research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of anhydrous and hydrated N-benzyl­cinchonidinium bromide

crossmark logo

aDept. of Chemistry & Biochemistry, St. Catherine University, 2004 Randolph Avenue, St. Paul, MN 55105, USA, and bRigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381, USA
*Correspondence e-mail: dejanzen@stkate.edu

Edited by S. Parkin, University of Kentucky, USA (Received 29 April 2022; accepted 11 May 2022; online 17 May 2022)

N-benzyl­cinchonidinium bromide, C26H29N2O+·Br, with the systematic name (R)-[(2S,4S,5R)-1-benzyl-5-ethenyl-1-azoniabi­cyclo­[2.2.2]octan-2-yl](quinolin-4-yl)­methanol bromide, is a quaternary ammonium salt of the cinchona alkaloid cinchonidine. This salt is widely used as a chiral phase-transfer catalyst and chiral resolution agent. Both classical and non-classical hydrogen-bonding inter­actions, as well as anion effects have been shown to play key mechanistic roles in the catalysis of cinchona alkaloids. In an effort to understand the effects of water on these inter­molecular inter­actions, the structures of anhydrous N-benzyl­cinchonidinium bromide, (I), and the sesquihydrate, C26H29N2O+·Br·1.5H2O, (II), were determined.

1. Chemical context

Cinchona-derived enanti­oselective phase-transfer catalysts have been used in a variety of applications including [2,3]-Wittig rearrangements (Denmark & Cullen, 2015[Denmark, S. E. & Cullen, L. R. (2015). J. Org. Chem. 80, 11818-11848.]), synthesis of unnatural α-amino acids (O'Donnell et al., 1989[O'Donnell, M. J., Bennett, W. D. & Wu, S. (1989). J. Am. Chem. Soc. 111, 2353-2355.]), and even industrial-scale synthesis of pharmaceuticals (Moccia et al., 2015[Moccia, M., Cortigiani, M., Monasterolo, C., Torri, F., Del Fiandra, C., Fuller, G., Kelly, B. & Adamo, M. F. A. (2015). Org. Process Res. Dev. 19, 1274-1281.]). As this class of phase-transfer catalysts are easy to prepare from the parent natural product alkaloids, and demonstrate aspects of green and sustainable chemistry, they are attractive organocatalysts for further development. Mechanistic studies of N-benzyl­cinchonidinium bromide and substrates in solution provide evidence for the importance of quaternary ammonium benzylic C—H hydrogen-bond donor inter­actions as well as the classical OH donor (Bencivenni et al., 2021[Bencivenni, G., Illera, D. S., Moccia, M., Houk, K. N., Izzo, J. A., Novacek, J., Grieco, P., Vetticatt, M. J., Waser, M. & Adamo, M. F. A. (2021). Chem. Eur. J. 27, 11352-11366.]). Anion effects also demonstrate differences in the binding mode of substrates with mechanistic implications and potential enanti­oselectivity.

[Scheme 1]

While structures are reported for analogs of this cation, that of the commercially available bromide salt is unpublished. We report here the structures of N-benzyl­cinchonidinium bromide (I)[link] and the sesquihydrate (II)[link].

2. Structural commentary

The anhydrous compound (I)[link] (Fig. 1[link]) crystallizes in the monoclinic space group P21. The asymmetric unit of (I)[link] consists of one mol­ecular cation and one bromide anion. The sesquihydrate (II)[link] (Fig. 2[link]) crystallizes in the tetra­gonal space group P41212. The asymmetric unit of (II)[link] consists of one mol­ecular cation, one bromide anion, and one water on a general position and one half water, as O3 lies on a twofold axis at z = 0.5. For (I)[link] and (II)[link], the absolute configuration of chiral atoms N1, C2, C3, C7, and C8 are determined as S, R, S, S, and R, respectively, by anomalous dispersion and are consistent with previous structures of cinchonidine.

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecular structure of (II)[link] with displacement ellipsoids drawn at the 50% probability level.

Most analogous bond lengths in (I)[link] and (II)[link] show only minor differences, with two exceptions (Tables 1[link] and 2[link]). The largest differences in bond lengths occur for C6—C7 [1.510 (4) Å (I)[link], 1.553 (8) Å (II)] and N2—C11 [1.282 (6) Å (I)[link], 1.319 (9) Å (II)]. The quinuclidine intra­molecular N1⋯C3 distances show small expansion of this bicyclic ring system from (I)[link] [2.534 (5) Å] to (II)[link] [2.591 (8) Å]. Overlap of the N-benzyl­cinchonidinium cation atom coordinates of (I)[link] and (II)[link] (Fig. 3[link]) shows significant conformational differences. While the quinuclidine, benzyl, and vinyl functionalities adopt very similar conformations for (I)[link] and (II)[link], larger changes are observed in the alcohol and quinoline groups. Torsion angles that highlight the largest conformational changes include C7—C8—C13—C12 [107.9 (3)° (I)[link]; 101.3 (7)° (II)], C8—C7—N1—C20 [−39.0 (3)° (I)[link]; −53.6 (7)° (II)], and O1—C8—C13—C12 [−11.7 (4)° (I)[link]; −19.2 (8)° (II)]. These torsion-angle differences result in large changes in the relative angles between least-squares planes of the phenyl and quinoline groups in (I)[link] [14.8 (2)°] and (II)[link] [41.8 (3)°]. Intra­molecular C—H⋯O contacts C5—H5A⋯O1 are found in both (I)[link] and (II)[link], but (I)[link] shows an additional benzylic C20—H20B⋯O1 contact (Tables 3[link] and 4[link], Figs. 4[link] and 5[link]).

Table 1
Selected geometric parameters (Å, °) for (I)[link]

N2—C11 1.282 (6) C6—C7 1.510 (4)
       
C12—C13—C8—O1 −11.7 (4) C20—N1—C7—C8 −39.0 (3)
C12—C13—C8—C7 107.9 (3)    

Table 2
Selected geometric parameters (Å, °) for (II)[link]

N2—C11 1.319 (9) C7—C6 1.553 (8)
       
O1—C8—C13—C12 −19.2 (8) C20—N1—C7—C8 −53.6 (7)
C7—C8—C13—C12 101.3 (7)    

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Br1 0.73 (5) 2.45 (5) 3.149 (3) 162 (5)
C15—H15⋯Br1i 0.93 2.90 3.644 (4) 137
C12—H12⋯O1 0.93 2.39 2.739 (5) 102
C6—H6A⋯O1 0.97 2.58 2.967 (4) 104
C2—H2⋯Br1ii 0.98 2.83 3.779 (3) 164
C26—H26⋯Br1i 0.93 2.87 3.738 (4) 155
C5—H5A⋯O1 0.97 2.36 3.024 (4) 125
C20—H20A⋯Br1i 0.97 2.91 3.800 (3) 153
C20—H20B⋯O1 0.97 2.64 3.198 (4) 117
C10—H10A⋯Br1i 0.93 3.02 3.943 (4) 172
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [x-1, y, z].

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.89 (8) 1.75 (8) 2.629 (7) 168 (8)
O2—H2A⋯N2ii 0.88 (10) 1.97 (10) 2.824 (8) 161 (9)
O2—H2B⋯Br1 0.75 (9) 2.48 (9) 3.202 (5) 160 (10)
C7—H7⋯Br1 1.00 2.99 3.894 (6) 151
C12—H12⋯O1 0.95 2.44 2.771 (8) 101
C2—H2⋯Br1iii 1.00 2.98 3.811 (7) 142
C1—H1B⋯Br1 0.99 2.88 3.779 (7) 152
C5—H5A⋯O1 0.99 2.29 2.836 (8) 114
C5—H5B⋯O3 0.99 2.56 3.464 (6) 151
C17—H17⋯O1iv 0.95 2.61 3.500 (8) 157
C6—H6A⋯O1 0.99 2.70 3.016 (8) 99
C4—H4A⋯Br1iii 0.99 2.94 3.785 (7) 144
C20—H20A⋯Br1 0.99 2.89 3.794 (7) 152
C10—H10A⋯Br1 0.95 3.01 3.960 (8) 176
C23—H23⋯O2v 0.95 2.71 3.518 (11) 143
O3—H3A⋯Br1iii 0.90 (10) 2.61 (10) 3.499 (6) 170 (11)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{3\over 4}}]; (ii) [x, y-1, z]; (iii) [y+1, x, -z+1]; (iv) [x-1, y, z]; (v) x+1, y, z.
[Figure 3]
Figure 3
Overlap of quinuclidine non-H atom coordinates (C1–C7, N1) of the N-benzyl­cinchonidinium cation of (I)[link] (red) and (II)[link] (green).
[Figure 4]
Figure 4
Intra- and inter­molecular inter­actions of (I)[link]. Symmetry codes: (i) 1 − x, y − [{1\over 2}], 1 - z; (ii) 1 + x, y, z.
[Figure 5]
Figure 5
Intra- and inter­molecular inter­actions of (II)[link]. Symmetry codes: (i) x, 1 + y, z; (ii) 1 + x, y, z; (iii) y, −1 + x, 1 − z; (iv) [{1\over 2}] + x, [{1\over 2}] − y, [{3\over 4}] − z; (v) −1 + x, y, z

3. Supra­molecular features

The extended structure of (I)[link] displays a simple isolated charge-assisted hydrogen bond with the alcohol donor O1 and Br1 anion acceptor (Table 3[link], Fig. 4[link]). The quinoline N2 acceptor does not participate in any hydrogen-bonding inter­actions. Each bromide also has four short C—H⋯Br contacts with the same cation (phenyl, benzyl, quinoline, and vin­yl) as well as an additional quinuclidine methine C—H.

The sesquihydrate (II)[link] shows very different hydrogen-bonding inter­actions (Table 4[link], Fig. 5[link]). The alcohol group O1 acts as a donor with a water acceptor, O2. Water O2 hydrogen bonds as donor with Br1 and quinoline N2, while water O3 acts a donor to two bromide acceptors. This pattern of hydrogen bonds forms a chain with terminal O1 donors and water and bromide links, with the water O2 relating the two halves of the chain. Quinoline N2 acceptors of O2 hydrogen-bond donors link the chains forming an extended network. Each bromide also has four short C—H⋯Br contacts with the same cation (benzyl, vinyl, and two quinuclidine) as well as two additional quinuclidine contacts with a neighboring mol­ecular cation (Figs. 5[link] and 6[link]).

[Figure 6]
Figure 6
Inter­molecular hydrogen-bonding pattern of (II)[link]. Symmetry codes: (i) 1 − y, 1 − x, [{1\over 2}] − z; (ii) [{1\over 2}] + y, [{1\over 2}] − x, −[{1\over 2}] + z; (iii) [{1\over 2}] + y, [{3\over 2}] − x, −[{1\over 2}] + z; (iv) [{1\over 2}] + x, [{1\over 2}] − y, [{3\over 4}] − z; (v) [{1\over 2}] + x, [{3\over 2}] − y, [{3\over 4}] − z; (vi) −[{1\over 2}] + y, [{1\over 2}] − x, −[{1\over 4}] + z

4. Database survey

A search of the Cambridge Structural Database (ConQuest version 2022.1.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yields several related analogs of both N-benzyl­cinchonidinium salts as well as the pseudo-enanti­omer N-benzyl­cinchoninium. The 2-fluoro­benzyl bromide sesquihydrate analog XUNQIG (Jew et al., 2002[Jew, S.-S., Yoo, M.-S., Jeong, B.-S., Park, Y. & Park, H.-G. (2002). Org. Lett. 4, 4245-4248.]) is isostructural with (II)[link] though additional C—H⋯F intra- and inter­molecular inter­actions are present. Introduction of the aromatic 2-fluoro substituent yielded enhanced enanti­oselectivity in catalytic phase-transfer alkyl­ation reactions, with possible origins related to more conformational or dipole changes to enhance substrate binding. Other closely related N-benzyl­cinchonidinium chloride salts have been employed in co-crystal resolution of a chiral spiro­cyclic diol (GAJBOJ01; Zhang et al., 2006[Zhang, W., Wu, S., Zhang, Z., Yennawar, H. & Zhang, X. (2006). Org. Biomol. Chem. 4, 4474-4477.]), atropisomeric chiral diols (HADSIS; Walsh et al., 2021[Walsh, M. P., Phelps, J. M., Lennon, M. E., Yufit, D. S. & Kitching, M. O. (2021). Nature, 597, 70-76.] and JAPGIR; Sweetman et al., 2005[Sweetman, B. A., Müller-Bunz, H. & Guiry, P. J. (2005). Tetrahedron Lett. 46, 4643-4646.]) and a related mixed chiral amine/alcohol (GOSWIU; Ding et al., 1999[Ding, K., Wang, Y., Yun, H., Liu, J., Wu, Y., Terada, M., Okubo, Y. & Mikami, K. (1999). Chem. Eur. J. 5, 1734-1737.]). Even in the presence of multiple additional hydrogen-bond donors in these co-crystals, short benzylic C—H⋯Cl contacts are retained in GAJBOJ01 and JAPGIR, though not in HADSIS or GOSWIU. The N-benzyl­cinchonidinium cation has also been employed in resolution of chiral halogenated phosphates (GARJUF, GAWSUT; Frantz et al., 2005[Frantz, R., Pinto, A., Constant, S., Bernardinelli, G. & Lacour, J. (2005). Angew. Chem. Int. Ed. 44, 5060-5064.]). Short benzylic C—H⋯O contacts are found in these chiral phosphate salts.

Closely related cinchoninium anhydrous bromide structures with phenyl substituents [2-bromo­benzyl, QEDZAC (Skórska-Stania et al. 2012[Skórska-Stania, A., Jezierska-Zięba, M., Kąkol, B., Fedoryński, M. & Oleksyn, B. J. (2012). Acta Cryst. E68, o2803-o2804.]) and 3,5-bis­tri­fluoro­methyl, UHINUV (Kawai et al., 2009[Kawai, H., Kusuda, A., Nakamura, S., Shiro, M. & Shibata, N. (2009). Angew. Chem. Int. Ed. 48, 6324-6327.])] show similar O—H⋯Br hydrogen bonding to (I)[link]. However, the C—H⋯Br inter­actions differ. In QEDZAC, each bromide has quinuclidine, quinoline, and benzyl C—H⋯Br contacts with the same cation. In UHINUV, quinoline, benzyl, and phenyl C—H⋯Br contacts with the same cation are found. The N-benzyl­cinchoninium chloride salt has also been employed in a co-crystal resolution of BINOL (WOMQUK01; Walsh et al., 2021[Walsh, M. P., Phelps, J. M., Lennon, M. E., Yufit, D. S. & Kitching, M. O. (2021). Nature, 597, 70-76.]).

5. Synthesis and crystallization

N-benzyl­cinchonidinium bromide was purchased from Sigma-Aldrich (St. Louis, Missouri, USA). Crystals of the anhydrous form (I)[link] were obtained by vapor diffusion of diethyl ether into an aceto­nitrile solution of N-benzyl­cinchonidinium bromide. Crystals of the sesquihydrate (II)[link] were obtained by slow evaporation of an ethanol solution of N-benzyl­cinchonidinium bromide.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The O—H hydrogen positions were assigned from residual electron-density peaks and positions were refined. All remaining hydrogen atoms were placed in calculated positions and refined in the riding-model approximation with distances of C—H = 0.93, 0.93, 0.93, 0.97, and 0.98 Å for the aromatic C—H, terminal vinyl CH2, vinyl C9—H9, methyl­ene C—H, and methine C—H, respectively, and with Uiso(H) = k·Ueq(C), k = 1.2 for all C—H and 1.5 for the hydroxyl H1.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula C26H29N2O+·Br 2C26H29N2O+·2Br·3H2O
Mr 465.42 984.89
Crystal system, space group Monoclinic, P21 Tetragonal, P41212
Temperature (K) 173 173
a, b, c (Å) 11.2574 (7), 8.8445 (5), 11.9039 (9) 9.9254 (2), 9.9254 (2), 47.1267 (14)
α, β, γ (°) 90, 110.126 (8), 90 90, 90, 90
V3) 1112.85 (14) 4642.6 (2)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.87 1.80
Crystal size (mm) 0.61 × 0.25 × 0.15 0.52 × 0.36 × 0.36
 
Data collection
Diffractometer XtaLABmini XtaLABmini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.])
Tmin, Tmax 0.610, 1.000 0.281, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15118, 7531, 5890 36339, 4154, 3919
Rint 0.030 0.078
(sin θ/λ)max−1) 0.765 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.084, 1.01 0.051, 0.111, 1.05
No. of reflections 7531 4154
No. of parameters 274 297
No. of restraints 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.29 0.35, −0.40
Absolute structure Flack x determined using 2185 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1347 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.011 (5) 0.005 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020). Program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a) for (I); SHELXT2014/5 (Sheldrick, 2015a) for (II). For both structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(R)-[(2S,4S,5R)-1-Benzyl-5-ethenyl-1-azoniabicyclo[2.2.2]octan-2-yl](quinolin-4-yl)methanol bromide (I) top
Crystal data top
C26H29N2O+·BrF(000) = 484
Mr = 465.42Dx = 1.389 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.2574 (7) ÅCell parameters from 8428 reflections
b = 8.8445 (5) Åθ = 2.2–32.9°
c = 11.9039 (9) ŵ = 1.87 mm1
β = 110.126 (8)°T = 173 K
V = 1112.85 (14) Å3Block, colourless
Z = 20.61 × 0.25 × 0.15 mm
Data collection top
XtaLABmini
diffractometer
7531 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source5890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 32.9°, θmin = 1.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1616
Tmin = 0.610, Tmax = 1.000k = 1213
15118 measured reflectionsl = 1817
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.0838P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.54 e Å3
7531 reflectionsΔρmin = 0.29 e Å3
274 parametersAbsolute structure: Flack x determined using 2185 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.011 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.75057 (3)0.27380 (4)0.57880 (3)0.03605 (9)
O10.5115 (2)0.2121 (3)0.6521 (3)0.0362 (6)
H10.572 (5)0.209 (5)0.642 (4)0.054*
N10.2489 (2)0.3098 (2)0.5310 (2)0.0221 (5)
C150.4907 (4)0.6939 (4)0.7102 (3)0.0306 (8)
H150.4453240.6595350.6335370.037*
C140.5537 (3)0.5893 (4)0.7985 (3)0.0284 (6)
C190.6229 (4)0.6432 (5)0.9122 (3)0.0403 (8)
N20.6882 (3)0.5531 (4)1.0046 (3)0.0514 (9)
C120.6235 (3)0.3448 (4)0.8711 (3)0.0412 (8)
H120.6286460.2411040.8608500.049*
C60.3120 (3)0.3024 (4)0.7490 (3)0.0296 (7)
H6A0.3694520.2190110.7817310.035*
H6B0.3231500.3765290.8118780.035*
C20.0924 (3)0.3675 (4)0.6283 (3)0.0352 (7)
H20.0057400.3283510.6035650.042*
C30.1782 (3)0.2461 (4)0.7058 (3)0.0336 (9)
H30.1516100.2215150.7738990.040*
C10.1254 (3)0.3847 (4)0.5157 (3)0.0270 (6)
H1A0.0594240.3395380.4486070.032*
H1B0.1306210.4912060.4984920.032*
C210.1927 (3)0.3134 (3)0.3070 (3)0.0299 (7)
C130.5546 (3)0.4325 (3)0.7787 (3)0.0280 (6)
C260.1140 (3)0.4260 (4)0.2454 (3)0.0372 (7)
H260.1202940.5220600.2786330.045*
C220.1858 (3)0.1739 (4)0.2559 (3)0.0347 (7)
H220.2406050.0975630.2964780.042*
C50.2326 (3)0.1423 (4)0.5392 (3)0.0306 (6)
H5A0.3143620.0928950.5613390.037*
H5B0.1799020.1035150.4618680.037*
C250.0260 (4)0.3983 (5)0.1352 (3)0.0470 (9)
H250.0291640.4744160.0947480.056*
C40.1721 (3)0.1082 (4)0.6311 (3)0.0386 (8)
H4A0.0845690.0786500.5915210.046*
H4B0.2160710.0251600.6815280.046*
C240.0193 (3)0.2582 (7)0.0847 (3)0.0493 (10)
H240.0393090.2395460.0090330.059*
C200.2904 (3)0.3471 (3)0.4266 (2)0.0263 (6)
H20A0.3116850.4536740.4299500.032*
H20B0.3664130.2901210.4343680.032*
C230.0985 (4)0.1463 (5)0.1450 (3)0.0449 (9)
H230.0932450.0508060.1109400.054*
C90.0952 (3)0.5078 (5)0.6977 (3)0.0456 (9)
H90.0684950.4968290.7629400.055*
C100.1296 (4)0.6435 (5)0.6806 (3)0.0477 (10)
H10A0.1574390.6629020.6169540.057*
H10B0.1263060.7213370.7319690.057*
C110.6868 (4)0.4112 (5)0.9821 (3)0.0505 (10)
H110.7314130.3475561.0445410.061*
C70.3415 (3)0.3732 (3)0.6463 (2)0.0225 (5)
H70.3219880.4810920.6471730.027*
C180.6270 (5)0.7994 (6)0.9329 (4)0.0593 (13)
H180.6749770.8367931.0078140.071*
C160.4942 (5)0.8438 (5)0.7334 (4)0.0467 (11)
H160.4506160.9116540.6736890.056*
C80.4806 (3)0.3632 (4)0.6601 (3)0.0262 (7)
H80.4955130.4208400.5959270.031*
C170.5632 (6)0.8951 (5)0.8469 (5)0.0666 (14)
H170.5651280.9980270.8634110.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03099 (14)0.02947 (13)0.05035 (18)0.00130 (17)0.01742 (12)0.00135 (18)
O10.0240 (12)0.0280 (11)0.0565 (16)0.0028 (10)0.0135 (12)0.0032 (10)
N10.0179 (10)0.0253 (15)0.0227 (11)0.0007 (8)0.0066 (8)0.0006 (8)
C150.0284 (18)0.031 (2)0.0341 (17)0.0009 (14)0.0123 (14)0.0020 (14)
C140.0234 (15)0.0352 (17)0.0298 (15)0.0040 (12)0.0132 (12)0.0003 (12)
C190.044 (2)0.048 (2)0.0326 (18)0.0106 (17)0.0173 (16)0.0027 (16)
N20.053 (2)0.064 (2)0.0288 (15)0.0178 (17)0.0041 (14)0.0011 (15)
C120.0271 (16)0.0372 (17)0.049 (2)0.0009 (13)0.0001 (15)0.0110 (15)
C60.0229 (12)0.039 (2)0.0255 (13)0.0011 (12)0.0070 (10)0.0034 (12)
C20.0208 (14)0.054 (2)0.0326 (16)0.0013 (14)0.0121 (13)0.0024 (15)
C30.0282 (14)0.048 (3)0.0263 (14)0.0076 (14)0.0113 (11)0.0053 (13)
C10.0177 (13)0.0355 (16)0.0262 (14)0.0008 (11)0.0055 (11)0.0019 (12)
C210.0299 (14)0.038 (2)0.0239 (14)0.0055 (12)0.0118 (12)0.0017 (11)
C130.0181 (13)0.0314 (15)0.0339 (16)0.0016 (11)0.0080 (12)0.0022 (12)
C260.0406 (19)0.0417 (19)0.0284 (16)0.0056 (15)0.0108 (14)0.0032 (14)
C220.0297 (17)0.045 (2)0.0332 (17)0.0022 (14)0.0159 (14)0.0032 (14)
C50.0283 (16)0.0277 (16)0.0336 (16)0.0049 (12)0.0076 (13)0.0008 (12)
C250.042 (2)0.064 (3)0.0294 (18)0.0018 (19)0.0049 (16)0.0106 (17)
C40.0350 (18)0.0391 (17)0.0407 (18)0.0134 (14)0.0118 (15)0.0053 (14)
C240.0456 (18)0.075 (3)0.0235 (14)0.015 (2)0.0069 (13)0.004 (2)
C200.0255 (14)0.0305 (15)0.0243 (14)0.0024 (11)0.0105 (11)0.0001 (11)
C230.049 (2)0.055 (2)0.0354 (19)0.0148 (19)0.0204 (18)0.0161 (17)
C90.0385 (19)0.067 (3)0.0357 (19)0.0168 (19)0.0185 (15)0.0017 (17)
C100.044 (2)0.057 (2)0.040 (2)0.0177 (19)0.0119 (17)0.0095 (17)
C110.037 (2)0.062 (3)0.038 (2)0.0084 (18)0.0051 (16)0.0168 (18)
C70.0172 (12)0.0271 (14)0.0218 (13)0.0016 (10)0.0047 (10)0.0019 (11)
C180.086 (3)0.056 (3)0.0393 (19)0.021 (2)0.026 (2)0.023 (2)
C160.055 (3)0.034 (2)0.056 (3)0.0037 (19)0.026 (2)0.0030 (19)
C80.0188 (15)0.0255 (16)0.0340 (16)0.0011 (11)0.0088 (12)0.0008 (12)
C170.104 (4)0.036 (2)0.067 (3)0.012 (3)0.040 (3)0.019 (2)
Geometric parameters (Å, º) top
O1—H10.73 (5)C21—C201.500 (4)
O1—C81.392 (4)C13—C81.501 (4)
N1—C11.494 (4)C26—H260.9300
N1—C51.500 (4)C26—C251.366 (5)
N1—C201.506 (4)C22—H220.9300
N1—C71.517 (3)C22—C231.369 (5)
C15—H150.9300C5—H5A0.9700
C15—C141.397 (5)C5—H5B0.9700
C15—C161.353 (5)C5—C41.505 (5)
C14—C191.393 (5)C25—H250.9300
C14—C131.407 (4)C25—C241.368 (7)
C19—N21.352 (5)C4—H4A0.9700
C19—C181.401 (6)C4—H4B0.9700
N2—C111.282 (6)C24—H240.9300
C12—H120.9300C24—C231.360 (6)
C12—C131.351 (4)C20—H20A0.9700
C12—C111.397 (5)C20—H20B0.9700
C6—H6A0.9700C23—H230.9300
C6—H6B0.9700C9—H90.9300
C6—C31.499 (4)C9—C101.299 (6)
C6—C71.510 (4)C10—H10A0.9300
C2—H20.9800C10—H10B0.9300
C2—C31.524 (5)C11—H110.9300
C2—C11.517 (4)C7—H70.9800
C2—C91.485 (5)C7—C81.519 (4)
C3—H30.9800C18—H180.9300
C3—C41.497 (5)C18—C171.332 (7)
C1—H1A0.9700C16—H160.9300
C1—H1B0.9700C16—C171.383 (7)
C21—C261.366 (5)C8—H80.9800
C21—C221.366 (5)C17—H170.9300
C8—O1—H1108 (4)N1—C5—H5B109.7
C1—N1—C5108.4 (2)N1—C5—C4110.0 (3)
C1—N1—C20110.0 (2)H5A—C5—H5B108.2
C1—N1—C7105.5 (2)C4—C5—H5A109.7
C5—N1—C20110.4 (2)C4—C5—H5B109.7
C5—N1—C7111.6 (2)C26—C25—H25120.1
C20—N1—C7110.7 (2)C26—C25—C24119.7 (4)
C14—C15—H15119.2C24—C25—H25120.1
C16—C15—H15119.2C3—C4—C5109.2 (3)
C16—C15—C14121.6 (4)C3—C4—H4A109.8
C15—C14—C13123.9 (3)C3—C4—H4B109.8
C19—C14—C15118.3 (3)C5—C4—H4A109.8
C19—C14—C13117.8 (3)C5—C4—H4B109.8
C14—C19—C18118.8 (4)H4A—C4—H4B108.3
N2—C19—C14123.6 (4)C25—C24—H24120.0
N2—C19—C18117.5 (3)C23—C24—C25120.0 (3)
C11—N2—C19116.3 (3)C23—C24—H24120.0
C13—C12—H12120.3N1—C20—H20A108.8
C13—C12—C11119.5 (4)N1—C20—H20B108.8
C11—C12—H12120.3C21—C20—N1113.9 (2)
H6A—C6—H6B108.2C21—C20—H20A108.8
C3—C6—H6A109.7C21—C20—H20B108.8
C3—C6—H6B109.7H20A—C20—H20B107.7
C3—C6—C7109.6 (2)C22—C23—H23119.9
C7—C6—H6A109.7C24—C23—C22120.1 (4)
C7—C6—H6B109.7C24—C23—H23119.9
C3—C2—H2106.9C2—C9—H9115.2
C1—C2—H2106.9C10—C9—C2129.5 (4)
C1—C2—C3108.0 (3)C10—C9—H9115.2
C9—C2—H2106.9C9—C10—H10A120.0
C9—C2—C3111.4 (3)C9—C10—H10B120.0
C9—C2—C1116.3 (3)H10A—C10—H10B120.0
C6—C3—C2109.0 (3)N2—C11—C12125.1 (3)
C6—C3—H3110.3N2—C11—H11117.5
C2—C3—H3110.3C12—C11—H11117.5
C4—C3—C6108.1 (3)N1—C7—H7106.4
C4—C3—C2108.9 (3)N1—C7—C8116.0 (2)
C4—C3—H3110.3C6—C7—N1107.8 (2)
N1—C1—C2110.4 (2)C6—C7—H7106.4
N1—C1—H1A109.6C6—C7—C8113.2 (2)
N1—C1—H1B109.6C8—C7—H7106.4
C2—C1—H1A109.6C19—C18—H18119.5
C2—C1—H1B109.6C17—C18—C19121.0 (4)
H1A—C1—H1B108.1C17—C18—H18119.5
C26—C21—C20119.6 (3)C15—C16—H16120.4
C22—C21—C26119.5 (3)C15—C16—C17119.2 (5)
C22—C21—C20120.8 (3)C17—C16—H16120.4
C14—C13—C8121.8 (3)O1—C8—C13112.7 (3)
C12—C13—C14117.6 (3)O1—C8—C7108.8 (3)
C12—C13—C8120.5 (3)O1—C8—H8109.4
C21—C26—H26119.8C13—C8—C7107.2 (3)
C25—C26—C21120.5 (4)C13—C8—H8109.4
C25—C26—H26119.8C7—C8—H8109.4
C21—C22—H22119.9C18—C17—C16121.0 (4)
C21—C22—C23120.1 (4)C18—C17—H17119.5
C23—C22—H22119.9C16—C17—H17119.5
N1—C5—H5A109.7
N1—C5—C4—C314.4 (4)C21—C26—C25—C242.0 (6)
N1—C7—C8—O158.3 (4)C21—C22—C23—C240.9 (5)
N1—C7—C8—C13179.6 (2)C13—C14—C19—N21.5 (5)
C15—C14—C19—N2179.6 (3)C13—C14—C19—C18177.8 (4)
C15—C14—C19—C180.4 (5)C13—C12—C11—N21.8 (6)
C15—C14—C13—C12177.5 (3)C26—C21—C22—C231.6 (5)
C15—C14—C13—C83.4 (5)C26—C21—C20—N195.4 (3)
C15—C16—C17—C180.6 (8)C26—C25—C24—C231.3 (6)
C14—C15—C16—C171.0 (8)C22—C21—C26—C252.2 (5)
C14—C19—N2—C111.8 (6)C22—C21—C20—N188.2 (4)
C14—C19—C18—C171.9 (7)C5—N1—C1—C267.6 (3)
C14—C13—C8—O1169.2 (3)C5—N1—C20—C2166.4 (3)
C14—C13—C8—C771.2 (4)C5—N1—C7—C643.7 (3)
C19—C14—C13—C120.5 (5)C5—N1—C7—C884.4 (3)
C19—C14—C13—C8178.6 (3)C25—C24—C23—C220.7 (6)
C19—N2—C11—C120.1 (6)C20—N1—C1—C2171.6 (2)
C19—C18—C17—C162.1 (8)C20—N1—C5—C4171.2 (2)
N2—C19—C18—C17178.8 (5)C20—N1—C7—C6167.1 (2)
C12—C13—C8—O111.7 (4)C20—N1—C7—C839.0 (3)
C12—C13—C8—C7107.9 (3)C20—C21—C26—C25178.7 (3)
C6—C3—C4—C550.4 (4)C20—C21—C22—C23178.1 (3)
C6—C7—C8—O167.1 (3)C9—C2—C3—C661.9 (3)
C6—C7—C8—C1355.1 (3)C9—C2—C3—C4179.6 (3)
C2—C3—C4—C567.9 (3)C9—C2—C1—N1111.5 (3)
C3—C6—C7—N121.9 (3)C11—C12—C13—C142.0 (5)
C3—C6—C7—C8151.6 (3)C11—C12—C13—C8177.1 (3)
C3—C2—C1—N114.5 (4)C7—N1—C1—C252.1 (3)
C3—C2—C9—C10119.5 (4)C7—N1—C5—C465.2 (3)
C1—N1—C5—C450.6 (3)C7—N1—C20—C21169.5 (2)
C1—N1—C20—C2153.2 (3)C7—C6—C3—C245.7 (3)
C1—N1—C7—C673.9 (3)C7—C6—C3—C472.5 (3)
C1—N1—C7—C8158.0 (2)C18—C19—N2—C11177.5 (4)
C1—C2—C3—C666.9 (3)C16—C15—C14—C191.1 (6)
C1—C2—C3—C450.8 (3)C16—C15—C14—C13179.1 (4)
C1—C2—C9—C104.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Br10.73 (5)2.45 (5)3.149 (3)162 (5)
C15—H15···Br1i0.932.903.644 (4)137
C12—H12···O10.932.392.739 (5)102
C6—H6A···O10.972.582.967 (4)104
C2—H2···Br1ii0.982.833.779 (3)164
C26—H26···Br1i0.932.873.738 (4)155
C5—H5A···O10.972.363.024 (4)125
C20—H20A···Br1i0.972.913.800 (3)153
C20—H20B···O10.972.643.198 (4)117
C10—H10A···Br1i0.933.023.943 (4)172
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z.
(R)-[(2S,4S,5R)-1-Benzyl-5-ethenyl-1-azoniabicyclo[2.2.2]octan-2-yl](quinolin-4-yl)methanol bromide sesquihydrate (II) top
Crystal data top
2C26H29N2O+·2Br·3H2ODx = 1.409 Mg m3
Mr = 984.89Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 19124 reflections
a = 9.9254 (2) Åθ = 1.7–28.6°
c = 47.1267 (14) ŵ = 1.80 mm1
V = 4642.6 (2) Å3T = 173 K
Z = 4Block, colorless
F(000) = 20560.52 × 0.36 × 0.36 mm
Data collection top
XtaLABmini
diffractometer
3919 reflections with I > 2σ(I)
ω scansRint = 0.078
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
θmax = 25.1°, θmin = 1.7°
Tmin = 0.281, Tmax = 1.000h = 1111
36339 measured reflectionsk = 1111
4154 independent reflectionsl = 5656
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + 19.0784P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.35 e Å3
4154 reflectionsΔρmin = 0.40 e Å3
297 parametersAbsolute structure: Flack x determined using 1347 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.005 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.35481 (9)0.04938 (9)0.45637 (2)0.0479 (2)
O10.7691 (5)0.4108 (5)0.40753 (10)0.0320 (12)
H10.771 (8)0.440 (8)0.3897 (17)0.048*
O20.2790 (7)0.0285 (6)0.39240 (11)0.0490 (16)
H2A0.291 (10)0.117 (10)0.3911 (19)0.074*
H2B0.314 (10)0.004 (10)0.406 (2)0.074*
N10.7332 (6)0.2070 (5)0.45114 (11)0.0252 (12)
N20.3561 (6)0.6995 (5)0.39911 (11)0.0303 (13)
C140.3953 (6)0.4566 (7)0.40458 (12)0.0235 (14)
C190.3097 (7)0.5689 (7)0.39967 (13)0.0264 (15)
C150.3366 (7)0.3281 (6)0.40504 (12)0.0255 (14)
H150.3925460.2515580.4078420.031*
C210.7978 (7)0.0296 (7)0.43689 (13)0.0272 (15)
C80.6369 (6)0.3692 (7)0.41379 (12)0.0243 (14)
H80.6125130.2923450.4010810.029*
C180.1705 (7)0.5476 (8)0.39555 (13)0.0344 (16)
H180.1131630.6223470.3920300.041*
C130.5362 (7)0.4828 (6)0.40935 (12)0.0238 (14)
C70.6324 (7)0.3211 (6)0.44467 (11)0.0222 (13)
H70.5401220.2839090.4480280.027*
C260.7495 (7)0.1293 (7)0.45498 (14)0.0327 (15)
H260.6605240.1237640.4623390.039*
C120.5777 (7)0.6140 (7)0.40851 (13)0.0276 (15)
H120.6703260.6347440.4110660.033*
C30.7655 (7)0.4006 (7)0.48738 (13)0.0293 (16)
H30.7787200.4758960.5012100.035*
C20.7276 (7)0.2713 (7)0.50314 (13)0.0293 (16)
H20.8081280.2428610.5144090.035*
C10.6996 (7)0.1598 (7)0.48123 (12)0.0271 (15)
H1A0.7543310.0794210.4858690.033*
H1B0.6033870.1337910.4821760.033*
C160.2012 (7)0.3101 (7)0.40157 (14)0.0307 (16)
H160.1634990.2222220.4025250.037*
C110.4857 (8)0.7178 (7)0.40396 (14)0.0325 (17)
H110.5184500.8076690.4043810.039*
C50.8787 (7)0.2519 (7)0.45190 (14)0.0301 (15)
H5A0.9098470.2718570.4323930.036*
H5B0.9354070.1784190.4596120.036*
C170.1177 (7)0.4223 (8)0.39656 (14)0.0347 (17)
H170.0236620.4098230.3938690.042*
C60.6538 (8)0.4363 (7)0.46649 (13)0.0304 (15)
H6A0.6777620.5203180.4563480.036*
H6B0.5689480.4523970.4769950.036*
C40.8939 (7)0.3778 (7)0.47045 (14)0.0340 (17)
H4A0.9709450.3662480.4835580.041*
H4B0.9120260.4571670.4583080.041*
C90.6149 (9)0.2958 (7)0.52372 (14)0.0383 (18)
H90.6392170.3424630.5405500.046*
C200.7142 (7)0.0920 (6)0.43043 (12)0.0279 (15)
H20A0.6180000.0655750.4303940.034*
H20B0.7368320.1241690.4111240.034*
C240.9589 (9)0.2483 (8)0.45077 (19)0.052 (2)
H241.0136320.3235430.4555130.062*
C220.9260 (8)0.0440 (8)0.42540 (16)0.0422 (19)
H220.9584300.0215890.4124060.051*
C250.8320 (9)0.2368 (7)0.46221 (14)0.043 (2)
H250.8004830.3030180.4751710.052*
C100.4874 (9)0.2619 (8)0.52178 (15)0.042 (2)
H10A0.4558520.2148970.5055200.051*
H10B0.4267180.2842600.5366330.051*
C231.0070 (9)0.1520 (9)0.43257 (19)0.051 (2)
H231.0953070.1594060.4249490.062*
O31.0704 (8)0.0704 (8)0.5000000.068 (3)
H3A1.074 (12)0.139 (11)0.512 (2)0.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0629 (6)0.0556 (5)0.0251 (3)0.0257 (4)0.0098 (4)0.0106 (4)
O10.024 (2)0.046 (3)0.026 (2)0.002 (2)0.001 (2)0.012 (2)
O20.089 (5)0.029 (3)0.029 (3)0.007 (3)0.015 (3)0.005 (2)
N10.032 (3)0.023 (3)0.021 (3)0.001 (2)0.003 (2)0.000 (2)
N20.042 (4)0.026 (3)0.022 (3)0.006 (3)0.004 (3)0.005 (2)
C140.031 (4)0.030 (4)0.010 (3)0.004 (3)0.002 (2)0.000 (3)
C190.034 (4)0.028 (4)0.017 (3)0.006 (3)0.003 (3)0.001 (3)
C150.033 (4)0.027 (4)0.016 (3)0.002 (3)0.001 (3)0.000 (3)
C210.037 (4)0.029 (4)0.015 (3)0.005 (3)0.001 (3)0.000 (3)
C80.026 (3)0.031 (4)0.015 (3)0.001 (3)0.000 (3)0.005 (3)
C180.032 (4)0.041 (4)0.030 (3)0.015 (4)0.002 (3)0.001 (3)
C130.031 (4)0.026 (4)0.014 (3)0.001 (3)0.001 (3)0.001 (2)
C70.029 (4)0.028 (4)0.010 (3)0.002 (3)0.002 (3)0.001 (2)
C260.041 (4)0.028 (4)0.030 (3)0.004 (3)0.001 (3)0.001 (3)
C120.033 (4)0.029 (4)0.020 (3)0.002 (3)0.001 (3)0.004 (3)
C30.041 (4)0.026 (4)0.021 (3)0.003 (3)0.009 (3)0.000 (3)
C20.043 (4)0.026 (4)0.019 (3)0.002 (3)0.010 (3)0.000 (3)
C10.041 (4)0.027 (4)0.014 (3)0.001 (3)0.003 (3)0.002 (3)
C160.034 (4)0.035 (4)0.023 (3)0.004 (3)0.001 (3)0.002 (3)
C110.049 (5)0.025 (4)0.024 (3)0.003 (3)0.003 (3)0.007 (3)
C50.027 (4)0.034 (4)0.028 (3)0.001 (3)0.004 (3)0.006 (3)
C170.027 (4)0.046 (5)0.031 (4)0.004 (3)0.006 (3)0.000 (3)
C60.045 (4)0.026 (3)0.021 (3)0.002 (3)0.004 (3)0.001 (3)
C40.039 (4)0.032 (4)0.031 (4)0.007 (3)0.006 (3)0.009 (3)
C90.060 (6)0.033 (4)0.022 (3)0.003 (4)0.001 (3)0.008 (3)
C200.042 (4)0.026 (4)0.016 (3)0.005 (3)0.004 (3)0.000 (3)
C240.048 (5)0.028 (4)0.078 (6)0.010 (4)0.021 (5)0.014 (4)
C220.052 (5)0.032 (4)0.042 (4)0.000 (4)0.013 (4)0.000 (4)
C250.076 (6)0.024 (4)0.029 (4)0.003 (4)0.015 (4)0.002 (3)
C100.063 (6)0.041 (4)0.023 (4)0.003 (4)0.011 (3)0.004 (3)
C230.042 (5)0.040 (5)0.072 (6)0.005 (4)0.006 (4)0.013 (5)
O30.068 (4)0.068 (4)0.068 (7)0.018 (6)0.006 (4)0.006 (4)
Geometric parameters (Å, º) top
O1—H10.89 (8)C3—C61.524 (9)
O1—C81.406 (8)C3—C41.521 (10)
O2—H2A0.88 (10)C2—H21.0000
O2—H2B0.75 (9)C2—C11.539 (9)
N1—C71.541 (8)C2—C91.501 (10)
N1—C11.530 (8)C1—H1A0.9900
N1—C51.512 (8)C1—H1B0.9900
N1—C201.514 (8)C16—H160.9500
N2—C191.376 (9)C16—C171.409 (10)
N2—C111.319 (9)C11—H110.9500
C14—C191.421 (9)C5—H5A0.9900
C14—C151.402 (9)C5—H5B0.9900
C14—C131.440 (9)C5—C41.533 (9)
C19—C181.411 (10)C17—H170.9500
C15—H150.9500C6—H6A0.9900
C15—C161.366 (10)C6—H6B0.9900
C21—C261.391 (9)C4—H4A0.9900
C21—C201.496 (9)C4—H4B0.9900
C21—C221.390 (10)C9—H90.9500
C8—H81.0000C9—C101.312 (11)
C8—C131.521 (9)C20—H20A0.9900
C8—C71.532 (7)C20—H20B0.9900
C18—H180.9500C24—H240.9500
C18—C171.350 (11)C24—C251.375 (12)
C13—C121.367 (9)C24—C231.370 (12)
C7—H71.0000C22—H220.9500
C7—C61.553 (8)C22—C231.382 (12)
C26—H260.9500C25—H250.9500
C26—C251.388 (10)C10—H10A0.9500
C12—H120.9500C10—H10B0.9500
C12—C111.393 (9)C23—H230.9500
C3—H31.0000O3—H3A0.90 (10)
C3—C21.530 (9)O3—H3Ai0.90 (10)
C8—O1—H1109 (5)N1—C1—H1A109.4
H2A—O2—H2B108 (9)N1—C1—H1B109.4
C1—N1—C7105.5 (5)C2—C1—H1A109.4
C5—N1—C7114.1 (5)C2—C1—H1B109.4
C5—N1—C1106.0 (5)H1A—C1—H1B108.0
C5—N1—C20110.9 (5)C15—C16—H16120.1
C20—N1—C7110.2 (5)C15—C16—C17119.7 (7)
C20—N1—C1109.8 (5)C17—C16—H16120.1
C11—N2—C19116.9 (6)N2—C11—C12124.4 (7)
C19—C14—C13117.7 (6)N2—C11—H11117.8
C15—C14—C19117.9 (6)C12—C11—H11117.8
C15—C14—C13124.4 (6)N1—C5—H5A109.6
N2—C19—C14122.8 (6)N1—C5—H5B109.6
N2—C19—C18117.8 (6)N1—C5—C4110.3 (5)
C18—C19—C14119.4 (6)H5A—C5—H5B108.1
C14—C15—H15119.1C4—C5—H5A109.6
C16—C15—C14121.7 (6)C4—C5—H5B109.6
C16—C15—H15119.1C18—C17—C16120.4 (7)
C26—C21—C20120.5 (6)C18—C17—H17119.8
C22—C21—C26118.8 (7)C16—C17—H17119.8
C22—C21—C20120.7 (6)C7—C6—H6A109.5
O1—C8—H8108.9C7—C6—H6B109.5
O1—C8—C13111.5 (5)C3—C6—C7110.9 (5)
O1—C8—C7108.5 (5)C3—C6—H6A109.5
C13—C8—H8108.9C3—C6—H6B109.5
C13—C8—C7110.0 (5)H6A—C6—H6B108.1
C7—C8—H8108.9C3—C4—C5109.8 (6)
C19—C18—H18119.5C3—C4—H4A109.7
C17—C18—C19120.9 (7)C3—C4—H4B109.7
C17—C18—H18119.5C5—C4—H4A109.7
C14—C13—C8121.7 (6)C5—C4—H4B109.7
C12—C13—C14117.4 (6)H4A—C4—H4B108.2
C12—C13—C8120.8 (6)C2—C9—H9115.4
N1—C7—H7107.0C10—C9—C2129.2 (7)
N1—C7—C6108.7 (5)C10—C9—H9115.4
C8—C7—N1113.5 (5)N1—C20—H20A108.7
C8—C7—H7107.0N1—C20—H20B108.7
C8—C7—C6113.3 (5)C21—C20—N1114.1 (5)
C6—C7—H7107.0C21—C20—H20A108.7
C21—C26—H26120.2C21—C20—H20B108.7
C25—C26—C21119.6 (7)H20A—C20—H20B107.6
C25—C26—H26120.2C25—C24—H24119.8
C13—C12—H12119.6C23—C24—H24119.8
C13—C12—C11120.8 (7)C23—C24—C25120.4 (7)
C11—C12—H12119.6C21—C22—H22119.4
C2—C3—H3110.1C23—C22—C21121.1 (8)
C6—C3—H3110.1C23—C22—H22119.4
C6—C3—C2109.3 (6)C26—C25—H25119.7
C4—C3—H3110.1C24—C25—C26120.5 (7)
C4—C3—C2109.6 (6)C24—C25—H25119.7
C4—C3—C6107.8 (5)C9—C10—H10A120.0
C3—C2—H2107.4C9—C10—H10B120.0
C3—C2—C1108.8 (5)H10A—C10—H10B120.0
C1—C2—H2107.4C24—C23—C22119.4 (8)
C9—C2—C3111.1 (6)C24—C23—H23120.3
C9—C2—H2107.4C22—C23—H23120.3
C9—C2—C1114.5 (6)H3A—O3—H3Ai110 (10)
N1—C1—C2111.2 (5)
O1—C8—C13—C14157.9 (5)C26—C21—C20—N188.3 (8)
O1—C8—C13—C1219.2 (8)C26—C21—C22—C232.6 (11)
O1—C8—C7—N156.9 (7)C3—C2—C1—N16.4 (8)
O1—C8—C7—C667.7 (7)C3—C2—C9—C10105.2 (9)
N1—C7—C6—C30.5 (7)C2—C3—C6—C759.5 (7)
N1—C5—C4—C312.3 (7)C2—C3—C4—C552.0 (7)
N2—C19—C18—C17178.3 (6)C1—N1—C7—C8172.1 (5)
C14—C19—C18—C170.8 (10)C1—N1—C7—C660.9 (6)
C14—C15—C16—C171.9 (10)C1—N1—C5—C466.9 (6)
C14—C13—C12—C111.7 (9)C1—N1—C20—C2158.1 (7)
C19—N2—C11—C122.4 (10)C1—C2—C9—C1018.5 (12)
C19—C14—C15—C161.5 (9)C11—N2—C19—C141.3 (9)
C19—C14—C13—C8177.9 (5)C11—N2—C19—C18177.7 (6)
C19—C14—C13—C120.7 (8)C5—N1—C7—C871.9 (6)
C19—C18—C17—C160.4 (10)C5—N1—C7—C655.1 (6)
C15—C14—C19—N2179.2 (6)C5—N1—C1—C256.0 (7)
C15—C14—C19—C180.2 (9)C5—N1—C20—C2158.7 (7)
C15—C14—C13—C83.5 (9)C6—C3—C2—C155.6 (7)
C15—C14—C13—C12179.3 (6)C6—C3—C2—C971.4 (7)
C15—C16—C17—C180.9 (10)C6—C3—C4—C566.8 (7)
C21—C26—C25—C242.6 (11)C4—C3—C2—C162.2 (7)
C21—C22—C23—C241.6 (13)C4—C3—C2—C9170.8 (6)
C8—C13—C12—C11178.9 (6)C4—C3—C6—C759.5 (7)
C8—C7—C6—C3127.6 (6)C9—C2—C1—N1131.5 (6)
C13—C14—C19—N20.5 (9)C20—N1—C7—C853.6 (7)
C13—C14—C19—C18178.6 (6)C20—N1—C7—C6179.4 (5)
C13—C14—C15—C16177.1 (6)C20—N1—C1—C2175.9 (5)
C13—C8—C7—N1179.2 (5)C20—N1—C5—C4173.9 (5)
C13—C8—C7—C654.6 (7)C20—C21—C26—C25175.7 (6)
C13—C12—C11—N22.7 (10)C20—C21—C22—C23176.1 (7)
C7—N1—C1—C265.4 (6)C22—C21—C26—C253.1 (10)
C7—N1—C5—C448.7 (7)C22—C21—C20—N190.4 (8)
C7—N1—C20—C21173.9 (5)C25—C24—C23—C221.1 (13)
C7—C8—C13—C1481.6 (7)C23—C24—C25—C261.6 (12)
C7—C8—C13—C12101.3 (7)
Symmetry code: (i) y+1, x1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.89 (8)1.75 (8)2.629 (7)168 (8)
O2—H2A···N2iii0.88 (10)1.97 (10)2.824 (8)161 (9)
O2—H2B···Br10.75 (9)2.48 (9)3.202 (5)160 (10)
C15—H15···Br10.953.073.679 (6)124
C15—H15···O20.953.093.634 (9)118
C7—H7···Br11.002.993.894 (6)151
C12—H12···O10.952.442.771 (8)101
C12—H12···O2ii0.952.943.236 (9)100
C3—H3···Br1iv1.003.563.895 (6)102
C2—H2···Br1iv1.002.983.811 (7)142
C2—H2···O31.003.193.946 (8)134
C1—H1A···O30.993.213.888 (9)127
C1—H1B···Br10.992.883.779 (7)152
C16—H16···O1v0.953.293.608 (9)102
C16—H16···O20.952.783.475 (9)131
C11—H11···O2vi0.952.933.293 (9)104
C5—H5A···O10.992.292.836 (8)114
C5—H5B···O30.992.563.464 (6)151
C17—H17···O1vii0.952.613.500 (8)157
C17—H17···O2v0.953.193.973 (10)140
C6—H6A···O10.992.703.016 (8)99
C4—H4A···Br1iv0.992.943.785 (7)144
C4—H4A···O30.993.193.784 (8)120
C4—H4B···O10.992.823.230 (8)106
C9—H9···N2viii0.952.913.780 (9)153
C20—H20A···Br10.992.893.794 (7)152
C20—H20B···O10.992.873.387 (8)114
C22—H22···O2ix0.953.363.837 (11)114
C10—H10A···Br10.953.013.960 (8)176
C23—H23···O2ix0.952.713.518 (11)143
O3—H3A···Br1iv0.90 (10)2.61 (10)3.499 (6)170 (11)
Symmetry codes: (ii) x+1/2, y+1/2, z+3/4; (iii) x, y1, z; (iv) y+1, x, z+1; (v) x1/2, y+1/2, z+3/4; (vi) x, y+1, z; (vii) x1, y, z; (viii) y, x, z+1; (ix) x+1, y, z.
 

Funding information

Funding for this research was provided by: National Science Foundation, Major Research Instrumentation Program (award No. 1125975 to St. Catherine University); St. Catherine University, Collaborative Undergraduate Research Program, Summer Scholars (grant to D. Janzen, M. Butler).

References

First citationBencivenni, G., Illera, D. S., Moccia, M., Houk, K. N., Izzo, J. A., Novacek, J., Grieco, P., Vetticatt, M. J., Waser, M. & Adamo, M. F. A. (2021). Chem. Eur. J. 27, 11352–11366.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDenmark, S. E. & Cullen, L. R. (2015). J. Org. Chem. 80, 11818–11848.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDing, K., Wang, Y., Yun, H., Liu, J., Wu, Y., Terada, M., Okubo, Y. & Mikami, K. (1999). Chem. Eur. J. 5, 1734–1737.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrantz, R., Pinto, A., Constant, S., Bernardinelli, G. & Lacour, J. (2005). Angew. Chem. Int. Ed. 44, 5060–5064.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJew, S.-S., Yoo, M.-S., Jeong, B.-S., Park, Y. & Park, H.-G. (2002). Org. Lett. 4, 4245–4248.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKawai, H., Kusuda, A., Nakamura, S., Shiro, M. & Shibata, N. (2009). Angew. Chem. Int. Ed. 48, 6324–6327.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoccia, M., Cortigiani, M., Monasterolo, C., Torri, F., Del Fiandra, C., Fuller, G., Kelly, B. & Adamo, M. F. A. (2015). Org. Process Res. Dev. 19, 1274–1281.  Web of Science CrossRef CAS Google Scholar
First citationO'Donnell, M. J., Bennett, W. D. & Wu, S. (1989). J. Am. Chem. Soc. 111, 2353–2355.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkórska-Stania, A., Jezierska-Zięba, M., Kąkol, B., Fedoryński, M. & Oleksyn, B. J. (2012). Acta Cryst. E68, o2803–o2804.  CSD CrossRef IUCr Journals Google Scholar
First citationSweetman, B. A., Müller-Bunz, H. & Guiry, P. J. (2005). Tetrahedron Lett. 46, 4643–4646.  Web of Science CSD CrossRef CAS Google Scholar
First citationWalsh, M. P., Phelps, J. M., Lennon, M. E., Yufit, D. S. & Kitching, M. O. (2021). Nature, 597, 70–76.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, W., Wu, S., Zhang, Z., Yennawar, H. & Zhang, X. (2006). Org. Biomol. Chem. 4, 4474–4477.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds