research communications
N-{[5-(4-methylphenyl)-1,2-oxazol-3-yl]methyl}-1-phenyl-N-(prop-2-en-1-yl)methanesulfonamide
and Hirshfeld surface analysis ofaPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation, bN. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dLaboratory of the Chemistry of Heterocyclic Compounds, Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13, Surganov Str., 220072, Minsk, Belarus, and eUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz
In the title compound, C21H22N2O3S, the 1,2-oxazole ring makes the dihedral angles of 9.16 (16) and 87.91 (17)°, respectively, with the toluene and phenyl rings, while they form a dihedral angle of 84.42 (15)° with each other. The C—S—N—Cpr and C—S—N—Cme (pr = propene, me = 3-methyl-1,2-oxazole) torsion angles are 86.8 (2) and −100.6 (3) °, respectively. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, generating a three-dimensional network. A Hirshfeld surface analysis was performed to investigate the contributions of the different intermolecular contacts within the supramolecular structure. The major interactions are H⋯H (53.6%), C⋯H/H⋯C (20.8%) and O⋯H/H⋯O (17.7%).
Keywords: crystal structure; the 1,2-oxazole ring; hydrogen bonds; Hirshfeld surface.
CCDC reference: 2171930
1. Chemical context
Sulfonamide antibiotics are readily available drugs that are gradually losing their importance due to the development of bacterial resistance (Sköld, 2000). Along with the use of much less accessible antibiotics of other classes, the design of new to overcome this problem seems to be reasonable (Nadirova et al., 2021; Naghiyev et al., 2020). One of the possible methods for structural modification is the synthesis of drug analogues containing heterocycles. From this point of view, isothiazole (Kletskov et al., 2020; Khalilov et al., 2021) and isoxazole (Zhu et al., 2018; Abdelhamid et al., 2011) rings are of great interest. In particular, isoxazole derivatives possess a wide range of biological activity, so this heterocycle is considered to be one of the most privileged scaffolds in pharmaceutical chemistry (Altug et al., 2017; Safavora et al., 2019). Moreover, a lot of isoxazoles exhibit antibacterial properties on their own (Agrawal & Mishra, 2018; Yadigarov et al., 2009), and the widely used sulfonamide antibiotic sulfamethoxazole contains an isoxazole ring. A preliminary assessment of the biological activity of newly designed isoxazole-containing structures can be carried out in silico using molecular docking. Data on the structural parameters of promising molecules is therefore required (Gurbanov et al., 2020a,b; Ma et al., 2020,2021). All this was our motive for the synthesis and accurate structure establishment of N-allyl-N-[(5-tolylisoxazol-3-yl)methyl]benzylsulfonamide (1), which has not previously been characterized. It was obtained from isoxazolylallylamine (2) and benzyl sulfonyl chloride using the `green chemistry' procedure developed earlier by one of us (Kolesnik et al., 2022).
Allyl derivatives structurally similar to sulfonamide 1 are widely used as starting materials in organic synthesis for the construction of polyheterocyclic systems through intramolecular [4 + 2] cycloaddition reactions (Zubkov et al., 2014; Krishna et al., 2022).
2. Structural commentary
In the title compound (Fig. 1), the 1,2-oxazole ring (O3/N2/C3–C5) forms dihedral angles of 9.16 (16) and 87.91 (17) °, respectively, with the toluene and phenyl rings (C6–C11 and C16–C21) which subtend a dihedral angle of 84.42 (15)° with each other. The torsion angles C1—S1—N1—C2 and C1—S1—N1—C13 are 86.8 (2) and −100.6 (3) °, respectively.
3. Supramolecular features and Hirshfeld surface analysis
Molecules in the crystal are joined together by C—H⋯O hydrogen bonds, forming a three-dimensional network (Table 1; Figs. 2, 3 and 4).
The Hirshfeld surfaces were calculated and two-dimensional fingerprint plots generated using Crystal Explorer 17.5 (Spackman et al., 2021). Fig. 5 depicts the three-dimensional Hirshfeld surface projected over dnorm in the range −0.1677 to 1.4857 a.u. The bright-red patches surrounding O1, O2, and O3 and hydrogen atoms H8, H17, H19, and H21, which highlight their activities as donors and/or acceptors, can be connected with O1, O2, and O3 interactions, which play a significant role in the molecular packing (Tables 1 and 2).
|
Fig. 6a depicts the overall two-dimensional fingerprint plot for the title compound. The percentage contributions to the Hirshfeld surfaces from various interatomic interactions (Table 2) include H⋯H (53.6%; Fig. 6b), C⋯H/H⋯C (20.8%; Fig. 6c) and O⋯H/H⋯C (17.7%; Fig. 6d). Other contact types, such as N⋯H/H⋯N (4.5%), C⋯C (1.7%), N⋯C/C⋯N (0.9%), and O⋯C/C⋯O (0.8%), account for less than 4.5% of the Hirshfeld surface and are likely to have little directional impact on the packing.
4. Database survey
Four related compounds with a methanesulfonamide unit have been reported, viz. N-(4-chlorophenyl)-1-(5-{[(2-phenylvinyl)sulfonyl]methyl}-1,3,4-oxadiazol-2-yl)methanesulfonamide (CEGKAC: Muralikrishna et al., 2012), N-(4-fluorophenyl)methanesulfonamide (CICPIO: Gowda et al., 2007a), N-(2,5-dichlorophenyl)methanesulfonamide (WIHGUQ: Gowda et al., 2007b) and N-(3-methylphenyl)methanesulfonamide (VIDKOJ: Gowda et al., 2007c).
In the crystal of CEGKAC, molecules are linked by N—H⋯O hydrogen bonds, generating C(10) chains propagating in [001]. The packing is consolidated by C—H⋯O, C—H⋯π and very weak aromatic π–π stacking interactions [centroid–centroid separation = 4.085 (2) Å]. In the crystal of CICPIO, the molecules are packed into a layer structure along the a-axis direction via N—H⋯O hydrogen bonds [H⋯O = 2.08 (2), N⋯O = 2.911 (6) Å and N—H⋯O = 164 (6)°]. In the crystal of WIHGUQ, the amide H atom is available to a receptor molecule as it lies on one side of the plane of the benzene ring, while the methanesulfonyl group is on the opposite side of the plane, similar to the arrangement in other methanesulfonanilides. The molecules are packed into chains through N—H⋯O and N—H⋯Cl hydrogen bonding. In the crystal of VIDKOJ, the molecules are linked into chains along the c-axis direction through N—H⋯O hydrogen bonds.
5. Synthesis and crystallization
A mixture of 1,2-oxazolylallylamine 2 (1 mmol), benzyl sulfonyl chloride (1.2 mmol) and Na2CO3 (1.2 mmol) in water (15 mL) was refluxed for 4 h. After cooling, the reaction mixture was extracted with CH2Cl2 (3 × 10 mL). The combined organic fractions were washed with water (2 × 10 mL) and dried over Na2SO4. The solvent was evaporated under reduced pressure. The resulting oil was purified by flash (eluent CH2Cl2) and crystallized from MeOH as colourless crystals, yield 0.16 g (41%), m.p. 371–373 K. IR (KBr), ν (cm−1): 1642, 1618, 1599, 1568 (1,2-oxazole), 1343 (S=O), 1151, 1128 (SO2), 698 (N—SO2), 541 (Aryl). 1H NMR (500 MHz, CDCl3, 293 K): δ = 2.40 (s, 3H, H12A, H12B, H12C), 3.71–3.73 (d, 2H, H13A, H13B, J = 6.7), 4.21 (s, 2H, H2A, H2B), 4.33 (s, 2H, H1A, H1B), 5.22–5.29 (m, 2H, H15A, H15B), 5.63–5.71 (m, 1H, H14), 6.47 (s, 1H, H4), 7.25–7.27 (m, 2H, H8, H10), 7.36–7.41 (m, 5H, H17, H18, H19, H20, H21), 7.64–7.65 (d, 2H, H7, H11, J = 8.2). 13C NMR (126 MHz, CDCl3, 293 K): δ = 21.66, 42.55, 50.58, 59.53, 98.99, 120.50, 124.64, 125.95 (2C), 129.01 (2C), 129.06, 129.85 (2C), 130.94 (2C), 132.24, 140.86, 160.95, 170.91. MS (APCI): m/z = 383 [M + H]+.
6. details
Crystal data, data collection and structure . The C-bound H atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.95 Å (CH aromatic), 0.99 Å (CH2) and 0.98 Å (CH3). Isotropic displacement parameters for all H atoms were set equal to 1.2 or 1.5Ueq (parent atom). The crystal studied was refined as an inversion twin.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2171930
https://doi.org/10.1107/S2056989022005035/jy2020sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022005035/jy2020Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022005035/jy2020Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C21H22N2O3S | F(000) = 808 |
Mr = 382.46 | Dx = 1.320 Mg m−3 |
Monoclinic, Ia | Cu Kα radiation, λ = 1.54178 Å |
a = 10.7979 (1) Å | Cell parameters from 18074 reflections |
b = 10.2238 (10) Å | θ = 5.0–79.2° |
c = 17.7316 (2) Å | µ = 1.69 mm−1 |
β = 100.526 (1)° | T = 100 K |
V = 1924.55 (19) Å3 | Prism, colourless |
Z = 4 | 0.24 × 0.22 × 0.14 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3542 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.051 |
φ and ω scans | θmax = 79.6°, θmin = 5.0° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −13→13 |
Tmin = 0.668, Tmax = 0.779 | k = −12→13 |
21251 measured reflections | l = −22→22 |
3572 independent reflections |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.1004P)2 + 0.3109P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.045 | (Δ/σ)max < 0.001 |
wR(F2) = 0.125 | Δρmax = 0.47 e Å−3 |
S = 1.09 | Δρmin = −0.58 e Å−3 |
3572 reflections | Extinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
247 parameters | Extinction coefficient: 0.0023 (4) |
2 restraints | Absolute structure: Refined as an inversion twin |
Primary atom site location: SHELXT | Absolute structure parameter: 0.00 (2) |
Hydrogen site location: inferred from neighbouring sites |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.20850 (6) | 0.59215 (6) | 0.37939 (4) | 0.0181 (2) | |
O1 | 0.1034 (2) | 0.6795 (2) | 0.36066 (12) | 0.0253 (5) | |
O2 | 0.1867 (2) | 0.4534 (2) | 0.37509 (14) | 0.0271 (5) | |
O3 | 0.1016 (2) | 0.7878 (2) | 0.64904 (11) | 0.0248 (5) | |
N1 | 0.2802 (2) | 0.6254 (2) | 0.46571 (13) | 0.0183 (5) | |
N2 | 0.2125 (3) | 0.7725 (3) | 0.61968 (15) | 0.0259 (6) | |
C1 | 0.3167 (3) | 0.6294 (3) | 0.31677 (16) | 0.0206 (6) | |
H1A | 0.390384 | 0.570343 | 0.328837 | 0.025* | |
H1B | 0.275212 | 0.612336 | 0.263131 | 0.025* | |
C2 | 0.2760 (3) | 0.7586 (3) | 0.49593 (15) | 0.0180 (5) | |
H2A | 0.258277 | 0.820906 | 0.452560 | 0.022* | |
H2B | 0.359354 | 0.780818 | 0.526667 | 0.022* | |
C3 | 0.1778 (3) | 0.7734 (3) | 0.54474 (16) | 0.0178 (5) | |
C4 | 0.0450 (3) | 0.7881 (3) | 0.52263 (15) | 0.0179 (5) | |
H4 | −0.003053 | 0.791270 | 0.472112 | 0.022* | |
C5 | 0.0023 (3) | 0.7966 (3) | 0.58978 (15) | 0.0180 (5) | |
C6 | −0.1207 (3) | 0.8145 (3) | 0.61079 (15) | 0.0173 (5) | |
C7 | −0.1342 (3) | 0.8064 (3) | 0.68787 (15) | 0.0199 (6) | |
H7 | −0.063522 | 0.785401 | 0.726289 | 0.024* | |
C8 | −0.2503 (3) | 0.8290 (3) | 0.70805 (15) | 0.0193 (5) | |
H8 | −0.258482 | 0.822084 | 0.760347 | 0.023* | |
C9 | −0.3554 (3) | 0.8615 (3) | 0.65319 (16) | 0.0189 (6) | |
C10 | −0.3414 (3) | 0.8690 (3) | 0.57646 (16) | 0.0214 (6) | |
H10 | −0.412186 | 0.890631 | 0.538263 | 0.026* | |
C11 | −0.2261 (3) | 0.8453 (3) | 0.55508 (16) | 0.0209 (6) | |
H11 | −0.218664 | 0.850017 | 0.502582 | 0.025* | |
C12 | −0.4808 (3) | 0.8853 (3) | 0.67664 (17) | 0.0235 (6) | |
H12A | −0.470660 | 0.949937 | 0.718118 | 0.035* | |
H12B | −0.512271 | 0.803142 | 0.694488 | 0.035* | |
H12C | −0.540911 | 0.918217 | 0.632572 | 0.035* | |
C13 | 0.3384 (3) | 0.5231 (3) | 0.51956 (18) | 0.0233 (6) | |
H13A | 0.325804 | 0.436904 | 0.493807 | 0.028* | |
H13B | 0.295250 | 0.521026 | 0.564246 | 0.028* | |
C14 | 0.4759 (3) | 0.5443 (3) | 0.5472 (2) | 0.0264 (6) | |
H14 | 0.528386 | 0.555444 | 0.510125 | 0.032* | |
C15 | 0.5284 (4) | 0.5485 (3) | 0.6206 (2) | 0.0334 (8) | |
H15A | 0.477943 | 0.537711 | 0.658813 | 0.040* | |
H15B | 0.616492 | 0.562376 | 0.635134 | 0.040* | |
C16 | 0.3618 (3) | 0.7690 (3) | 0.32347 (15) | 0.0189 (6) | |
C17 | 0.2818 (3) | 0.8703 (3) | 0.29145 (17) | 0.0221 (6) | |
H17 | 0.198709 | 0.850949 | 0.265671 | 0.026* | |
C18 | 0.3237 (3) | 0.9990 (3) | 0.29736 (18) | 0.0260 (6) | |
H18 | 0.269020 | 1.067490 | 0.275926 | 0.031* | |
C19 | 0.4454 (4) | 1.0278 (3) | 0.33448 (18) | 0.0265 (7) | |
H19 | 0.474088 | 1.115850 | 0.338020 | 0.032* | |
C20 | 0.5246 (3) | 0.9281 (3) | 0.36625 (19) | 0.0271 (6) | |
H20 | 0.607762 | 0.947754 | 0.391695 | 0.033* | |
C21 | 0.4827 (3) | 0.7986 (3) | 0.36106 (17) | 0.0223 (6) | |
H21 | 0.537283 | 0.730553 | 0.383366 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0203 (3) | 0.0186 (3) | 0.0162 (3) | −0.0028 (2) | 0.0055 (2) | −0.0023 (2) |
O1 | 0.0217 (11) | 0.0310 (11) | 0.0225 (10) | 0.0011 (8) | 0.0021 (8) | 0.0003 (8) |
O2 | 0.0370 (14) | 0.0212 (10) | 0.0251 (10) | −0.0095 (9) | 0.0107 (10) | −0.0038 (9) |
O3 | 0.0178 (10) | 0.0414 (12) | 0.0150 (10) | 0.0038 (8) | 0.0028 (8) | −0.0014 (8) |
N1 | 0.0245 (12) | 0.0164 (10) | 0.0141 (10) | 0.0019 (9) | 0.0032 (9) | −0.0022 (9) |
N2 | 0.0209 (12) | 0.0395 (15) | 0.0182 (12) | 0.0047 (11) | 0.0061 (10) | −0.0024 (10) |
C1 | 0.0271 (15) | 0.0194 (12) | 0.0176 (11) | −0.0009 (11) | 0.0099 (11) | −0.0021 (10) |
C2 | 0.0204 (13) | 0.0169 (11) | 0.0175 (12) | −0.0005 (10) | 0.0055 (10) | −0.0014 (9) |
C3 | 0.0192 (13) | 0.0180 (12) | 0.0165 (12) | 0.0013 (9) | 0.0042 (10) | −0.0010 (9) |
C4 | 0.0193 (13) | 0.0199 (11) | 0.0143 (11) | 0.0007 (9) | 0.0022 (10) | 0.0008 (9) |
C5 | 0.0201 (14) | 0.0178 (11) | 0.0160 (12) | 0.0011 (10) | 0.0031 (10) | −0.0007 (10) |
C6 | 0.0216 (14) | 0.0150 (11) | 0.0160 (12) | 0.0004 (9) | 0.0049 (10) | −0.0005 (9) |
C7 | 0.0241 (14) | 0.0197 (13) | 0.0162 (12) | 0.0014 (10) | 0.0044 (10) | 0.0012 (10) |
C8 | 0.0245 (14) | 0.0188 (11) | 0.0158 (12) | −0.0011 (10) | 0.0065 (10) | 0.0002 (10) |
C9 | 0.0213 (13) | 0.0146 (12) | 0.0220 (13) | 0.0002 (9) | 0.0073 (11) | −0.0013 (9) |
C10 | 0.0222 (14) | 0.0235 (14) | 0.0181 (13) | 0.0012 (11) | 0.0022 (10) | 0.0015 (10) |
C11 | 0.0206 (14) | 0.0259 (13) | 0.0164 (12) | 0.0007 (10) | 0.0042 (10) | 0.0000 (11) |
C12 | 0.0223 (15) | 0.0256 (13) | 0.0247 (14) | 0.0003 (11) | 0.0105 (12) | −0.0012 (12) |
C13 | 0.0274 (15) | 0.0190 (13) | 0.0229 (14) | 0.0014 (10) | 0.0030 (11) | 0.0044 (10) |
C14 | 0.0257 (16) | 0.0237 (14) | 0.0297 (15) | 0.0047 (11) | 0.0046 (13) | 0.0013 (12) |
C15 | 0.0347 (18) | 0.0248 (15) | 0.0369 (18) | 0.0049 (13) | −0.0035 (14) | −0.0022 (13) |
C16 | 0.0235 (14) | 0.0192 (13) | 0.0156 (12) | 0.0001 (10) | 0.0079 (10) | −0.0015 (9) |
C17 | 0.0242 (14) | 0.0244 (14) | 0.0175 (11) | −0.0017 (12) | 0.0036 (11) | 0.0006 (11) |
C18 | 0.0360 (18) | 0.0213 (13) | 0.0212 (14) | 0.0011 (12) | 0.0061 (12) | 0.0029 (11) |
C19 | 0.0388 (19) | 0.0216 (13) | 0.0199 (13) | −0.0089 (12) | 0.0076 (13) | 0.0001 (10) |
C20 | 0.0276 (16) | 0.0323 (16) | 0.0218 (14) | −0.0082 (13) | 0.0055 (12) | 0.0018 (12) |
C21 | 0.0220 (14) | 0.0255 (13) | 0.0204 (13) | 0.0013 (11) | 0.0068 (11) | 0.0033 (11) |
S1—O1 | 1.434 (2) | C9—C12 | 1.507 (4) |
S1—O2 | 1.438 (2) | C10—C11 | 1.388 (4) |
S1—N1 | 1.620 (2) | C10—H10 | 0.9500 |
S1—C1 | 1.794 (3) | C11—H11 | 0.9500 |
O3—C5 | 1.360 (3) | C12—H12A | 0.9800 |
O3—N2 | 1.399 (3) | C12—H12B | 0.9800 |
N1—C2 | 1.468 (3) | C12—H12C | 0.9800 |
N1—C13 | 1.477 (4) | C13—C14 | 1.492 (5) |
N2—C3 | 1.313 (4) | C13—H13A | 0.9900 |
C1—C16 | 1.506 (4) | C13—H13B | 0.9900 |
C1—H1A | 0.9900 | C14—C15 | 1.322 (5) |
C1—H1B | 0.9900 | C14—H14 | 0.9500 |
C2—C3 | 1.494 (4) | C15—H15A | 0.9500 |
C2—H2A | 0.9900 | C15—H15B | 0.9500 |
C2—H2B | 0.9900 | C16—C21 | 1.387 (4) |
C3—C4 | 1.424 (4) | C16—C17 | 1.401 (4) |
C4—C5 | 1.355 (4) | C17—C18 | 1.389 (4) |
C4—H4 | 0.9500 | C17—H17 | 0.9500 |
C5—C6 | 1.455 (4) | C18—C19 | 1.389 (5) |
C6—C11 | 1.400 (4) | C18—H18 | 0.9500 |
C6—C7 | 1.403 (3) | C19—C20 | 1.383 (5) |
C7—C8 | 1.385 (4) | C19—H19 | 0.9500 |
C7—H7 | 0.9500 | C20—C21 | 1.397 (4) |
C8—C9 | 1.393 (4) | C20—H20 | 0.9500 |
C8—H8 | 0.9500 | C21—H21 | 0.9500 |
C9—C10 | 1.398 (4) | ||
O1—S1—O2 | 119.14 (15) | C10—C9—C12 | 121.4 (3) |
O1—S1—N1 | 108.03 (13) | C11—C10—C9 | 121.2 (3) |
O2—S1—N1 | 107.60 (13) | C11—C10—H10 | 119.4 |
O1—S1—C1 | 107.57 (14) | C9—C10—H10 | 119.4 |
O2—S1—C1 | 107.18 (14) | C10—C11—C6 | 120.1 (3) |
N1—S1—C1 | 106.70 (14) | C10—C11—H11 | 120.0 |
C5—O3—N2 | 109.1 (2) | C6—C11—H11 | 120.0 |
C2—N1—C13 | 117.3 (2) | C9—C12—H12A | 109.5 |
C2—N1—S1 | 119.87 (19) | C9—C12—H12B | 109.5 |
C13—N1—S1 | 122.40 (19) | H12A—C12—H12B | 109.5 |
C3—N2—O3 | 105.7 (2) | C9—C12—H12C | 109.5 |
C16—C1—S1 | 112.94 (19) | H12A—C12—H12C | 109.5 |
C16—C1—H1A | 109.0 | H12B—C12—H12C | 109.5 |
S1—C1—H1A | 109.0 | N1—C13—C14 | 112.9 (3) |
C16—C1—H1B | 109.0 | N1—C13—H13A | 109.0 |
S1—C1—H1B | 109.0 | C14—C13—H13A | 109.0 |
H1A—C1—H1B | 107.8 | N1—C13—H13B | 109.0 |
N1—C2—C3 | 112.2 (2) | C14—C13—H13B | 109.0 |
N1—C2—H2A | 109.2 | H13A—C13—H13B | 107.8 |
C3—C2—H2A | 109.2 | C15—C14—C13 | 123.4 (3) |
N1—C2—H2B | 109.2 | C15—C14—H14 | 118.3 |
C3—C2—H2B | 109.2 | C13—C14—H14 | 118.3 |
H2A—C2—H2B | 107.9 | C14—C15—H15A | 120.0 |
N2—C3—C4 | 111.5 (3) | C14—C15—H15B | 120.0 |
N2—C3—C2 | 118.9 (3) | H15A—C15—H15B | 120.0 |
C4—C3—C2 | 129.6 (3) | C21—C16—C17 | 119.3 (3) |
C5—C4—C3 | 104.6 (2) | C21—C16—C1 | 120.5 (3) |
C5—C4—H4 | 127.7 | C17—C16—C1 | 120.2 (3) |
C3—C4—H4 | 127.7 | C18—C17—C16 | 120.1 (3) |
C4—C5—O3 | 109.2 (3) | C18—C17—H17 | 120.0 |
C4—C5—C6 | 134.8 (3) | C16—C17—H17 | 120.0 |
O3—C5—C6 | 116.0 (2) | C19—C18—C17 | 120.3 (3) |
C11—C6—C7 | 119.0 (3) | C19—C18—H18 | 119.9 |
C11—C6—C5 | 120.7 (2) | C17—C18—H18 | 119.9 |
C7—C6—C5 | 120.3 (3) | C20—C19—C18 | 119.8 (3) |
C8—C7—C6 | 120.1 (3) | C20—C19—H19 | 120.1 |
C8—C7—H7 | 119.9 | C18—C19—H19 | 120.1 |
C6—C7—H7 | 119.9 | C19—C20—C21 | 120.2 (3) |
C7—C8—C9 | 121.3 (2) | C19—C20—H20 | 119.9 |
C7—C8—H8 | 119.3 | C21—C20—H20 | 119.9 |
C9—C8—H8 | 119.3 | C16—C21—C20 | 120.3 (3) |
C8—C9—C10 | 118.3 (3) | C16—C21—H21 | 119.9 |
C8—C9—C12 | 120.3 (3) | C20—C21—H21 | 119.9 |
O1—S1—N1—C2 | −28.6 (3) | O3—C5—C6—C7 | −7.5 (4) |
O2—S1—N1—C2 | −158.5 (2) | C11—C6—C7—C8 | −0.2 (4) |
C1—S1—N1—C2 | 86.8 (2) | C5—C6—C7—C8 | 177.3 (3) |
O1—S1—N1—C13 | 144.0 (2) | C6—C7—C8—C9 | −0.8 (4) |
O2—S1—N1—C13 | 14.2 (3) | C7—C8—C9—C10 | 1.0 (4) |
C1—S1—N1—C13 | −100.6 (3) | C7—C8—C9—C12 | 179.9 (3) |
C5—O3—N2—C3 | 0.4 (3) | C8—C9—C10—C11 | −0.3 (4) |
O1—S1—C1—C16 | 58.5 (2) | C12—C9—C10—C11 | −179.1 (3) |
O2—S1—C1—C16 | −172.3 (2) | C9—C10—C11—C6 | −0.6 (4) |
N1—S1—C1—C16 | −57.3 (2) | C7—C6—C11—C10 | 0.8 (4) |
C13—N1—C2—C3 | −75.0 (3) | C5—C6—C11—C10 | −176.6 (3) |
S1—N1—C2—C3 | 98.1 (3) | C2—N1—C13—C14 | −65.6 (3) |
O3—N2—C3—C4 | −0.4 (3) | S1—N1—C13—C14 | 121.6 (3) |
O3—N2—C3—C2 | −179.9 (2) | N1—C13—C14—C15 | 126.2 (3) |
N1—C2—C3—N2 | 101.3 (3) | S1—C1—C16—C21 | 105.6 (3) |
N1—C2—C3—C4 | −78.2 (4) | S1—C1—C16—C17 | −74.6 (3) |
N2—C3—C4—C5 | 0.2 (3) | C21—C16—C17—C18 | 0.1 (4) |
C2—C3—C4—C5 | 179.7 (3) | C1—C16—C17—C18 | −179.7 (3) |
C3—C4—C5—O3 | 0.0 (3) | C16—C17—C18—C19 | 0.5 (5) |
C3—C4—C5—C6 | 178.8 (3) | C17—C18—C19—C20 | −0.6 (5) |
N2—O3—C5—C4 | −0.2 (3) | C18—C19—C20—C21 | 0.1 (5) |
N2—O3—C5—C6 | −179.3 (2) | C17—C16—C21—C20 | −0.6 (4) |
C4—C5—C6—C11 | −8.8 (5) | C1—C16—C21—C20 | 179.2 (3) |
O3—C5—C6—C11 | 169.9 (2) | C19—C20—C21—C16 | 0.5 (5) |
C4—C5—C6—C7 | 173.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O3 | 0.95 | 2.44 | 2.763 (4) | 100 |
C8—H8···O2i | 0.95 | 2.59 | 3.404 (4) | 143 |
C13—H13A···O2 | 0.99 | 2.36 | 2.867 (4) | 111 |
C17—H17···O3ii | 0.95 | 2.57 | 3.314 (4) | 135 |
C19—H19···O1iii | 0.95 | 2.51 | 3.434 (4) | 165 |
C21—H21···O2iv | 0.95 | 2.50 | 3.369 (4) | 152 |
Symmetry codes: (i) x−1/2, y+1/2, z+1/2; (ii) x, −y+3/2, z−1/2; (iii) x+1/2, −y+2, z; (iv) x+1/2, −y+1, z. |
Contact | Distance | Symmetry operation |
O1···H19 | 2.51 | -1/2 + x, 2 - y, z |
H17···O3 | 2.57 | x, 3/2 - y, -1/2 + z |
O2···H21 | 2.50 | -1/2 + x, 1 - y, z |
O2···H8 | 2.59 | 1/2 + x, -1/2 + y, -1/2 + z |
C8···H18 | 2.92 | -1/2 + x, -1/2 + y, 1/2 + z |
H12C···H2B | 2.43 | -1 + x, y, z |
C16···H12B | 2.96 | 1 + x, 3/2 - y, -1/2 + z |
Acknowledgements
The authors' contributions are as follows. Conceptualization, MA and SM; synthesis, IAK, and VIP; X-ray analysis, STÇ, VNK and MA; writing (review and editing of the manuscript) STÇ, MA, IAK and SM; funding acquisition, SM; supervision, MA, VIP and SM.
Funding information
Funding for this research was provided by the Ministry of Education and Science of the Russian Federation [award No. 075–03-2020–223 (FSSF-2020–0017)].
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Agrawal, N. & Mishra, P. (2018). Med. Chem. Res. 27, 1309–1344. Web of Science CrossRef CAS PubMed Google Scholar
Altug, C., Güneş, H., Nocentini, A., Monti, S. M., Buonanno, M. & Supuran, S. T. (2017). Bioorg. Med. Chem. 25, 1456–1464. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2570. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3088–o3089. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2338. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS PubMed Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Kletskov, A. V., Bumagin, N. A., Zubkov, F. I., Grudinin, D. G. & Potkin, V. I. (2020). Synthesis, 52, 159–188. CAS Google Scholar
Kolesnik, I. A., Petkevich, S. K., Mertsalov, D. F., Chervyakova, L. V., Nadirova, M. A., Tyurin, A. P., Guan, A. Y., Liu, C. L. & Potkin, V. I. (2022). Russ. J. Gen. Chem. 92, 29–39. Web of Science CrossRef CAS Google Scholar
Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797–863. CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859. Web of Science CrossRef Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Muralikrishna, A., Kannan, M., Padmavathi, V., Padmaja, A. & Krishna, R. (2012). Acta Cryst. E68, o2954. CSD CrossRef IUCr Journals Google Scholar
Nadirova, M. A., Khanova, A. V., Zubkov, F. I., Mertsalov, D. F., Kolesnik, I. A., Petkevich, S. K., Potkin, V. I., Shetnev, A. A., Presnukhina, S. I., Sinelshchikova, A. A., Grigoriev, M. S. & Zaytsev, V. P. (2021). Tetrahedron, 85, 132032. Web of Science CrossRef Google Scholar
Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2021). CrysAlis PRO 1.171.41.123a. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sköld, O. (2000). Drug Resist. Updat. 3, 155–160. Web of Science PubMed Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858. Web of Science CrossRef CAS Google Scholar
Zhu, J., Mo, J., Lin, H., Chen, Y. & Sun, H. (2018). Bioorg. Med. Chem. 26, 3065–3075. Web of Science CrossRef CAS PubMed Google Scholar
Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.