research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido­(4-methyl­aniline-κN)[N-(4-methyl­phen­yl)-1-(thio­phen-2-yl)methanimine-κN]palladium(II)

crossmark logo

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and bDepartment of Chemistry, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, Uttar Pradesh 226017, India
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 19 April 2022; accepted 9 May 2022; online 17 May 2022)

The structure of a mono-amine PdII complex, [PdCl2(C7H9N)(C12H11NS)], which crystallizes in the triclinic space group, P[\overline{1}], is reported. The primary geometry around the PdII atom closely resembles square planar (τ4′ = 0.069). In the (E)-1-(thio­phen-2-yl)-N-(p-tol­yl)methanimine ligand, the phenyl and thio­phene rings are not coplanar, subtending a dihedral angle of 38.5 (1)° because of steric effects. The PdCl2N2 coordination plane is almost perpendicular to the planes of the coordinated o-toluidine and the NC2 fragment [dihedral angles of 84.7 (1) and 72.50 (4)°, respectively]. The Pd—NH2 length of 2.040 (2) Å is slightly shorter than the observed mean value for other complexes involving a Pd atom attached to the nitro­gen of an aniline derivative. The mol­ecules display an inter­esting supra­molecular synthon based on reciprocal inter­molecular N–H⋯Cl hydrogen-bonding inter­actions of the p-toluidine amine fragment, which results in centrosymmetric dimeric units. These units are further linked by C—H⋯Cl inter­actions, resulting in chains in the c-axis direction where the mean-planes of the repeating fragment are oriented in the (110) plane.

1. Chemical context

The chemistry of monodentate mono-amine PdII compounds with amine ligands is of inter­est because the hydrogen bond between the amine and the catalyst plays a key role in the catalytic transformation of simple, easily accessible amines into highly substituted, biologically important amine-containing mol­ecules and pharmaceutical agents (Calleja et al., 2015[Calleja, J., Pla, D., Gorman, T. W., Domingo, V., Haffemayer, B. & Gaunt, M. J. (2015). Nat. Chem. 7, 1009-1016.]). While mono-amine PdII complexes are generally unstable and are formed as inter­mediates during the reaction, the corresponding bis­(amine) PdII complex is stable and ultimately hampers the utility of these compounds in the C—H activation reaction. Probably because of this, well-characterized mono-amine PdII complexes are relatively rare. In this article we report a well-characterized and room-temperature-stable mono-amine PdII complex.

[Scheme 1]

2. Structural commentary

In the Schiff base ligand HL1 used [HL1 = (E)-1-(thio­phen-2-yl)-N-(p-tol­yl)methanimine and L2 = p-toluidine], we expected that the ortho proton of the tolyl ring of HL1 could be acidic and thus could be employed for a metallation reaction. Ding and coworkers (Ding et al., 1992[Ding, K., Wu, J., Hu, H., Shen, J. & Wang, X. (1992). Organometallics, 11, 3849-3856.]) have reported a series of mercuration reactions on similar Schiff base ligands through electrophilic substitution reactions. On the basis of these observations, we also envisaged that a palladation reaction should take place at the ortho position of the tolyl ring in the Schiff base ligand. To investigate this C—H activation step, we attempted to prepare the complex PdL1L2Cl. However, when we treated 2-thio­phene­carboxaldehyde with two equivalents of p-toluidine in the presence of Na2PdCl4 in ethanol solvent at 343 K, none of the expected palladated mol­ecules, PdL1Cl or PdL1L2Cl were observed, and instead we directly isolated the corresponding mono-amine PdII complex Pd(HL1)L2Cl2,1, as red needles in good yield along with a small amount of a yellow solid. The isolated solid was not soluble in common organic solvents. The filtrate of the reaction mixture was allowed to evaporate at room temperature and afforded red needles of a mono-amine PdII complex. In the FTIR spectra, the C=N stretching frequency in the Pd complex shifts to lower values (1611 cm−1) with somewhat weaker intensity in comparison to those of the corresponding free ligand (1615 cm−1). Two singlets were also observed at 3777 and 3696 cm−1 for the asymmetric and symmetric N—H stretching frequencies, respectively, in the Pd complex. Both frequencies shift to longer wavelengths with weaker intensity in comparison to free p-toluidine (3421 and 3338 cm−1 for N—H) as a result of the presence of strong N—H⋯Cl hydrogen-bonding inter­actions. This observation was further supported by single-crystal X-ray studies.

Not only does this result contrast with those found for other Schiff base compounds (Dubey et al., 2019[Dubey, P., Gupta, S. & Singh, A. K. (2019). Organometallics, 38, 944-961.]), which readily form a stable palladated complex, but this reaction is also a relatively rare example of a mono-amine PdII complex. A search of the Cambridge Structural Database (CSD, version 5.43, update of November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures containing a Pd(NH2-phenyl derivative)Cl2 fragment gave 51 hits, of which 30 were bis­(amine)PdCl2 moieties and among these was the complex Pd(p-toluidine)2Cl2 (YOYWOB; Tay, 2019[Tay, M. G. (2019). CSD Communication (refcode YOYWOB). CCDC, Cambridge, England.]) which is relevant for comparison with the title compound. Of the remaining 21, 11 contained the NH2 group as part of a chelate ring and only 10 contained a monodentate mono-amine PdCl2 complex (BOCTIX, Hadzovic et al., 2008[Hadzovic, A., Janetzko, J. & Song, D. (2008). Dalton Trans. pp. 3279-3281.]; HIPDEP, Vicente et al., 1998[Vicente, J., Arcas, A., Blasco, M.-A., Lozano, J. & Ramírez de Arellano, M. C. (1998). Organometallics, 17, 5374-5383.]; KASNAU, Asma et al., 2005[Asma, M., Kaminsky, W. & Badshah, A. (2005). Acta Cryst. E61, m1797-m1798.]; OCATEV, OCATIZ, Xia et al., 2021[Xia, Q., Shi, S., Gao, P., Lalancette, R., Szostak, R. & Szostak, M. (2021). J. Org. Chem. 86, 15648-15657.]; OCEPOE, Asma & Kaminsky, 2017[Asma, M. & Kaminsky, W. (2017). CSD Communication (refcode OCEPOE). CCDC, Cambridge, England.]; XEKFEZ, Randell et al., 2006[Randell, K., Stanford, M. J., Clarkson, G. J. & Rourke, J. P. (2006). J. Organomet. Chem. 691, 3411-3415.]; XIYLOG, Liu et al., 2002[Liu, X., Ong, T. K. W., Selvaratnam, S., Vittal, J. J., White, A. J. P., Williams, D. J. & Leung, P.-H. (2002). J. Organomet. Chem. 643-644, 4-11.]; XORVIM, Hu et al., 2019[Hu, H., Vasiliu, M., Stein, T. H., Qu, F., Gerlach, D. L., Dixon, D. A. & Shaughnessy, K. H. (2019). Inorg. Chem. 58, 13299-13313.]; and YELMOS, Asma et al., 2006[Asma, M., Badshah, A., Ali, S., Sohail, M., Fettouhi, M., Ahmad, S. & Malik, A. (2006). Transition Met. Chem. 31, 556-559.]). One of these structures (HIPDEP; Vicente et al., 1998[Vicente, J., Arcas, A., Blasco, M.-A., Lozano, J. & Ramírez de Arellano, M. C. (1998). Organometallics, 17, 5374-5383.]) is particularly relevant as it contains an sp2 C donor attached to a PdCl2(o-toluidine) fragment where the major difference with the present structure is the substitution of the sp2 C for sp2 N.

An ORTEP view of the mol­ecular structure of Pd(HL1)L2Cl2, 1, is shown in Fig. 1[link] and selected bond lengths and bond angles are given in Table 1[link]. This mono-amine PdII complex crystallizes in the triclinic space group, P[\overline{1}]. The primary geometry around the PdII atom closely resembles square planar (τ4′ = 0.069, where 0 = square planar and 1 = tetra­hedral; Okuniewski et al., 2015[Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47-57.]). In the (E)-1-(thio­phen-2-yl)-N-(p-tol­yl)methanimine ligand, the phenyl and thio­phene rings are not coplanar because of the steric clash of the hydrogen atoms attached to C5 and C7, exhibiting a dihedral angle of 38.5 (1)°. In addition, the coordination plane (Pd1, Cl1, Cl2, N1, and N2) is almost perpendicular to both the planes of the coordinated o-toluidine ring and the C5, C6, N1 fragment [dihedral angles of 84.7 (1) and 72.50 (4)°, respectively]. A search of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures containing a Pd(NH2-phenyl derivative)Cl2 fragment contained 90 observations of the Pd—NH2 bond with a mean value of 2.065 (35) Å and minimum and maximum values of 2.028 Å (Baldovino-Pantaleón et al., 2007[Baldovino-Pantaleón, O., Morales-Morales, D., Hernández-Ortega, S., Toscano, R. A. & Valdés-Martínez, J. (2007). Cryst. Growth Des. 7, 117-123.]) and 2.171 Å (Asma et al., 2005[Asma, M., Kaminsky, W. & Badshah, A. (2005). Acta Cryst. E61, m1797-m1798.]), respectively. Thus, the length of 2.040 (2) Å in the title compound is slightly shorter than the observed mean value.

Table 1
Selected geometric parameters (Å, °)

Pd1—N1 2.015 (2) Pd1—Cl2 2.3082 (7)
Pd1—N2 2.040 (2) S1—C1 1.702 (3)
Pd1—Cl1 2.3067 (7) S1—C4 1.721 (3)
       
N1—Pd1—N2 176.02 (9) N2—Pd1—Cl2 91.00 (7)
N1—Pd1—Cl1 90.55 (6) Cl1—Pd1—Cl2 174.53 (2)
N2—Pd1—Cl1 86.64 (7) C1—S1—C4 91.29 (14)
N1—Pd1—Cl2 92.04 (6)    
[Figure 1]
Figure 1
Mol­ecular structure of Pd(HL1)L2Cl2 showing the atom-numbering scheme. Atomic displacement parameters are at the 30% probability level.

A related structure (HIPDEP; Vicente et al., 1998[Vicente, J., Arcas, A., Blasco, M.-A., Lozano, J. & Ramírez de Arellano, M. C. (1998). Organometallics, 17, 5374-5383.]) contains an sp2 C donor attached to a PdCl2(o-toluidine) fragment where the major differences with the present structure are the substitution of the sp2 C atom for sp2 N, and the fact that there are cis Cl donors, which leads to a substantial trans effect involving the Pd—Cl distances. In this structure, the Pd—NH2 distance is 2.076 (2) Å. The other related structure (Tay, 2019[Tay, M. G. (2019). CSD Communication (refcode YOYWOB). CCDC, Cambridge, England.]) is trans-Pd(o-toluidine)2Cl2 in which the Pd—NH2 distance is 2.050 (3) Å.

3. Supra­molecular features

The mol­ecules display an inter­esting supra­molecular synthon in the crystal. This synthon is based on reciprocal inter­molecular N—H⋯Cl hydrogen-bonding inter­actions (Table 2[link]) of the p-toluidine amine fragment and results in centrosymmetric dimeric units (Fig. 2[link]). These units are further linked by inter­molecular C—H⋯Cl inter­actions, resulting in chains in the c-axis direction where the mean-planes of the repeating fragment are oriented in the (110) plane.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N2⋯Cl2i 0.85 (2) 2.45 (2) 3.273 (2) 163 (2)
C2—H2A⋯Cl1ii 0.95 2.97 3.779 (3) 144
C5—H5A⋯Cl1iii 0.95 2.98 3.759 (3) 140
C7—H7A⋯Cl1iii 0.95 2.80 3.629 (3) 147
C11—H11A⋯Cl2 0.95 2.96 3.711 (3) 137
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) x+1, y, z; (iii) [-x+1, -y+1, -z+2].
[Figure 2]
Figure 2
Packing diagram for Pd(HL1)L2Cl2 showing the inter­molecular N—H⋯Cl hydrogen-bonding inter­actions of the p-toluidine amine fragment resulting in centrosymmetric dimeric units that are further linked by inter­molecular C—H⋯Cl inter­actions, resulting in chains in the c-axis direction where the mean planes of the repeating fragment are oriented in the (110) plane.

4. Synthesis and crystallization

A solution of 2-thio­phene­carboxaldehyde (0.50 ml, 5 mmol) and 2 equivalent of p-toluidine (1.07 g, 10 mmol) in 20 ml of freshly distilled ethanol was allowed to stir at room temperature for 1 h. Then Na2PdCl4 (1.47 g, 10 mmol) was added. The reaction mixture was refluxed under stirring at 343 K for 2 h. A small amount of yellow solid gradually separated during the reaction. After stirring for 3 h the solid was filtered off and the filtrate underwent slow evaporation at room temperature to give red needles of (p-CH3C6H4NH2)SbHPdCl2; yield: 0.80 g, 33%, m.p. 533 K. FT–IR (KBr disk, cm−1): 3777 (NH), 3696 (NH), 3406, 2921, 2857, 1611 (CH=N), 1384, 1056, 754. Analysis calculated for C19H20N2Cl2PdS: C, 46.98; H, 4.15; N, 5.77. Found: C, 47.10; H, 4.30; N, 6.00%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were fixed geometrically with their Uiso values set to 1.2 times that of the phenyl carbons and 1.5 times that of the methyl group. The hydrogen atoms attached to nitro­gen were refined isotropically.

Table 3
Experimental details

Crystal data
Chemical formula [PdCl2(C7H9N)(C12H11NS)]
Mr 485.73
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.2135 (4), 9.4060 (4), 12.9032 (5)
α, β, γ (°) 79.866 (2), 70.000 (2), 67.753 (2)
V3) 971.17 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.34
Crystal size (mm) 0.21 × 0.16 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.622, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 22977, 7379, 5166
Rint 0.074
(sin θ/λ)max−1) 0.771
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.090, 1.04
No. of reflections 7379
No. of parameters 236
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.75, −1.05
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Dichlorido(4-methylaniline-κN)[N-(4-methylphenyl)-1-(thiophen-2-yl)methanimine-κN]palladium(II) top
Crystal data top
[PdCl2(C7H9N)(C12H11NS)]Z = 2
Mr = 485.73F(000) = 488
Triclinic, P1Dx = 1.661 Mg m3
a = 9.2135 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4060 (4) ÅCell parameters from 7754 reflections
c = 12.9032 (5) Åθ = 2.6–31.6°
α = 79.866 (2)°µ = 1.34 mm1
β = 70.000 (2)°T = 100 K
γ = 67.753 (2)°Prism, red-orange
V = 971.17 (7) Å30.21 × 0.16 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
5166 reflections with I > 2σ(I)
φ and ω scansRint = 0.074
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 33.2°, θmin = 2.6°
Tmin = 0.622, Tmax = 0.747h = 1414
22977 measured reflectionsk = 1414
7379 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0211P)2 + 0.1526P]
where P = (Fo2 + 2Fc2)/3
7379 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.75 e Å3
3 restraintsΔρmin = 1.04 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.53572 (2)0.53405 (2)0.70240 (2)0.01680 (6)
Cl10.33922 (8)0.70208 (8)0.83363 (6)0.02463 (14)
Cl20.71210 (8)0.36598 (7)0.56567 (5)0.02350 (14)
S10.85995 (9)0.55990 (9)0.70536 (6)0.02886 (16)
N10.6002 (3)0.3778 (2)0.82190 (18)0.0176 (4)
N20.4704 (3)0.7036 (3)0.5873 (2)0.0220 (5)
H2N10.377 (3)0.770 (3)0.622 (2)0.032 (9)*
H2N20.444 (3)0.674 (3)0.5400 (19)0.028 (9)*
C11.0173 (4)0.5879 (3)0.7297 (3)0.0305 (7)
H1A1.0764190.6503810.6825050.037*
C21.0496 (3)0.5118 (3)0.8234 (3)0.0298 (7)
H2A1.1333210.5161830.8485890.036*
C30.9467 (3)0.4256 (3)0.8798 (2)0.0198 (5)
H3A0.9526080.3649620.9464240.024*
C40.8334 (3)0.4419 (3)0.8232 (2)0.0197 (5)
C50.7160 (3)0.3650 (3)0.8615 (2)0.0198 (5)
H5A0.7240110.2955420.9241220.024*
C60.4938 (3)0.2900 (3)0.8769 (2)0.0192 (5)
C70.4335 (3)0.2799 (3)0.9911 (2)0.0227 (6)
H7A0.4636770.3294621.0343770.027*
C80.3296 (3)0.1977 (3)1.0415 (2)0.0238 (6)
H8A0.2889410.1911741.1198230.029*
C90.2829 (3)0.1243 (3)0.9811 (2)0.0225 (6)
C100.3476 (3)0.1323 (3)0.8664 (2)0.0258 (6)
H10A0.3202100.0797810.8234030.031*
C110.4510 (3)0.2156 (3)0.8141 (2)0.0240 (6)
H11A0.4924530.2218080.7358260.029*
C120.1631 (3)0.0410 (3)1.0382 (3)0.0301 (7)
H12A0.1901050.0176941.1038150.045*
H12B0.1699580.0293320.9875400.045*
H12C0.0511540.1159551.0602090.045*
C130.5932 (3)0.7750 (3)0.5331 (2)0.0198 (5)
C140.6077 (3)0.8804 (3)0.5877 (2)0.0223 (6)
H14A0.5393420.9036070.6611520.027*
C150.7222 (3)0.9519 (3)0.5351 (2)0.0240 (6)
H15A0.7310071.0250590.5727090.029*
C160.8240 (3)0.9187 (3)0.4286 (2)0.0257 (6)
C170.8092 (4)0.8100 (3)0.3760 (2)0.0287 (6)
H17A0.8783810.7851640.3030240.034*
C180.6952 (3)0.7373 (3)0.4283 (2)0.0253 (6)
H18A0.6878230.6619830.3919480.030*
C190.9476 (4)0.9977 (4)0.3690 (3)0.0348 (7)
H19A0.9389231.0731790.4162890.052*
H19B0.9252151.0500220.3004740.052*
H19C1.0588060.9210280.3514130.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01898 (10)0.01641 (10)0.01739 (10)0.00721 (7)0.00816 (8)0.00119 (7)
Cl10.0253 (3)0.0249 (3)0.0226 (3)0.0071 (3)0.0069 (3)0.0032 (3)
Cl20.0275 (3)0.0217 (3)0.0215 (3)0.0066 (3)0.0086 (3)0.0033 (2)
S10.0309 (4)0.0297 (4)0.0300 (4)0.0159 (3)0.0113 (3)0.0054 (3)
N10.0217 (11)0.0162 (10)0.0173 (11)0.0082 (9)0.0082 (9)0.0017 (8)
N20.0245 (12)0.0213 (12)0.0232 (13)0.0078 (10)0.0127 (11)0.0022 (9)
C10.0253 (15)0.0279 (15)0.0389 (18)0.0150 (12)0.0021 (14)0.0050 (13)
C20.0245 (15)0.0322 (16)0.0368 (18)0.0118 (12)0.0078 (14)0.0103 (13)
C30.0145 (12)0.0182 (12)0.0269 (14)0.0071 (10)0.0031 (11)0.0047 (10)
C40.0219 (13)0.0195 (12)0.0178 (13)0.0081 (10)0.0056 (11)0.0005 (10)
C50.0224 (13)0.0167 (12)0.0198 (13)0.0055 (10)0.0075 (11)0.0003 (10)
C60.0196 (13)0.0165 (12)0.0222 (14)0.0061 (10)0.0089 (11)0.0022 (10)
C70.0232 (14)0.0246 (14)0.0227 (14)0.0104 (11)0.0066 (12)0.0026 (11)
C80.0229 (14)0.0250 (14)0.0215 (14)0.0082 (11)0.0035 (12)0.0024 (11)
C90.0189 (13)0.0171 (12)0.0296 (15)0.0052 (10)0.0069 (12)0.0002 (11)
C100.0300 (15)0.0237 (14)0.0287 (16)0.0128 (12)0.0105 (13)0.0021 (11)
C110.0280 (15)0.0282 (14)0.0194 (14)0.0127 (12)0.0092 (12)0.0007 (11)
C120.0258 (15)0.0242 (14)0.0398 (18)0.0128 (12)0.0059 (14)0.0010 (13)
C130.0224 (13)0.0169 (12)0.0200 (13)0.0059 (10)0.0096 (11)0.0034 (10)
C140.0253 (14)0.0191 (13)0.0202 (14)0.0061 (11)0.0068 (12)0.0013 (10)
C150.0293 (15)0.0194 (13)0.0265 (15)0.0089 (11)0.0127 (13)0.0011 (11)
C160.0211 (13)0.0239 (14)0.0301 (16)0.0059 (11)0.0118 (13)0.0075 (11)
C170.0262 (15)0.0281 (15)0.0234 (15)0.0030 (12)0.0036 (13)0.0030 (12)
C180.0314 (15)0.0232 (14)0.0210 (14)0.0081 (12)0.0080 (13)0.0029 (11)
C190.0290 (16)0.0328 (17)0.0409 (19)0.0140 (13)0.0093 (15)0.0073 (14)
Geometric parameters (Å, º) top
Pd1—N12.015 (2)C8—H8A0.9500
Pd1—N22.040 (2)C9—C101.394 (4)
Pd1—Cl12.3067 (7)C9—C121.507 (4)
Pd1—Cl22.3082 (7)C10—C111.384 (4)
S1—C11.702 (3)C10—H10A0.9500
S1—C41.721 (3)C11—H11A0.9500
N1—C51.291 (3)C12—H12A0.9800
N1—C61.442 (3)C12—H12B0.9800
N2—C131.446 (3)C12—H12C0.9800
N2—H2N10.868 (16)C13—C181.372 (4)
N2—H2N20.848 (16)C13—C141.382 (4)
C1—C21.358 (4)C14—C151.383 (4)
C1—H1A0.9500C14—H14A0.9500
C2—C31.410 (4)C15—C161.384 (4)
C2—H2A0.9500C15—H15A0.9500
C3—C41.417 (4)C16—C171.392 (4)
C3—H3A0.9500C16—C191.509 (4)
C4—C51.429 (3)C17—C181.386 (4)
C5—H5A0.9500C17—H17A0.9500
C6—C71.386 (4)C18—H18A0.9500
C6—C111.388 (4)C19—H19A0.9800
C7—C81.376 (4)C19—H19B0.9800
C7—H7A0.9500C19—H19C0.9800
C8—C91.383 (4)
N1—Pd1—N2176.02 (9)C8—C9—C10118.0 (2)
N1—Pd1—Cl190.55 (6)C8—C9—C12120.7 (3)
N2—Pd1—Cl186.64 (7)C10—C9—C12121.3 (3)
N1—Pd1—Cl292.04 (6)C11—C10—C9121.1 (3)
N2—Pd1—Cl291.00 (7)C11—C10—H10A119.5
Cl1—Pd1—Cl2174.53 (2)C9—C10—H10A119.5
C1—S1—C491.29 (14)C10—C11—C6119.6 (3)
C5—N1—C6118.0 (2)C10—C11—H11A120.2
C5—N1—Pd1124.71 (18)C6—C11—H11A120.2
C6—N1—Pd1116.66 (15)C9—C12—H12A109.5
C13—N2—Pd1113.09 (16)C9—C12—H12B109.5
C13—N2—H2N1112 (2)H12A—C12—H12B109.5
Pd1—N2—H2N1106 (2)C9—C12—H12C109.5
C13—N2—H2N2110 (2)H12A—C12—H12C109.5
Pd1—N2—H2N2113 (2)H12B—C12—H12C109.5
H2N1—N2—H2N2102 (2)C18—C13—C14120.4 (3)
C2—C1—S1113.1 (2)C18—C13—N2120.1 (2)
C2—C1—H1A123.4C14—C13—N2119.5 (2)
S1—C1—H1A123.4C13—C14—C15119.7 (3)
C1—C2—C3113.4 (3)C13—C14—H14A120.1
C1—C2—H2A123.3C15—C14—H14A120.1
C3—C2—H2A123.3C14—C15—C16121.1 (3)
C2—C3—C4110.5 (2)C14—C15—H15A119.4
C2—C3—H3A124.7C16—C15—H15A119.4
C4—C3—H3A124.7C15—C16—C17118.1 (3)
C3—C4—C5122.3 (2)C15—C16—C19121.9 (3)
C3—C4—S1111.66 (19)C17—C16—C19120.0 (3)
C5—C4—S1126.0 (2)C18—C17—C16121.2 (3)
N1—C5—C4128.2 (2)C18—C17—H17A119.4
N1—C5—H5A115.9C16—C17—H17A119.4
C4—C5—H5A115.9C13—C18—C17119.5 (3)
C7—C6—C11119.9 (2)C13—C18—H18A120.3
C7—C6—N1120.8 (2)C17—C18—H18A120.3
C11—C6—N1119.3 (2)C16—C19—H19A109.5
C8—C7—C6119.6 (3)C16—C19—H19B109.5
C8—C7—H7A120.2H19A—C19—H19B109.5
C6—C7—H7A120.2C16—C19—H19C109.5
C7—C8—C9121.8 (3)H19A—C19—H19C109.5
C7—C8—H8A119.1H19B—C19—H19C109.5
C9—C8—H8A119.1
C4—S1—C1—C20.2 (3)C7—C8—C9—C12177.2 (2)
S1—C1—C2—C30.4 (3)C8—C9—C10—C112.2 (4)
C1—C2—C3—C40.4 (3)C12—C9—C10—C11176.6 (3)
C2—C3—C4—C5179.1 (2)C9—C10—C11—C61.2 (4)
C2—C3—C4—S10.3 (3)C7—C6—C11—C100.3 (4)
C1—S1—C4—C30.1 (2)N1—C6—C11—C10179.4 (2)
C1—S1—C4—C5178.9 (3)Pd1—N2—C13—C18102.6 (2)
C6—N1—C5—C4178.6 (2)Pd1—N2—C13—C1476.9 (3)
Pd1—N1—C5—C47.9 (4)C18—C13—C14—C152.1 (4)
C3—C4—C5—N1175.2 (3)N2—C13—C14—C15178.3 (2)
S1—C4—C5—N16.2 (4)C13—C14—C15—C160.6 (4)
C5—N1—C6—C743.1 (3)C14—C15—C16—C170.6 (4)
Pd1—N1—C6—C7128.3 (2)C14—C15—C16—C19178.9 (2)
C5—N1—C6—C11137.2 (3)C15—C16—C17—C180.3 (4)
Pd1—N1—C6—C1151.4 (3)C19—C16—C17—C18179.1 (3)
C11—C6—C7—C80.9 (4)C14—C13—C18—C172.4 (4)
N1—C6—C7—C8178.8 (2)N2—C13—C18—C17178.1 (2)
C6—C7—C8—C90.1 (4)C16—C17—C18—C131.1 (4)
C7—C8—C9—C101.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···Cl2i0.85 (2)2.45 (2)3.273 (2)163 (2)
C2—H2A···Cl1ii0.952.973.779 (3)144
C5—H5A···Cl1iii0.952.983.759 (3)140
C7—H7A···Cl1iii0.952.803.629 (3)147
C11—H11A···Cl20.952.963.711 (3)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+2.
 

Acknowledgements

PS is obliged to the Science and Engineering Research Board, New Delhi, India, for a Teacher Associateship for Research Excellence research grant (Project No. TAR/2021/000075). The authors are grateful to Central Drug Research Institute Lucknow for recording the analytical data.

Funding information

Funding for this research was provided by: Science and Engineering Research Board (award No. SB/FT/CS-036/2012).

References

First citationAsma, M., Badshah, A., Ali, S., Sohail, M., Fettouhi, M., Ahmad, S. & Malik, A. (2006). Transition Met. Chem. 31, 556–559.  Web of Science CSD CrossRef CAS Google Scholar
First citationAsma, M. & Kaminsky, W. (2017). CSD Communication (refcode OCEPOE). CCDC, Cambridge, England.  Google Scholar
First citationAsma, M., Kaminsky, W. & Badshah, A. (2005). Acta Cryst. E61, m1797–m1798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaldovino-Pantaleón, O., Morales-Morales, D., Hernández-Ortega, S., Toscano, R. A. & Valdés-Martínez, J. (2007). Cryst. Growth Des. 7, 117–123.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalleja, J., Pla, D., Gorman, T. W., Domingo, V., Haffemayer, B. & Gaunt, M. J. (2015). Nat. Chem. 7, 1009–1016.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDing, K., Wu, J., Hu, H., Shen, J. & Wang, X. (1992). Organometallics, 11, 3849–3856.  CSD CrossRef CAS Web of Science Google Scholar
First citationDubey, P., Gupta, S. & Singh, A. K. (2019). Organometallics, 38, 944–961.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHadzovic, A., Janetzko, J. & Song, D. (2008). Dalton Trans. pp. 3279–3281.  Web of Science CSD CrossRef Google Scholar
First citationHu, H., Vasiliu, M., Stein, T. H., Qu, F., Gerlach, D. L., Dixon, D. A. & Shaughnessy, K. H. (2019). Inorg. Chem. 58, 13299–13313.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, X., Ong, T. K. W., Selvaratnam, S., Vittal, J. J., White, A. J. P., Williams, D. J. & Leung, P.-H. (2002). J. Organomet. Chem. 643–644, 4–11.  Web of Science CSD CrossRef CAS Google Scholar
First citationOkuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationRandell, K., Stanford, M. J., Clarkson, G. J. & Rourke, J. P. (2006). J. Organomet. Chem. 691, 3411–3415.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTay, M. G. (2019). CSD Communication (refcode YOYWOB). CCDC, Cambridge, England.  Google Scholar
First citationVicente, J., Arcas, A., Blasco, M.-A., Lozano, J. & Ramírez de Arellano, M. C. (1998). Organometallics, 17, 5374–5383.  Web of Science CSD CrossRef CAS Google Scholar
First citationXia, Q., Shi, S., Gao, P., Lalancette, R., Szostak, R. & Szostak, M. (2021). J. Org. Chem. 86, 15648–15657.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds