), 13.237 (3), 14.638 (2), 93.906 (10)4.8295 (9), 17.7285 (22), 9.0077 (21), 94.59 (3)4.8487 (4), 18.4455 (15), 9.0782 (7), 94.808 (1)4.9225 (2), 22.7572 (17), 7.5601 (5) 103.003 (3)
Crystal systemMonoclinicMonoclinicMonoclinicMonoclinicMonoclinicMonoclinicMonoclinic
Space groupP2/cP2/cP21/cP21/cP21/cP21/cP21/c
Protonation siteN1N1N7N7N7N7N9
Type of hydrogen bondingN—H···O, N—H···Br, N—H···N, O—H···O, C—H···BrN—H···O, N—H···Cl, N—H···N, O—H···Cl, C—H···ClN—H···O, N—H···Br, N—H···N, O—H···Br, C—H···BrN—H···O, N—H···Cl, N—H···N, O—H···Cl, C—H···ClN—H···Cl, N—H···O, O—H···N, O—H···Cl, C—H···ClN—H···Br, N—H···O, O—H···N, O—H···Br, C—H···BrN—H···O, N—H···Br, O—H···O
Type of stackingCO···πCO···πCO···πCO···πCO···π
Primary motifR22(10)R22(10)R22(8)R22(8)R23(9)R23(9)R22(8)
Secondary motifR23(7) R24(14)R23(7), R24(14)R23(7), R22(10), R34(11)R23(7), R22(10), R34(11)R33(11), R46(16), R46(14)R33(11), R46(16), R46(14)R22(7), R22(4)
Type of packing architectureRibbonRibbonRibbonRibbonWaveWaveStaircase
Percentage of non-covalent interaction in supramolecular packing analyzed by Hirshfeld surface analysis top
CONTACTSALT (I)SALT (II)
H···Br /Br···H22.3%25.4%
O···H/H···O19.7%23.4%
H···N/N···H13.5%7.5%
C···H/H···C6.4%9.6%
H···H23.4%15.9%

Acknowledgements

Author contributions are as follows. Conceptualization, JSNR, SG; synthesis, US and DD; writing (review and editing of the manuscript) JSNR, SG and US; crystal-structure determination, SJJ and IAR.

References

First citationAakeröy, C. B., Champness, N. R. & Janiak, C. (2010). CrystEngComm, 12, 22–43.  Google Scholar
First citationAaltonen, J., Allesø, M., Mirza, S., Koradia, V., Gordon, K. C. & Rantanen, J. (2009). Eur. J. Pharm. Biopharm. 71, 23–37.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAtioğlu, Z., Akkurt, M., Toze, F. A. A., Mammadova, G. Z. & Panahova, H. M. (2018). Acta Cryst. E74, 1035–1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBiradha, K., Samai, S., Maity, A. C. & Goswami, S. (2010). Cryst. Growth Des. 10, 937–942.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandl, M., Meyer, M. & Sühnel, J. (2000). J. Phys. Chem. A, 104, 11177–11187.  CrossRef CAS Google Scholar
First citationBruker (2016). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurbiel, J. C., Hockemeyer, J. & Muller, C. E. (2006). Beilstein J. Org. Chem. 2, 1–7.  CrossRef PubMed Google Scholar
First citationCabaj, M. K., Gajda, R., Hoser, A., Makal, A. & Dominiak, P. M. (2019). Acta Cryst. C75, 1036–1044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCárdenas-Valenzuela, A. J., González-García, G., Zárraga- Nuñez, R., Höpfl, H., Campos-Gaxiola, J. J. & Cruz-Enríquez, A. (2018). Acta Cryst. E74, 441–444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Ptv. Ltd, Victoria, Australia. URL:https://www.povray.org  Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationČerný, J. & Hobza, P. (2007). Phys. Chem. Chem. Phys. 9, 5291–5303.  Web of Science PubMed Google Scholar
First citationDesiraju, G. R. (2013). J. Am. Chem. Soc. 135, 9952–9967.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDesiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713.  Web of Science CrossRef CAS Google Scholar
First citationDubler, E., Hänggi, G. & Bensch, W. (1987a). J. Inorg. Biochem. 29, 269–288.  CSD CrossRef CAS Web of Science Google Scholar
First citationDubler, E., Hänggi, G. & Schmalle, H. (1987b). Acta Cryst. C43, 1872–1875.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEmel'yanenko, V. N., Zaitsau, D. H. & Verevkin, S. P. (2017). J. Chem. Eng. Data, 62, 2606–2609.  CAS Google Scholar
First citationFaheem, B. K., Kumar, K., Sekhar, K. V. G. C., Kunjiappan, S., Jamalis, J., Balaña-Fouce, R., Tekwani, B. L. & Sankaranarayanan, M. (2020). Bioorg. Chem. 104, 104269–104269.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGulevskaya, A. V. & Pozharskii, A. F. (1991). Chem. Heterocycl. Compd. 27, 1–23.  CrossRef Google Scholar
First citationJeffrey, J. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin Heidelberg: Springer.  Google Scholar
First citationKalyanaraman, S., Krishnakumar, V. & Ganesan, K. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 67, 750–755.  CSD CrossRef PubMed CAS Google Scholar
First citationKistenmacher, T. J. & Shigematsu, T. (1974). Acta Cryst. B30, 166–168.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLanger, V. & Huml, K. (1978). Acta Cryst. B34, 1881–1884.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLatosińska, J. N., Latosińska, M., Seliger, J., Žagar, V. & Kazimierczuk, Z. (2014). J. Phys. Chem. B, 118, 10837–10853.  Web of Science PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaixner, J. & Zachová, J. (1991). Acta Cryst. C47, 2474–2476.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMeskini, N., Némoz, G., Okyayuz-Baklouti, I., Lagarde, M. & Prigent, A. F. (1994). Biochem. Pharmacol. 47, 781–788.  CrossRef CAS PubMed Google Scholar
First citationPerumalla, S. R. & Sun, C. C. (2014). J. Pharm. Sci. 103, 1126–1132.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPlekan, O., Feyer, V., Richter, R., Moise, A., Coreno, M., Prince, K. C., Zaytseva, I. L., Moskovskaya, T. E., Soshnikov, D. Y. & Trofimov, A. B. (2012). J. Phys. Chem. A, 116, 5653–5664.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPogoda, D., Matera-Witkiewicz, A., Listowski, M., Janczak, J. & Videnova-Adrabinska, V. (2018). Acta Cryst. C74, 372–380.  CSD CrossRef IUCr Journals Google Scholar
First citationReddy, C., Das, A. & Jayaram, B. (2001). J. Mol. Biol. 314, 619–632.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRutledge, L. R., Wheaton, C. A. & Wetmore, S. D. (2007). Phys. Chem. Chem. Phys. 9, 497–509.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmalle, H. W., Hänggi, G. & Dubler, E. (1988). Acta Cryst. C44, 732–736.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchmalle, H. W., Hänggi, G. & Dubler, E. (1990). Acta Cryst. C46, 340–342.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSletten, J. & Jensen, L. H. (1969). Acta Cryst. B25, 1608–1614.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSridhar, B. (2011). Acta Cryst. C67, o382–o386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSusithra, G., Ramalingam, S., Periandy, S. & Aarthi, R. (2018). Egypt. J. Basic Appl. Sci. 5, 313–326.  Google Scholar
First citationThackaberry, E. A. (2012). Expert Opin. Drug Metab. Toxicol. 8, 1419–1433.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationVarani, G. & McClain, W. H. (2000). EMBO Rep. 1, 18–23.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWei, C. H. (1977). Cryst. Struct. Commun. 6, 525–529.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y., Jiang, L. & Mei, X. (2014). Acta Cryst. B70, 750–760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, R.-Q. & Xie, Y.-R. (2007). Acta Cryst. E63, o3309.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds