research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of N-{[5-(4-methyl­phen­yl)-1,2-oxazol-3-yl]meth­yl}-1-phenyl-N-(prop-2-en-1-yl)methane­sulfonamide

crossmark logo

aPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation, bN. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dLaboratory of the Chemistry of Heterocyclic Compounds, Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13, Surganov Str., 220072, Minsk, Belarus, and eUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz

Edited by J. Reibenspies, Texas A & M University, USA (Received 21 April 2022; accepted 10 May 2022; online 17 May 2022)

In the title compound, C21H22N2O3S, the 1,2-oxazole ring makes the dihedral angles of 9.16 (16) and 87.91 (17)°, respectively, with the toluene and phenyl rings, while they form a dihedral angle of 84.42 (15)° with each other. The C—S—N—Cpr and C—S—N—Cme (pr = propene, me = 3-methyl-1,2-oxazole) torsion angles are 86.8 (2) and −100.6 (3) °, respectively. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, generating a three-dimensional network. A Hirshfeld surface analysis was performed to investigate the contributions of the different inter­molecular contacts within the supra­molecular structure. The major inter­actions are H⋯H (53.6%), C⋯H/H⋯C (20.8%) and O⋯H/H⋯O (17.7%).

1. Chemical context

Sulfonamide anti­biotics are readily available drugs that are gradually losing their importance due to the development of bacterial resistance (Sköld, 2000[Sköld, O. (2000). Drug Resist. Updat. 3, 155-160.]). Along with the use of much less accessible anti­biotics of other classes, the design of new sulfonamides to overcome this problem seems to be reasonable (Nadirova et al., 2021[Nadirova, M. A., Khanova, A. V., Zubkov, F. I., Mertsalov, D. F., Kolesnik, I. A., Petkevich, S. K., Potkin, V. I., Shetnev, A. A., Presnukhina, S. I., Sinelshchikova, A. A., Grigoriev, M. S. & Zaytsev, V. P. (2021). Tetrahedron, 85, 132032.]; Naghiyev et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235-2248.]). One of the possible methods for structural modification is the synthesis of drug analogues containing heterocycles. From this point of view, iso­thia­zole (Kletskov et al., 2020[Kletskov, A. V., Bumagin, N. A., Zubkov, F. I., Grudinin, D. G. & Potkin, V. I. (2020). Synthesis, 52, 159-188.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]) and isoxazole (Zhu et al., 2018[Zhu, J., Mo, J., Lin, H., Chen, Y. & Sun, H. (2018). Bioorg. Med. Chem. 26, 3065-3075.]; Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]) rings are of great inter­est. In particular, isoxazole derivatives possess a wide range of biological activity, so this heterocycle is considered to be one of the most privileged scaffolds in pharmaceutical chemistry (Altug et al., 2017[Altug, C., Güneş, H., Nocentini, A., Monti, S. M., Buonanno, M. & Supuran, S. T. (2017). Bioorg. Med. Chem. 25, 1456-1464.]; Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]). Moreover, a lot of isoxazoles exhibit anti­bacterial properties on their own (Agrawal & Mishra, 2018[Agrawal, N. & Mishra, P. (2018). Med. Chem. Res. 27, 1309-1344.]; Yadigarov et al., 2009[Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856-1858.]), and the widely used sulfonamide anti­biotic sulfamethoxazole contains an isoxazole ring. A preliminary assessment of the biological activity of newly designed isoxazole-containing structures can be carried out in silico using mol­ecular docking. Data on the structural parameters of promising mol­ecules is therefore required (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Ma et al., 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.],2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]). All this was our motive for the synthesis and accurate structure establishment of N-allyl-N-[(5-tolyl­isoxazol-3-yl)meth­yl]benzyl­sulfonamide (1), which has not previously been characterized. It was obtained from isoxazolyl­allyl­amine (2) and benzyl sulfonyl chloride using the `green chemistry' procedure developed earlier by one of us (Kolesnik et al., 2022[Kolesnik, I. A., Petkevich, S. K., Mertsalov, D. F., Chervyakova, L. V., Nadirova, M. A., Tyurin, A. P., Guan, A. Y., Liu, C. L. & Potkin, V. I. (2022). Russ. J. Gen. Chem. 92, 29-39.]).

[Scheme 1]

Allyl derivatives structurally similar to sulfonamide 1 are widely used as starting materials in organic synthesis for the construction of polyheterocyclic systems through intra­molecular [4 + 2] cyclo­addition reactions (Zubkov et al., 2014[Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659-1690.]; Krishna et al., 2022[Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797-863.]).

2. Structural commentary

In the title compound (Fig. 1[link]), the 1,2-oxazole ring (O3/N2/C3–C5) forms dihedral angles of 9.16 (16) and 87.91 (17) °, respectively, with the toluene and phenyl rings (C6–C11 and C16–C21) which subtend a dihedral angle of 84.42 (15)° with each other. The torsion angles C1—S1—N1—C2 and C1—S1—N1—C13 are 86.8 (2) and −100.6 (3) °, respectively.

[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability ellipsoids.

3. Supra­molecular features and Hirshfeld surface analysis

Mol­ecules in the crystal are joined together by C—H⋯O hydrogen bonds, forming a three-dimensional network (Table 1[link]; Figs. 2[link], 3[link] and 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.95 2.59 3.404 (4) 143
C17—H17⋯O3ii 0.95 2.57 3.314 (4) 135
C19—H19⋯O1iii 0.95 2.51 3.434 (4) 165
C21—H21⋯O2iv 0.95 2.50 3.369 (4) 152
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+2, z]; (iv) [x+{\script{1\over 2}}, -y+1, z].
[Figure 2]
Figure 2
A view along the a axis of the C—H⋯O inter­actions in the title compound.
[Figure 3]
Figure 3
A view along the b axis of the C—H⋯O inter­actions in the title compound.
[Figure 4]
Figure 4
A view along the c axis of the C—H⋯O inter­actions in the title compound.

The Hirshfeld surfaces were calculated and two-dimensional fingerprint plots generated using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 5[link] depicts the three-dimensional Hirshfeld surface projected over dnorm in the range −0.1677 to 1.4857 a.u. The bright-red patches surrounding O1, O2, and O3 and hydrogen atoms H8, H17, H19, and H21, which highlight their activities as donors and/or acceptors, can be connected with O1, O2, and O3 inter­actions, which play a significant role in the mol­ecular packing (Tables 1[link] and 2[link]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
O1⋯H19 2.51 [{1\over 2}] + x, 2 − y, z
H17⋯O3 2.57 x, [{3\over 2}] − y, −[{1\over 2}] + z
O2⋯H21 2.50 [{1\over 2}] + x, 1 − y, z
O2⋯H8 2.59 [{1\over 2}] + x, −[{1\over 2}] + y, −[{1\over 2}] + z
C8⋯H18 2.92 [{1\over 2}] + x, −[{1\over 2}] + y, [{1\over 2}] + z
H12C⋯H2B 2.43 −1 + x, y, z
C16⋯H12B 2.96 1 + x, [{3\over 2}] − y, −[{1\over 2}] + z
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1677 to +1.4857 a.u.

Fig. 6[link]a depicts the overall two-dimensional fingerprint plot for the title compound. The percentage contributions to the Hirshfeld surfaces from various inter­atomic inter­actions (Table 2[link]) include H⋯H (53.6%; Fig. 6[link]b), C⋯H/H⋯C (20.8%; Fig. 6[link]c) and O⋯H/H⋯C (17.7%; Fig. 6[link]d). Other contact types, such as N⋯H/H⋯N (4.5%), C⋯C (1.7%), N⋯C/C⋯N (0.9%), and O⋯C/C⋯O (0.8%), account for less than 4.5% of the Hirshfeld surface and are likely to have little directional impact on the packing.

[Figure 6]
Figure 6
Two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

Four related compounds with a methane­sulfonamide unit have been reported, viz. N-(4-chloro­phen­yl)-1-(5-{[(2-phen­yl­vin­yl)sulfon­yl]meth­yl}-1,3,4-oxa­diazol-2-yl)methane­sulf­on­amide (CEGKAC: Muralikrishna et al., 2012[Muralikrishna, A., Kannan, M., Padmavathi, V., Padmaja, A. & Krishna, R. (2012). Acta Cryst. E68, o2954.]), N-(4-flu­oro­phen­yl)methane­sulfonamide (CICPIO: Gowda et al., 2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2570.]), N-(2,5-di­chloro­phen­yl)methane­sulfonamide (WIHGUQ: Gowda et al., 2007b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3088-o3089.]) and N-(3-methyl­phen­yl)methane­sulf­on­amide (VIDKOJ: Gowda et al., 2007c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2338.]).

In the crystal of CEGKAC, mol­ecules are linked by N—H⋯O hydrogen bonds, generating C(10) chains propagating in [001]. The packing is consolidated by C—H⋯O, C—H⋯π and very weak aromatic ππ stacking inter­actions [centroid–centroid separation = 4.085 (2) Å]. In the crystal of CICPIO, the mol­ecules are packed into a layer structure along the a-axis direction via N—H⋯O hydrogen bonds [H⋯O = 2.08 (2), N⋯O = 2.911 (6) Å and N—H⋯O = 164 (6)°]. In the crystal of WIHGUQ, the amide H atom is available to a receptor mol­ecule as it lies on one side of the plane of the benzene ring, while the methane­sulfonyl group is on the opposite side of the plane, similar to the arrangement in other methane­sulfonanilides. The mol­ecules are packed into chains through N—H⋯O and N—H⋯Cl hydrogen bonding. In the crystal of VIDKOJ, the mol­ecules are linked into chains along the c-axis direction through N—H⋯O hydrogen bonds.

5. Synthesis and crystallization

A mixture of 1,2-oxazolyl­allyl­amine 2 (1 mmol), benzyl sulfonyl chloride (1.2 mmol) and Na2CO3 (1.2 mmol) in water (15 mL) was refluxed for 4 h. After cooling, the reaction mixture was extracted with CH2Cl2 (3 × 10 mL). The combined organic fractions were washed with water (2 × 10 mL) and dried over Na2SO4. The solvent was evaporated under reduced pressure. The resulting oil was purified by flash chromatography (eluent CH2Cl2) and crystallized from MeOH as colourless crystals, yield 0.16 g (41%), m.p. 371–373 K. IR (KBr), ν (cm−1): 1642, 1618, 1599, 1568 (1,2-oxazole), 1343 (S=O), 1151, 1128 (SO2), 698 (N—SO2), 541 (Ar­yl). 1H NMR (500 MHz, CDCl3, 293 K): δ = 2.40 (s, 3H, H12A, H12B, H12C), 3.71–3.73 (d, 2H, H13A, H13B, J = 6.7), 4.21 (s, 2H, H2A, H2B), 4.33 (s, 2H, H1A, H1B), 5.22–5.29 (m, 2H, H15A, H15B), 5.63–5.71 (m, 1H, H14), 6.47 (s, 1H, H4), 7.25–7.27 (m, 2H, H8, H10), 7.36–7.41 (m, 5H, H17, H18, H19, H20, H21), 7.64–7.65 (d, 2H, H7, H11, J = 8.2). 13C NMR (126 MHz, CDCl3, 293 K): δ = 21.66, 42.55, 50.58, 59.53, 98.99, 120.50, 124.64, 125.95 (2C), 129.01 (2C), 129.06, 129.85 (2C), 130.94 (2C), 132.24, 140.86, 160.95, 170.91. MS (APCI): m/z = 383 [M + H]+.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.95 Å (CH aromatic), 0.99 Å (CH2) and 0.98 Å (CH3). Isotropic displacement parameters for all H atoms were set equal to 1.2 or 1.5Ueq (parent atom). The crystal studied was refined as an inversion twin.

Table 3
Experimental details

Crystal data
Chemical formula C21H22N2O3S
Mr 382.46
Crystal system, space group Monoclinic, Ia
Temperature (K) 100
a, b, c (Å) 10.7979 (1), 10.2238 (10), 17.7316 (2)
β (°) 100.526 (1)
V3) 1924.55 (19)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.69
Crystal size (mm) 0.24 × 0.22 × 0.14
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO 1.171.41.123a. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.668, 0.779
No. of measured, independent and observed [I > 2σ(I)] reflections 21251, 3572, 3542
Rint 0.051
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.09
No. of reflections 3572
No. of parameters 247
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.58
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.00 (2)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO 1.171.41.123a. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

N-{[5-(4-Methylphenyl)-1,2-oxazol-3-yl]methyl}-1-phenyl-N-(prop-2-en-1-yl)methanesulfonamide top
Crystal data top
C21H22N2O3SF(000) = 808
Mr = 382.46Dx = 1.320 Mg m3
Monoclinic, IaCu Kα radiation, λ = 1.54178 Å
a = 10.7979 (1) ÅCell parameters from 18074 reflections
b = 10.2238 (10) Åθ = 5.0–79.2°
c = 17.7316 (2) ŵ = 1.69 mm1
β = 100.526 (1)°T = 100 K
V = 1924.55 (19) Å3Prism, colourless
Z = 40.24 × 0.22 × 0.14 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3542 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.051
φ and ω scansθmax = 79.6°, θmin = 5.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1313
Tmin = 0.668, Tmax = 0.779k = 1213
21251 measured reflectionsl = 2222
3572 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1004P)2 + 0.3109P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.045(Δ/σ)max < 0.001
wR(F2) = 0.125Δρmax = 0.47 e Å3
S = 1.09Δρmin = 0.58 e Å3
3572 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
247 parametersExtinction coefficient: 0.0023 (4)
2 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: SHELXTAbsolute structure parameter: 0.00 (2)
Hydrogen site location: inferred from neighbouring sites
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20850 (6)0.59215 (6)0.37939 (4)0.0181 (2)
O10.1034 (2)0.6795 (2)0.36066 (12)0.0253 (5)
O20.1867 (2)0.4534 (2)0.37509 (14)0.0271 (5)
O30.1016 (2)0.7878 (2)0.64904 (11)0.0248 (5)
N10.2802 (2)0.6254 (2)0.46571 (13)0.0183 (5)
N20.2125 (3)0.7725 (3)0.61968 (15)0.0259 (6)
C10.3167 (3)0.6294 (3)0.31677 (16)0.0206 (6)
H1A0.3903840.5703430.3288370.025*
H1B0.2752120.6123360.2631310.025*
C20.2760 (3)0.7586 (3)0.49593 (15)0.0180 (5)
H2A0.2582770.8209060.4525600.022*
H2B0.3593540.7808180.5266670.022*
C30.1778 (3)0.7734 (3)0.54474 (16)0.0178 (5)
C40.0450 (3)0.7881 (3)0.52263 (15)0.0179 (5)
H40.0030530.7912700.4721120.022*
C50.0023 (3)0.7966 (3)0.58978 (15)0.0180 (5)
C60.1207 (3)0.8145 (3)0.61079 (15)0.0173 (5)
C70.1342 (3)0.8064 (3)0.68787 (15)0.0199 (6)
H70.0635220.7854010.7262890.024*
C80.2503 (3)0.8290 (3)0.70805 (15)0.0193 (5)
H80.2584820.8220840.7603470.023*
C90.3554 (3)0.8615 (3)0.65319 (16)0.0189 (6)
C100.3414 (3)0.8690 (3)0.57646 (16)0.0214 (6)
H100.4121860.8906310.5382630.026*
C110.2261 (3)0.8453 (3)0.55508 (16)0.0209 (6)
H110.2186640.8500170.5025820.025*
C120.4808 (3)0.8853 (3)0.67664 (17)0.0235 (6)
H12A0.4706600.9499370.7181180.035*
H12B0.5122710.8031420.6944880.035*
H12C0.5409110.9182170.6325720.035*
C130.3384 (3)0.5231 (3)0.51956 (18)0.0233 (6)
H13A0.3258040.4369040.4938070.028*
H13B0.2952500.5210260.5642460.028*
C140.4759 (3)0.5443 (3)0.5472 (2)0.0264 (6)
H140.5283860.5554440.5101250.032*
C150.5284 (4)0.5485 (3)0.6206 (2)0.0334 (8)
H15A0.4779430.5377110.6588130.040*
H15B0.6164920.5623760.6351340.040*
C160.3618 (3)0.7690 (3)0.32347 (15)0.0189 (6)
C170.2818 (3)0.8703 (3)0.29145 (17)0.0221 (6)
H170.1987090.8509490.2656710.026*
C180.3237 (3)0.9990 (3)0.29736 (18)0.0260 (6)
H180.2690201.0674900.2759260.031*
C190.4454 (4)1.0278 (3)0.33448 (18)0.0265 (7)
H190.4740881.1158500.3380200.032*
C200.5246 (3)0.9281 (3)0.36625 (19)0.0271 (6)
H200.6077620.9477540.3916950.033*
C210.4827 (3)0.7986 (3)0.36106 (17)0.0223 (6)
H210.5372830.7305530.3833660.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0203 (3)0.0186 (3)0.0162 (3)0.0028 (2)0.0055 (2)0.0023 (2)
O10.0217 (11)0.0310 (11)0.0225 (10)0.0011 (8)0.0021 (8)0.0003 (8)
O20.0370 (14)0.0212 (10)0.0251 (10)0.0095 (9)0.0107 (10)0.0038 (9)
O30.0178 (10)0.0414 (12)0.0150 (10)0.0038 (8)0.0028 (8)0.0014 (8)
N10.0245 (12)0.0164 (10)0.0141 (10)0.0019 (9)0.0032 (9)0.0022 (9)
N20.0209 (12)0.0395 (15)0.0182 (12)0.0047 (11)0.0061 (10)0.0024 (10)
C10.0271 (15)0.0194 (12)0.0176 (11)0.0009 (11)0.0099 (11)0.0021 (10)
C20.0204 (13)0.0169 (11)0.0175 (12)0.0005 (10)0.0055 (10)0.0014 (9)
C30.0192 (13)0.0180 (12)0.0165 (12)0.0013 (9)0.0042 (10)0.0010 (9)
C40.0193 (13)0.0199 (11)0.0143 (11)0.0007 (9)0.0022 (10)0.0008 (9)
C50.0201 (14)0.0178 (11)0.0160 (12)0.0011 (10)0.0031 (10)0.0007 (10)
C60.0216 (14)0.0150 (11)0.0160 (12)0.0004 (9)0.0049 (10)0.0005 (9)
C70.0241 (14)0.0197 (13)0.0162 (12)0.0014 (10)0.0044 (10)0.0012 (10)
C80.0245 (14)0.0188 (11)0.0158 (12)0.0011 (10)0.0065 (10)0.0002 (10)
C90.0213 (13)0.0146 (12)0.0220 (13)0.0002 (9)0.0073 (11)0.0013 (9)
C100.0222 (14)0.0235 (14)0.0181 (13)0.0012 (11)0.0022 (10)0.0015 (10)
C110.0206 (14)0.0259 (13)0.0164 (12)0.0007 (10)0.0042 (10)0.0000 (11)
C120.0223 (15)0.0256 (13)0.0247 (14)0.0003 (11)0.0105 (12)0.0012 (12)
C130.0274 (15)0.0190 (13)0.0229 (14)0.0014 (10)0.0030 (11)0.0044 (10)
C140.0257 (16)0.0237 (14)0.0297 (15)0.0047 (11)0.0046 (13)0.0013 (12)
C150.0347 (18)0.0248 (15)0.0369 (18)0.0049 (13)0.0035 (14)0.0022 (13)
C160.0235 (14)0.0192 (13)0.0156 (12)0.0001 (10)0.0079 (10)0.0015 (9)
C170.0242 (14)0.0244 (14)0.0175 (11)0.0017 (12)0.0036 (11)0.0006 (11)
C180.0360 (18)0.0213 (13)0.0212 (14)0.0011 (12)0.0061 (12)0.0029 (11)
C190.0388 (19)0.0216 (13)0.0199 (13)0.0089 (12)0.0076 (13)0.0001 (10)
C200.0276 (16)0.0323 (16)0.0218 (14)0.0082 (13)0.0055 (12)0.0018 (12)
C210.0220 (14)0.0255 (13)0.0204 (13)0.0013 (11)0.0068 (11)0.0033 (11)
Geometric parameters (Å, º) top
S1—O11.434 (2)C9—C121.507 (4)
S1—O21.438 (2)C10—C111.388 (4)
S1—N11.620 (2)C10—H100.9500
S1—C11.794 (3)C11—H110.9500
O3—C51.360 (3)C12—H12A0.9800
O3—N21.399 (3)C12—H12B0.9800
N1—C21.468 (3)C12—H12C0.9800
N1—C131.477 (4)C13—C141.492 (5)
N2—C31.313 (4)C13—H13A0.9900
C1—C161.506 (4)C13—H13B0.9900
C1—H1A0.9900C14—C151.322 (5)
C1—H1B0.9900C14—H140.9500
C2—C31.494 (4)C15—H15A0.9500
C2—H2A0.9900C15—H15B0.9500
C2—H2B0.9900C16—C211.387 (4)
C3—C41.424 (4)C16—C171.401 (4)
C4—C51.355 (4)C17—C181.389 (4)
C4—H40.9500C17—H170.9500
C5—C61.455 (4)C18—C191.389 (5)
C6—C111.400 (4)C18—H180.9500
C6—C71.403 (3)C19—C201.383 (5)
C7—C81.385 (4)C19—H190.9500
C7—H70.9500C20—C211.397 (4)
C8—C91.393 (4)C20—H200.9500
C8—H80.9500C21—H210.9500
C9—C101.398 (4)
O1—S1—O2119.14 (15)C10—C9—C12121.4 (3)
O1—S1—N1108.03 (13)C11—C10—C9121.2 (3)
O2—S1—N1107.60 (13)C11—C10—H10119.4
O1—S1—C1107.57 (14)C9—C10—H10119.4
O2—S1—C1107.18 (14)C10—C11—C6120.1 (3)
N1—S1—C1106.70 (14)C10—C11—H11120.0
C5—O3—N2109.1 (2)C6—C11—H11120.0
C2—N1—C13117.3 (2)C9—C12—H12A109.5
C2—N1—S1119.87 (19)C9—C12—H12B109.5
C13—N1—S1122.40 (19)H12A—C12—H12B109.5
C3—N2—O3105.7 (2)C9—C12—H12C109.5
C16—C1—S1112.94 (19)H12A—C12—H12C109.5
C16—C1—H1A109.0H12B—C12—H12C109.5
S1—C1—H1A109.0N1—C13—C14112.9 (3)
C16—C1—H1B109.0N1—C13—H13A109.0
S1—C1—H1B109.0C14—C13—H13A109.0
H1A—C1—H1B107.8N1—C13—H13B109.0
N1—C2—C3112.2 (2)C14—C13—H13B109.0
N1—C2—H2A109.2H13A—C13—H13B107.8
C3—C2—H2A109.2C15—C14—C13123.4 (3)
N1—C2—H2B109.2C15—C14—H14118.3
C3—C2—H2B109.2C13—C14—H14118.3
H2A—C2—H2B107.9C14—C15—H15A120.0
N2—C3—C4111.5 (3)C14—C15—H15B120.0
N2—C3—C2118.9 (3)H15A—C15—H15B120.0
C4—C3—C2129.6 (3)C21—C16—C17119.3 (3)
C5—C4—C3104.6 (2)C21—C16—C1120.5 (3)
C5—C4—H4127.7C17—C16—C1120.2 (3)
C3—C4—H4127.7C18—C17—C16120.1 (3)
C4—C5—O3109.2 (3)C18—C17—H17120.0
C4—C5—C6134.8 (3)C16—C17—H17120.0
O3—C5—C6116.0 (2)C19—C18—C17120.3 (3)
C11—C6—C7119.0 (3)C19—C18—H18119.9
C11—C6—C5120.7 (2)C17—C18—H18119.9
C7—C6—C5120.3 (3)C20—C19—C18119.8 (3)
C8—C7—C6120.1 (3)C20—C19—H19120.1
C8—C7—H7119.9C18—C19—H19120.1
C6—C7—H7119.9C19—C20—C21120.2 (3)
C7—C8—C9121.3 (2)C19—C20—H20119.9
C7—C8—H8119.3C21—C20—H20119.9
C9—C8—H8119.3C16—C21—C20120.3 (3)
C8—C9—C10118.3 (3)C16—C21—H21119.9
C8—C9—C12120.3 (3)C20—C21—H21119.9
O1—S1—N1—C228.6 (3)O3—C5—C6—C77.5 (4)
O2—S1—N1—C2158.5 (2)C11—C6—C7—C80.2 (4)
C1—S1—N1—C286.8 (2)C5—C6—C7—C8177.3 (3)
O1—S1—N1—C13144.0 (2)C6—C7—C8—C90.8 (4)
O2—S1—N1—C1314.2 (3)C7—C8—C9—C101.0 (4)
C1—S1—N1—C13100.6 (3)C7—C8—C9—C12179.9 (3)
C5—O3—N2—C30.4 (3)C8—C9—C10—C110.3 (4)
O1—S1—C1—C1658.5 (2)C12—C9—C10—C11179.1 (3)
O2—S1—C1—C16172.3 (2)C9—C10—C11—C60.6 (4)
N1—S1—C1—C1657.3 (2)C7—C6—C11—C100.8 (4)
C13—N1—C2—C375.0 (3)C5—C6—C11—C10176.6 (3)
S1—N1—C2—C398.1 (3)C2—N1—C13—C1465.6 (3)
O3—N2—C3—C40.4 (3)S1—N1—C13—C14121.6 (3)
O3—N2—C3—C2179.9 (2)N1—C13—C14—C15126.2 (3)
N1—C2—C3—N2101.3 (3)S1—C1—C16—C21105.6 (3)
N1—C2—C3—C478.2 (4)S1—C1—C16—C1774.6 (3)
N2—C3—C4—C50.2 (3)C21—C16—C17—C180.1 (4)
C2—C3—C4—C5179.7 (3)C1—C16—C17—C18179.7 (3)
C3—C4—C5—O30.0 (3)C16—C17—C18—C190.5 (5)
C3—C4—C5—C6178.8 (3)C17—C18—C19—C200.6 (5)
N2—O3—C5—C40.2 (3)C18—C19—C20—C210.1 (5)
N2—O3—C5—C6179.3 (2)C17—C16—C21—C200.6 (4)
C4—C5—C6—C118.8 (5)C1—C16—C21—C20179.2 (3)
O3—C5—C6—C11169.9 (2)C19—C20—C21—C160.5 (5)
C4—C5—C6—C7173.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O30.952.442.763 (4)100
C8—H8···O2i0.952.593.404 (4)143
C13—H13A···O20.992.362.867 (4)111
C17—H17···O3ii0.952.573.314 (4)135
C19—H19···O1iii0.952.513.434 (4)165
C21—H21···O2iv0.952.503.369 (4)152
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1/2, y+2, z; (iv) x+1/2, y+1, z.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
O1···H192.51-1/2 + x, 2 - y, z
H17···O32.57x, 3/2 - y, -1/2 + z
O2···H212.50-1/2 + x, 1 - y, z
O2···H82.591/2 + x, -1/2 + y, -1/2 + z
C8···H182.92-1/2 + x, -1/2 + y, 1/2 + z
H12C···H2B2.43-1 + x, y, z
C16···H12B2.961 + x, 3/2 - y, -1/2 + z
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, MA and SM; synthesis, IAK, and VIP; X-ray analysis, STÇ, VNK and MA; writing (review and editing of the manuscript) STÇ, MA, IAK and SM; funding acquisition, SM; supervision, MA, VIP and SM.

Funding information

Funding for this research was provided by the Ministry of Education and Science of the Russian Federation [award No. 075–03-2020–223 (FSSF-2020–0017)].

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgrawal, N. & Mishra, P. (2018). Med. Chem. Res. 27, 1309–1344.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAltug, C., Güneş, H., Nocentini, A., Monti, S. M., Buonanno, M. & Supuran, S. T. (2017). Bioorg. Med. Chem. 25, 1456–1464.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3088–o3089.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2338.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKletskov, A. V., Bumagin, N. A., Zubkov, F. I., Grudinin, D. G. & Potkin, V. I. (2020). Synthesis, 52, 159–188.  CAS Google Scholar
First citationKolesnik, I. A., Petkevich, S. K., Mertsalov, D. F., Chervyakova, L. V., Nadirova, M. A., Tyurin, A. P., Guan, A. Y., Liu, C. L. & Potkin, V. I. (2022). Russ. J. Gen. Chem. 92, 29–39.  Web of Science CrossRef CAS Google Scholar
First citationKrishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797–863.  CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMuralikrishna, A., Kannan, M., Padmavathi, V., Padmaja, A. & Krishna, R. (2012). Acta Cryst. E68, o2954.  CSD CrossRef IUCr Journals Google Scholar
First citationNadirova, M. A., Khanova, A. V., Zubkov, F. I., Mertsalov, D. F., Kolesnik, I. A., Petkevich, S. K., Potkin, V. I., Shetnev, A. A., Presnukhina, S. I., Sinelshchikova, A. A., Grigoriev, M. S. & Zaytsev, V. P. (2021). Tetrahedron, 85, 132032.  Web of Science CrossRef Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO 1.171.41.123a. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSköld, O. (2000). Drug Resist. Updat. 3, 155–160.  Web of Science PubMed Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.  Web of Science CrossRef CAS Google Scholar
First citationZhu, J., Mo, J., Lin, H., Chen, Y. & Sun, H. (2018). Bioorg. Med. Chem. 26, 3065–3075.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds