research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Mixed crystal of bis­­(ammonium/oxonium) tetra­aqua-μ3-fluorido-dodeca­kis­(μ2-tri­fluoro­acetato)octa­hedro-hexa­ytterbiate(III) tetra­hydrate, [(NH4)1–x(H3O)x]2[Yb6F8(O2CCF3)12(H2O)4]·4H2O (x = 1/4), containing a hexa­nuclear ytterbium(III) carboxyl­ate complex with face-capping fluoride ligands and comprising an unusual kind of substitutional disorder

crossmark logo

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material-, und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
*Correspondence e-mail: wfrank@hhu.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 February 2022; accepted 4 May 2022; online 17 May 2022)

The reaction of ytterbium metal with ammonium tri­fluoro­acetate in liquid ammonia resulted in a green substance comprising a substantial amount of ytterbium(II) tri­fluoro­acetate that is a useful precursor for the oxidative synthesis of the new ytterbium(III) compound, [(NH4)1–x(H3O)x]2[Yb6F8(O2CCF3)12(H2O)4]·4H2O (x = 1/4), in aqueous tri­fluoro­acetic acid. This mixed ammonium/oxonium crystalline solid is the first example of a substance containing an octa­hedro-hexa­nuclear ytterbium(III) complex with μ3-face-capping fluorido ligands. The main structural features of its [Yb6F8] core are non-bonding Yb⋯Yb distances and Yb—F bond lengths of 3.7576 (3)–3.9413 (5) and 2.2375 (17)–2.3509 (17) Å, respectively. Yb—O bond lengths involving the O atoms of O,O′-bridging carboxyl­ato ligands and vertex-substituting aqua ligands are in the ranges 2.23 (4)–2.329 (2) and 2.448 (2)–2.544 (3) Å, respectively. These bond lengths are in accordance with expectations, taking into account lanthanoid contraction. Inter­estingly, there is a significant ammonium versus oxonium ion site dependence, not only of the hydrate water mol­ecule positions within the solid's hydrogen-bonding framework, but also of the coordination sites of one carboxyl­ato and one aqua ligand in the hexa­nuclear complex.

1. Chemical context

The stabilizing influence of liquid ammonia as a reaction medium on LnII of certain lanthanoids (Ln) is well known (Warf & Korst, 1956[Warf, J. C. & Korst, W. L. (1956). J. Phys. Chem. 60, 1590-1591.]; Warf, 1970[Warf, J. C. (1970). Angew. Chem. Int. Ed. Engl. 9, 383.]). Selected ytterbium(II) compounds such as bis­(cyclo­penta­dien­yl)ytterbium(II) (Fischer & Fischer, 1965[Fischer, E. O. & Fischer, H. (1965). J. Organomet. Chem. 3, 181-187.]; Hayes & Thomas, 1969[Hayes, R. G. & Thomas, J. L. (1969). Inorg. Chem. 8, 2521-2522.]), ytterbium(II) phosphide (Pytlewsky & Howell, 1967[Pytlewsky, L. L. & Howell, J. K. (1967). Chem. Commun. pp. 1280.]), ytterbium(II) amide (Hadenfeldt & Juza, 1969[Hadenfeldt, C. & Juza, R. (1969). Naturwissenschaften, 56, 282.]; Hadenfeldt et al., 1970[Hadenfeldt, C., Jacobs, H. & Juza, R. (1970). Z. Anorg. Allg. Chem. 379, 144-156.]; Görne et al., 2016[Görne, A. L., George, J., van Leusen, J., Dück, G., Jacobs, P., Muniraju, N. K. C. & Dronskowski, R. (2016). Inorg. Chem. 55, 6161-6168.]) and ytterbium(II) halides (Howell & Pytlewski, 1969[Howell, J. K. & Pytlewski, L. L. (1969). J. Less-Common Met. 18, 437-439.]) can be obtained by precipitation reactions in liquid ammonia. Adapting this procedure in explorative attempts to synthesize ytterbium(II) tri­fluoro­acetate, we obtained a green mixture of substances, the color of which indicating the presence of YbII ions. By dissolution experiments in tri­fluoro­acetic acid and subsequent crystallization under non-inert conditions, we obtained colorless crystals of the title compound. The formation of this substance requires not only redox reactions with the change of the oxidation state from 0 to +II and from +II to +III, but also an activation of the C—F bonds of the tri­fluoro­acetate anion (Rillings & Roberts, 1974[Rillings, K. W. & Roberts, J. E. (1974). Thermochim. Acta, 10, 269-277.]). This is evident not only from the presence of fluorido ligands as part of the octa­hedro-hexa­nuclear complex anion of the title compound, [(NH4)1–x(H3O)x]2[Yb6F8(O2CCF3)12(H2O)4]·4H2O (x = 0.25), but also from the presence of ammonium fluoride in the greenish precipitate from the reaction of ytterbium metal with ammonium tri­fluoro­acetate in liquid ammonia.

[Scheme 1]

2. Structural commentary

In the course of the crystal-structure refinement, the crystal under investigation turned out to be a mixed crystal characterized by NH4+/H3O+ substitution. However, the structure model with disorder of the cation sites is much more complicated because the disorder not only affects the latter, but also other parts of the crystal structure. Fig. 1[link] shows the asymmetric unit of the title compound, separated in terms of the NH4+-containing partial occupation site (part a) and in terms of the H3O+-containing partial occupation site (part b). Both partial occupation site units comprise three YbII ions, four fluoride anions, six tri­fluoro­acetate anions and two water mol­ecules, all in general position and establishing one half of a centrosymmetric octa­hedro-hexa­nuclear [Yb6F8(O2CCF3)12(H2O)4]2– complex. Also in general positions, one NH4+ or H3O+ cation and two water mol­ecules complete the asymmetric unit. The charge balance of the double-negatively charged complex ion is ensured by two symmetry-related cations. The most prominent moiety in both cases is the octa­hedro-hexa­nuclear anionic complex, formed by six YbIII ions with non-bonding Yb⋯Yb distances of 3.7576 (3)–3.9413 (5) Å (mean 3.83 Å, see Table 1[link]), the eight octa­hedral faces of which are capped by μ3-fluorido ligands. In the NH4+ case, all twelve octa­hedral edges of the central [Yb6F8] core are bridged by μ2-tri­fluoro­acetato ligands. Yb1 is eightfold coordinated with a typical square-anti­prismatic coordination polyhedron (Karraker, 1970[Karraker, D. G. (1970). J. Chem. Educ. 47, 424-430.]). Water mol­ecules additionally coordinate the octa­hedral vertices of the Yb2 and Yb3 sites and complete the coordination sphere of these YbIII ions, giving a ninefold coordination that results in monocapped square-anti­prismatic coordination polyhedra (Fig. 2[link]a). In the H3O+ case, one tri­fluoro­acetato ligand binds to Yb2 monodentately only, while two water mol­ecules coordinate to Yb3 in return (Fig. 1[link]), giving an eightfold coordination of Yb1 and Yb2 and a ninefold coordination for Yb3 (Fig. 2[link]b). At first view, the nature of the cation seems to influence the remaining parts of the structure and even to some extent the ligand substitution pattern of the hexa­nuclear complex. However, we cannot exclude the possibility that the presence of the two isomeric anions (related to hydration) is the origin of the cation substitution. The Yb—O bond lengths of 2.23 (4)–2.329 (2) Å (mean 2.30 Å), and the O—C—O′ bond angles of 129.6 (3)–132.2 (3)° (mean 129.9°) of the tri­fluoro­acetato ligands are in typical ranges for the bidentately bridging coordination mode of carboxyl­ate ligands (Rohde & Urland, 2006[Rohde, A. & Urland, W. (2006). Z. Anorg. Allg. Chem. 632, 1141-1144.]). Relevant Yb—F and Yb—O bond lengths are given in Table 1[link], along with the corresponding empirical bond valences for each bond, si. The Yb—F bond lengths and the bond-valence sums S of 3.01–3.13 valence units give striking structural evidence for the presence of fluorido ligands. Comparisons of the complex anion with the one in the very recent crystal-structure determination of an octa­hedro-hexa­nuclear terbium(III) complex containing a [Tb6F8] core (Ling et al., 2020[Ling, B.-K., Li, J., Zhai, Y.-Q., Hsu, H.-K., Chan, Y.-T., Chen, W.-P., Han, T. & Zheng, Y.-Z. (2020). Chem. Commun. 56, 9130-9133.]) and with some europium(III) complexes containing [Eu6F8] cores (Morsbach et al., 2022[Morsbach, F., Klenner, S., Pöttgen, R. & Frank, W. (2022). Dalton Trans. 51, 4814-4828.]) reveal that the non-bonding LnLn distances [mean 3.97 Å (Ln = Tb) and 4.00 Å (Ln = Eu)] as well as the Ln—F (mean 2.38 and 2.38 Å) and Ln—O bond lengths (mean 2.34 and 2.40 Å) in complexes of this type are influenced by the lanthanoid contraction, with these structural parameters decreasing from Eu to Yb due to the smaller ionic radius of YbIII compared to TbIII and EuIII: 1.04 Å vs. 1.10 Å and 1.12 Å (all values for CN 9; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

Table 1
Selected structural parameters (Å) and empirical bond valences si (valence units) for Yb1–Yb3

Calculation of empirical bond valences according to: S = Σ si = Σ{exp [(dd0) / B]} (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]), with d0(YbIII—F) = 1.875 Å, B = 0.37 (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) and d0(YbIII—O) = 1.965 Å, B = 0.37 (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

XY di s.o.f. of atom Y si
Yb1—F1 2.2375 (17) 1 0.38
Yb1—F2 2.2382 (17) 1 0.37
Yb1—F3 2.2431 (17) 1 0.37
Yb1—F4vi 2.2444 (17) 1 0.37
Yb1—O5 2.273 (2) 1 0.43
Yb1—O10 2.291 (2) 1 0.41
Yb1—O6 2.306 (2) 1 0.40
Yb1—O12 2.309 (2) 1 0.39
      S = 3.13
Yb2—F2vi 2.2895 (17) 1 0.33
Yb2—F4 2.3035 (17) 1 0.31
Yb2—F3 2.3061 (17) 1 0.31
Yb2—F1 2.3276 (17) 1 0.29
Yb2—O8A 2.23 (4) 0.251 (4) 0.12
Yb2—O15vi 2.286 (2) 1 0.42
Yb2—O8 2.299 (13) 0.749 (4) 0.30
Yb2—O7 2.303 (2) 1 0.40
Yb2—O13vi 2.329 (2) 1 0.37
Yb2—O17 2.544 (3) 0.749 (4) 0.16
      S = 3.02
Yb3—F3vi 2.3210 (17) 1 0.30
Yb3—F2 2.3316 (17) 1 0.29
Yb3—F1 2.3321 (17) 1 0.29
Yb3—F4 2.3509 (17) 1 0.28
Yb3—O17A 2.27 (4) 0.251 (4) 0.11
Yb3—O14 2.290 (2) 1 0.42
Yb3—O9 2.312 (11) 0.749 (4) 0.29
Yb3—O11vi 2.321 (2) 1 0.38
Yb3—O4 2.323 (2) 1 0.38
Yb3—O16 2.448 (2) 1 0.27
      S = 3.01
       
Yb1⋯Yb2vi 3.7576 (3) Yb2⋯Yb3vi 3.9020 (6)
Yb1⋯Yb2 3.7828 (3) Yb2⋯Yb3 3.9431 (5)
Yb1⋯Yb3 3.8018 (3) Yb3⋯Yb1 3.8018 (3)
Yb1⋯Yb3vi 3.8163 (3) Yb3⋯Yb1vi 3.8163 (3)
Yb2⋯Yb1vi 3.7576 (3) Yb3⋯Yb2vi 3.9020 (6)
Yb2⋯Yb1 3.7828 (3) Yb3⋯Yb2 3.9431 (5)
Symmetry code: (vi) −x + 1, −y + 1, −z + 1.
[Figure 1]
Figure 1
Asymmetric unit of [(NH4)1–x(H3O)x]2[Yb6F8(O2CCF3)12(H2O)4]·4H2O (x = 1/4), as related to the NH4+-containing partial occupation site (a) and as related to the H3O+-containing partial occupation site (b), shown separately with the same view direction and the same scaling. Displacement ellipsoids are drawn at the 50% probability level, hydrogen atoms are drawn with an arbitrary radius. The CF3 groups at C5 and C11 suffer from rotational disorder that is not related to the cation substitution; only F atoms of the major occupied sites are shown. The directions of further Yb—O and Yb—F bonds are given by truncated sticks, the directions of hydrogen-bonding by segmented blue sticks. Note the coincidence of most parts of the partial occupation site models and the significant differences in the cation/water region and the coordination spheres of Yb2 and Yb3.
[Figure 2]
Figure 2
Central [Yb6F8] core of the title structure with additional O atoms coordinating to YbIII ions, with the cation partial occupation site occupied by NH4+ (a) and H3O+ (b). For YbIII ions with square-anti­prismatic coordination, polyhedra are drawn in red, for YbIII ions with monocapped square-anti­prismatic coordination, polyhedra are drawn in blue; color code: O (red), F (green), Yb (gray).

3. Supra­molecular features

Approximating the hexa­nuclear anionic complex as a bulky sphere, a distorted fcc packing of these voluminous anions can be recognized. As shown in Fig. 3[link] in more detail, in a strongly off-center mode the small cations occupy all tetra­hedral inter­stices of this packing. The hexa­nuclear ytterbiate(III) anions as well as all other moieties are engaged in an extended hydrogen-bonded supra­molecular network (Table 2[link]). All hydrogen bonds have medium to weak strengths. A remarkable segment of this network is established by two symmetry-related pairs of water mol­ecules around a center of inversion. Depending on the nature of the cation, the positions and orientations of these water mol­ecules are significantly different, as shown in Fig. 4[link]. Note, that the partial occupation sites occupied by O2 and O3 are related to NH4+ and those occupied by O2A and O3A are related to H3O+. In both cases, the graph set descriptor R44(8) can be assigned to the hydrogen-bond motif (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). However, a different orientation of the hydrogen-bond-donor direction is given within the ring-shaped system. In the NH4+ case, with the exception of four H atoms at the vertices (H5, H7, H5ii and H7ii), the (H2O)4 unit is almost planar (Fig. 4[link]a), while in the H3O+ case, all H atoms are out-of-plane with the O atoms (Fig. 4[link]b). In both cases, two further four-membered ring motifs are annealed to the (H2O)4 unit, assigned to the graph-set descriptor R44(8). In these motifs, two water mol­ecules, a cation and, in the case of NH4+ occupying the cation position, an aqua ligand (including O17) from the [Yb6F8(O2CCF3)12(H2O)4]2– complex anion are involved. In the case of H3O+ occupying the cation position, O9A from the monodentately bonding tri­fluoro­acetato ligand at Yb2 takes the role of O17 as a double acceptor. With further O—H⋯O′, O—H⋯F, and N—H⋯O hydrogen bonds, the entire tricyclic hydrogen-bonding motif connects in total four of the hexa­nuclear complexes, each of which gives further connections in three symmetry-related directions. As expected, due to the higher solvation free energy of H3O+ compared to NH4+ (Taft et al., 1978[Taft, R. W., Wolf, J. F., Beauchamp, J. L., Scorrano, G. & Arnett, E. M. (1978). J. Am. Chem. Soc. 100, 1240-1249.]; Saielli, 2010[Saielli, G. (2010). J. Phys. Chem. A, 114, 7261-7265.]), the primary hydrogen-bonding inter­action of H3O+ is significantly stronger than that of NH4+ [O1⋯O2A = 2.619 (18) Å vs. N1⋯O17i = 2.766 (7) Å].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H12⋯O6 0.91 2.21 2.883 (8) 131
N1—H15⋯O17i 0.91 1.86 2.766 (7) 172
N1—H13⋯O10 0.91 2.08 2.853 (10) 142
N1—H14⋯O2 0.91 1.95 2.837 (9) 165
O1—H2⋯O2A 0.84 1.78 2.619 (18) 175
O1—H3⋯O9Ai 0.84 2.01 2.842 (16) 173
O1—H1⋯O10 0.84 2.30 3.03 (3) 145
O2—H4⋯O3 0.83 (1) 1.91 (3) 2.704 (11) 159 (7)
O2—H5⋯O12 0.83 (1) 2.31 (5) 2.978 (7) 138 (6)
O3—H6⋯O2ii 0.85 (2) 2.22 (2) 3.055 (10) 167 (8)
O3—H7⋯O17iii 0.85 (2) 2.01 (2) 2.835 (9) 163 (8)
O2A—H4A⋯F19A 0.83 (1) 1.90 (7) 2.68 (2) 156 (17)
O2A—H5A⋯O3Aii 0.83 (1) 2.35 (14) 2.96 (3) 131 (16)
O3A—H7A⋯O2A 0.84 (2) 2.20 (15) 2.91 (4) 143 (23)
O3A—H6A⋯O9Aiii 0.83 (2) 2.6 (2) 3.03 (4) 115 (19)
O16—H8⋯O9 0.83 (2) 2.28 (6) 2.639 (10) 107 (4)
O16—H8A⋯O16iv 0.84 (2) 2.07 (2) 2.903 (5) 179 (17)
O16—H9⋯F16v 0.82 (2) 2.17 (2) 2.954 (3) 160 (4)
O17—H11⋯O8 0.84 (2) 2.25 (8) 2.593 (7) 105 (7)
O17—H10⋯O13vi 0.81 (2) 2.22 (5) 2.754 (4) 123 (5)
O17A—H10A⋯O16 0.83 (1) 1.92 (2) 2.56 (3) 134 (5)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, -y+2, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, -y+1, -z+1]; (v) x+1, y, z; (vi) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
Schematic packing diagram. The bulky fluorido­carboxyl­ate anions are represented by octa­hedra, the cation positions are given by dot-centered circles, and the closest anion⋯cation contacts are indicated by dashed lines. The distorted fcc-packing of the bulky anions can easily be recognized. Note the offset of the cations from the centers of the tetra­hedral inter­sticial regions that are indicated by eight translucent circular areas. With respect to the primitive unit cell, this offset is along [101] or in the reverse direction and to a lesser extent along [010] or in the reverse direction. Thus, each cation is significantly closer to one of the four anions establishing a tetra­hedral hole than to the other three.
[Figure 4]
Figure 4
Sections of the extended hydrogen-bonded supra­molecular network of the title compound, with the cation partial occupation site occupied by NH4+ (a) and H3O+ (b). For the sake of clarity, only Yb1, Yb2, Yb3, some symmetry-related Yb atoms, and F, O and H atoms involved in hydrogen bonds are labeled. [Symmetry codes: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + 1, −y + 2, −z + 1; (iii) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (iv) −x + 2, −y + 1, −z + 1; (v) x + 1, y, z; (vi) −x + 1, −y + 1, −z + 1].

4. Database survey

A search of the Cambridge Structural Database (CSD; version 5.43, update of November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in 80 hits for isolated octa­hedro-hexa­nuclear lanthanoid complexes with eight μ3-face-capping ligands of any type, excluding a μ6-central atom. Only two of these contain eight μ3-halogenido ligands of any type, including the carboxyl­ato fluorido complex with a [Tb6F8] core (KUWMOH, Ling et al., 2020[Ling, B.-K., Li, J., Zhai, Y.-Q., Hsu, H.-K., Chan, Y.-T., Chen, W.-P., Han, T. & Zheng, Y.-Z. (2020). Chem. Commun. 56, 9130-9133.]) and a cyclo­penta­dienyl iodido complex with a [Yb6I8] core (TUFWEW, Constantine et al., 1996[Constantine, S. P., De Lima, G. M., Hitchcock, P. B., Keates, J. M. & Lawless, G. A. (1996). Chem. Commun. pp. 2421-2422.]). Six of the 80 complexes are ytterbium complexes, viz. the aforementioned iodido complex, three octa-μ3-hydroxido complexes (MINVAI, da Cunha et al., 2013[Cunha, T. T. da, Pointillart, F., Le Guennic, B., Pereira, C. L. M., Golhen, S., Cador, O. & Ouahab, L. (2013). Inorg. Chem. 52, 9711-9713.]; HELNAQ, Zhang et al., 2018[Zhang, Y., Wang, Y., Liu, L., Wei, N., Gao, M.-L., Zhao, D. & Han, Z.-B. (2018). Inorg. Chem. 57, 2193-2198.]; XUKCAK, Luo et al., 2020[Luo, T.-Y., Das, P., White, D. L., Liu, C., Star, A. & Rosi, N. L. (2020). J. Am. Chem. Soc. 142, 2897-2904.]) and one tetra-μ3-oxido­tetra-μ3-hydroxido complex (YINFEJ, Feng et al., 2019[Feng, Y., Xin, X., Zhang, Y., Guo, B., Li, F., Kong, X., Wang, Y., Wang, X., Wang, Y., Zhang, L. & Sun, D. (2019). Cryst. Growth Des. 19, 1509-1513.]). The first, the second and the fourth of these are parts of metal–organic frameworks (MOFs). Furthermore, there is a hexa-μ3-oxidodi-μ3-hydroxido complex (KIFVAZ, Duan et al., 2018[Duan, G.-X., Xie, Y.-P., Jin, J.-L., Bao, L.-P., Lu, X. & Mak, T. C. W. (2018). Chem. Eur. J. 24, 6762-6768.]). A search in the ICSD (version 2021.2; Belsky et al., 2002[Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364-369.]) for structures containing both NH4+ and H3O+ ions, resulted in ten hits. Seven of these show NH4+/H3O+ substitutional disorder. Three of the seven disordered structures are mixed ammonio­jarosite–hydro­niumjarosite phases, (NH4)1–x(H3O)xFe3(SO4)2(OH)6 (#16020–16022, Basciano & Peterson, 2007[Basciano, L. C. & Peterson, R. C. (2007). Miner. Mag. 71, 427-441.]). Furthermore, there are two phosphates (#73847–73848, Ferey et al., 1993[Férey, G., Loiseau, T., Lacorre, P. & Taulelle, F. (1993). J. Solid State Chem. 105, 179-190.]), a molybdatophosphate (#212, Boeyens et al., 1976[Boeyens, J. C. A., McDougal, G. J. & van Smit, J. (1976). J. Solid State Chem. 18, 191-199.]) and an oxide (#37066, Thomas & Farrington, 1983[Thomas, J. O. & Farrington, G. C. (1983). Acta Cryst. B39, 227-235.]). However, for none of these structures cation-dependent further partial occupation sites are reported.

5. Synthesis and crystallization

All chemicals were obtained from commercial sources and used as purchased. In a representative experiment, 0.584 g (0.337 mmol) of ytterbium were dissolved in approximately 50 ml of liquid ammonia (dried over sodium) to which 0.903 g (0.675 mmol) of ammonium tri­fluoro­acetate were added. The ammonia was evaporated, and the residue was dried in vacuo until a pressure of 10−3 hPa was reached. 0.816 g of a greenish powder were obtained. 100 mg of this powder were stirred in 2 ml of anhydrous tri­fluoro­acetic acid, and the insoluble portions were allowed to settle overnight. The supernatant solution was transferred into an ampoule and stored open in air. Colorless crystals of the title compound grew within one week. A suitable single crystal for X-ray crystal structure determination was selected directly from the mother liquor. An IR spectrum was recorded with a Spectrum Two FT–IR spectrometer (Perkin Elmer Inc., 2008[Perkin Elmer (2008). SpectrumTM 10. Perkin Elmer Inc., Waltham, Massachusetts, USA.]), equipped with a LiTaO3 detector (4000–350 cm−1) and an ATR unit. Band assignments were made according to metal tri­fluoro­acetate salts (Baillie et al., 1968[Baillie, M. J., Brown, D. H., Moss, K. C. & Sharp, D. W. A. (1968). J. Chem. Soc. A, pp. 3110-3114.]; Faniran & Patel, 1976[Faniran, J. A. & Patel, K. S. (1976). Spectrochim. Acta A, 32, 1351-1354.]): ν(O—H): 3374, 3287 (w); νas(COO): 1665 (s); 1613 (m); 1569 (m); νs(COO): 1473 (m); 1342 (w); ν(C—F): 1204, 1142 (s); ν(C–C): 849 (m); δ(CF3): 798 (m); δ(O—C—O): 724 (s); 687 (w); δ(CF3): 613, 522, 452 (vw). A CHN analysis was performed with a vario MICRO cube (Elementar Analysensysteme GmbH, 2015[Elementar Analysensysteme GmbH (2015). vario MICRO cube. Elementar Analysensysteme GmbH, Langenselbold, Germany.]). Analysis calculated for C24H23.50N1.50O32.50F44Yb6 (2727.15 g mol−1): C 10.57, H 0.87, N 0.77; found: C 10.7, H 0.8, N 1.0.

6. Refinement

Crystal data along with data collection and structure refinement details are summarized in Table 3[link]. After having completed the primary structural model, (a) physically non-meaningful anisotropic displacement parameters, (b) features appearing in the difference-electron density map in the course of further refinement cycles and (c) analysis of potential hydrogen-bonding orientations clearly indicated disorder that refers to: (i) position and nature of the cation (NH4+ vs. H3O+), (ii) position and coordination mode of the complete carboxyl­ato ligand with atoms O8 and O9, (iii) position (coordination site) of the aqua ligand with O17, (iv) orientation of the aqua ligand with O16, (v) rotational orientation of four of the six CF3 groups and (vi) position and orientation of the two hydrate water mol­ecules. The refinement of site-occupation factors finally proved the disorder according to (i), (ii), (iii), (iv), (vi) and the rotational orientations of three of the four CF3 groups addressed in (v) to be directly dependent. In the final stages of a converging refinement, for these dependent sites a common occupation factor was introduced and refined to 0.749 (4) for NH4+ and its related partial occupation site moieties, giving 0.251 (4) for H3O+ and its related moieties. When involved in disorder, NH4+ and H3O+ ions can hardly be distinguished in a structure refinement based on X-ray diffraction data alone. All substances related to the class of the title compound showed somewhat too high proportions for N in the combustion analysis, and due to the complex vibration spectra, an identification of O—H or N—H stretching modes in the IR spectrum is not possible. In consequence, the nature of the cations could not be determined by chemical analysis or spectroscopic studies. Even though the crystal structure model is therefore based only on the results of structure refinement and comparative structural considerations, the final choice of occupation with NH4+ and H3O+ is unambiguous for the following reasons: the partial occupation site related to N1 with 75% occupation shows four tetra­hedrally arranged residual electron-density maxima, which are identified as H atoms on the basis of their heights and spacings; at the site related to O1 with 25% occupation, clear electron-density maxima could not be identified, as expected. However, comparative refinements of the occupation factors showed in case of occupation of both partial occupation sites with O atoms clearly too small [Σs.o.f.(O,O) = 0.88 (3)], in case of occupation of both partial sites with N atoms a clearly too large value [Σs.o.f.(N,N) = 1.13 (3)] of the sum of the occupation factors. In the case of the occupation of the higher-populated site with N and the lower-populated site with O, a value close to one [Σs.o.f.(N,O) = 1.03 (3)] resulted. Within the network of hydrogen bonds, the N⋯O distance of the shortest N—H⋯O bond [2.766 (7) Å] fits well to the expectations taking into account the optimized calculated shape of the hydrated ammonium ion [NH4+—OH2 = 2.728 Å, NH4+—(OH2)2 = 2.784, 2.785 Å, NH4+—(OH2)3 = 2.832 Å (3×), at the B3LYP/6-31*G* level of theory; Jiang et al., 1999[Jiang, J. C., Chang, H. C., Lee, Y. T. & Lin, S. H. (1999). J. Phys. Chem. A, 103, 3123-3135.]]. The much shorter O⋯O distance of 2.619 (18) Å from the lower-occupied site to the O atom of the next water mol­ecule is typical for comparatively strong O—H⋯O hydrogen bonds, but out of the limits of expectation for N—H⋯O bonds to water mol­ecules [Meot-Ner (Mautner), 2005[Meot-Ner (Mautner), M. (2005). Chem. Rev. 105, 213-284.]]. Finally, if the lower-occupied site were assumed to be a NH4+ ion, no suitable hydrogen-bond acceptor could be identified for an additional, fourth hydrogen bond. All disordered parts of the structure were subjected to appropriate bond lengths and angles and anisotropic displacement restraints or constraints. The C—F bond lengths of the disordered CF3 groups related to C4, C10, C12, (C6) were restrained to 1.32 Å within a s. u. of 0.02 Å (0.002 Å), combined with default F⋯F same distance and with strongly restrictive isotropic displacement restraints for all F atoms. No restraints were needed for the two CF3 groups not suffering from disorder. For the CF3 group related to C6, which suffers from both dependent positional and independent rotational disorder, more restrictive C—F bond lengths restraints (see above) had to be used and the C—C bond length was restrained to 1.52 Å within a s. u. of 0.02 Å. For atoms at partial occupation sites in close proximity, in an approximative manner equivalent anisotropic displacement constraints have been applied, namely for the pairs N1/O1, O2/O2A, O3/O3A, O8/O8A, O9/O17A, C12/C12A. The NH4+ ion was treated in the refinement as a rigid group with idealized tetra­hedral shape and N—H bond lengths constrained to 0.91 Å. The H3O+ cation was included as a rigid flat pyramid with O—H bond lengths constrained to 0.84 Å and the pyramidalization defined by H⋯H distances constrained to 1.39 Å. The hydrate water mol­ecules related to O2 and O2A were treated as rigid groups with O—H bond lengths of 0.83 Å and H—O—H angles adjusted to 105.4°. The O—H bond lengths of the aqua ligands including O16, O16A, O17, O17A and of the hydrate water mol­ecules including O3 and O3A were restrained to 0.83 Å within an s.u. of 0.02 Å, the corres­ponding H⋯H distances to 1.32 Å within an s.u. of 0.04 Å defining H—O—H angles of 105 (4)–109 (4)°. Uiso(H) values of all H atoms were set to 1.5Ueq of the parent atoms.

Table 3
Experimental details

Crystal data
Chemical formula [(NH4)1–x(H3O)x]2[Yb6F8(O2CCF3)12(H2O)4]·4H2O (x = 1/4)
Mr 2727.15
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 12.1449 (13), 17.5051 (16), 15.1885 (16)
β (°) 102.999 (4)
V3) 3146.3 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 9.04
Crystal size (mm) 0.17 × 0.11 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.665, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 48765, 7213, 6768
Rint 0.035
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.044, 1.08
No. of reflections 7213
No. of parameters 717
No. of restraints 268
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.96, −0.89
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2020[Brandenburg, K. (2020). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2020), SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(ammonium/oxonium) tetraaquaocta-µ3-fluorido-dodecakis(µ2-trifluoroacetato)-octahedro-hexaytterbiate(III) tetrahydrate top
Crystal data top
(NH4)1.5(H3O)0.5[Yb6(C2F3O2)12F8(H2O)4]·4H2OF(000) = 2508
Mr = 2727.15Dx = 2.879 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.1449 (13) ÅCell parameters from 9176 reflections
b = 17.5051 (16) Åθ = 2.3–30.6°
c = 15.1885 (16) ŵ = 9.04 mm1
β = 102.999 (4)°T = 120 K
V = 3146.3 (6) Å3Block, colorless
Z = 20.17 × 0.11 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
6768 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.035
φ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1515
Tmin = 0.665, Tmax = 1.000k = 2222
48765 measured reflectionsl = 1919
7213 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: difference Fourier map
wR(F2) = 0.044H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0153P)2 + 6.7213P]
where P = (Fo2 + 2Fc2)/3
7213 reflections(Δ/σ)max = 0.002
717 parametersΔρmax = 0.96 e Å3
268 restraintsΔρmin = 0.89 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Yb10.45797 (2)0.64420 (2)0.47775 (2)0.01292 (4)
Yb20.41912 (2)0.47533 (2)0.31832 (2)0.01477 (4)
Yb30.71762 (2)0.52450 (2)0.47250 (2)0.01390 (4)
F10.54171 (14)0.56846 (10)0.39369 (11)0.0148 (3)
F20.61494 (14)0.59078 (9)0.56047 (12)0.0150 (3)
F30.34576 (14)0.54633 (10)0.41953 (11)0.0144 (3)
F40.58154 (14)0.43124 (9)0.41390 (11)0.0145 (3)
F50.7250 (3)0.77519 (17)0.30917 (17)0.0626 (9)
F60.85133 (18)0.78640 (15)0.43135 (19)0.0484 (7)
F70.6979 (2)0.84737 (12)0.4135 (2)0.0457 (6)
F80.4230 (4)0.7285 (3)0.1531 (4)0.0512 (14)0.749 (4)
F90.2777 (4)0.7738 (3)0.1940 (5)0.0304 (11)0.749 (4)
F100.2603 (5)0.6762 (4)0.1066 (4)0.0437 (14)0.749 (4)
F8A0.2313 (12)0.6858 (12)0.1283 (11)0.048 (5)0.251 (4)
F9A0.4019 (14)0.7031 (10)0.1268 (11)0.056 (5)0.251 (4)
F10A0.3186 (15)0.7817 (9)0.1959 (18)0.053 (6)0.251 (4)
F110.7963 (4)0.5569 (5)0.1769 (4)0.079 (2)0.524 (2)
F120.6733 (9)0.4814 (4)0.1043 (6)0.077 (3)0.524 (2)
F130.6286 (6)0.5964 (4)0.1241 (5)0.069 (2)0.524 (2)
O80.5527 (8)0.4900 (7)0.2337 (7)0.0203 (13)0.749 (4)
O90.7214 (8)0.5232 (4)0.3210 (7)0.0178 (12)0.749 (4)
C50.6511 (4)0.5141 (2)0.2478 (3)0.0176 (9)0.749 (4)
C60.6887 (3)0.5381 (2)0.1630 (3)0.0293 (12)0.524 (2)
F11A0.5725 (10)0.4478 (6)0.0149 (6)0.051 (3)0.251 (4)
F12A0.5402 (13)0.5632 (6)0.0381 (10)0.081 (5)0.251 (4)
F13A0.6809 (12)0.5075 (12)0.1199 (14)0.082 (6)0.251 (4)
O8A0.532 (3)0.482 (2)0.222 (3)0.0203 (13)0.251 (4)
O9A0.3984 (10)0.4521 (6)0.1033 (8)0.031 (3)0.251 (4)
C5A0.4914 (10)0.4755 (7)0.1383 (8)0.017 (3)0.251 (4)
C6A0.5735 (11)0.4983 (5)0.0796 (6)0.036 (4)0.251 (4)
C6B0.6887 (3)0.5381 (2)0.1630 (3)0.0293 (12)0.2247 (11)
F11B0.6105 (11)0.5475 (10)0.0931 (9)0.059 (4)0.2247 (11)
F12B0.7644 (11)0.4909 (7)0.1435 (8)0.046 (3)0.2247 (11)
F13B0.7478 (12)0.6044 (7)0.1744 (8)0.047 (3)0.2247 (11)
F140.1535 (2)0.72832 (17)0.63021 (17)0.0524 (7)
F150.1150 (2)0.78175 (12)0.50072 (18)0.0403 (6)
F160.01836 (18)0.68636 (13)0.52708 (19)0.0430 (6)
F170.4294 (4)0.8118 (3)0.7341 (4)0.058 (2)0.608 (11)
F180.5947 (6)0.8386 (3)0.7221 (4)0.053 (2)0.608 (11)
F190.5704 (8)0.7692 (3)0.8300 (3)0.065 (3)0.608 (11)
F17A0.6285 (6)0.7902 (5)0.8017 (6)0.045 (3)0.392 (11)
F18A0.4547 (8)0.7724 (5)0.7927 (7)0.060 (3)0.392 (11)
F19A0.5093 (10)0.8468 (3)0.7011 (4)0.050 (3)0.392 (11)
C120.9654 (5)0.5666 (4)0.7508 (4)0.0251 (11)0.749 (4)
F200.9848 (3)0.5158 (3)0.8172 (3)0.0571 (12)0.749 (4)
F211.0494 (4)0.5633 (3)0.7093 (3)0.0490 (14)0.749 (4)
F220.9698 (3)0.6338 (2)0.7904 (3)0.0528 (12)0.749 (4)
C12A0.9711 (13)0.5553 (11)0.7414 (13)0.0251 (11)0.251 (4)
F20A1.0361 (15)0.5984 (8)0.7057 (12)0.054 (5)0.251 (4)
F21A0.9744 (10)0.5820 (11)0.8220 (8)0.066 (4)0.251 (4)
F22A1.0184 (9)0.4883 (6)0.7513 (10)0.061 (4)0.251 (4)
N10.2926 (7)0.8306 (4)0.3919 (6)0.0273 (12)0.749 (4)
H120.3010830.8029390.3431210.041*0.749 (4)
H130.2659810.7997140.4306680.041*0.749 (4)
H140.3605370.8503380.4204550.041*0.749 (4)
H150.2427150.8692560.3733850.041*0.749 (4)
O10.2814 (19)0.8472 (13)0.4011 (18)0.0273 (12)0.251 (4)
H10.2648460.8006760.4024340.041*0.251 (4)
H20.3378580.8584520.4421380.041*0.251 (4)
H30.2257950.8753050.4026240.041*0.251 (4)
O20.5001 (5)0.8750 (4)0.5075 (4)0.0683 (19)0.749 (4)
H40.544 (5)0.911 (3)0.525 (4)0.102*0.749 (4)
H50.496 (7)0.851 (3)0.554 (2)0.102*0.749 (4)
O30.6573 (7)0.9867 (5)0.5240 (5)0.0665 (17)0.749 (4)
H60.619 (6)1.027 (3)0.509 (6)0.100*0.749 (4)
H70.711 (5)0.998 (4)0.569 (4)0.100*0.749 (4)
O2A0.4546 (17)0.8903 (14)0.5274 (14)0.0683 (19)0.251 (4)
H4A0.491 (13)0.879 (7)0.579 (4)0.102*0.251 (4)
H5A0.46 (2)0.9376 (15)0.525 (9)0.102*0.251 (4)
O3A0.668 (3)0.9730 (17)0.5589 (18)0.0665 (17)0.251 (4)
H6A0.729 (11)0.956 (12)0.590 (16)0.100*0.251 (4)
H7A0.628 (16)0.934 (8)0.543 (18)0.100*0.251 (4)
O40.74437 (19)0.65322 (13)0.44643 (16)0.0212 (5)
O50.59075 (19)0.72520 (12)0.44714 (15)0.0194 (5)
O60.38017 (19)0.69039 (13)0.33511 (15)0.0198 (5)
O70.35962 (19)0.58759 (13)0.24358 (15)0.0203 (5)
O100.28607 (18)0.69187 (12)0.48928 (15)0.0183 (4)
O110.18769 (19)0.59112 (13)0.52273 (16)0.0214 (5)
O120.49566 (19)0.72565 (12)0.60049 (15)0.0185 (5)
O130.5663 (2)0.65211 (13)0.72162 (15)0.0208 (5)
O140.84720 (19)0.54572 (14)0.60512 (16)0.0226 (5)
O150.76951 (18)0.55146 (13)0.72604 (15)0.0204 (5)
O160.9075 (2)0.54443 (14)0.44699 (17)0.0219 (5)
H80.906 (5)0.538 (3)0.3925 (16)0.033*0.749 (4)
H8A0.960 (8)0.519 (4)0.478 (9)0.033*0.251 (4)
H90.928 (4)0.5886 (13)0.458 (3)0.033*
O170.3486 (3)0.4558 (2)0.1490 (2)0.0263 (8)0.749 (4)
H100.358 (5)0.4098 (12)0.151 (4)0.039*0.749 (4)
H110.396 (6)0.475 (3)0.123 (5)0.039*0.749 (4)
O17A0.731 (3)0.5080 (16)0.327 (2)0.0178 (12)0.251 (4)
H10A0.796 (3)0.525 (6)0.338 (3)0.027*0.251 (4)
H11A0.692 (6)0.538 (4)0.290 (6)0.027*0.251 (4)
C10.6872 (3)0.71285 (17)0.4349 (2)0.0168 (6)
C20.7424 (3)0.7812 (2)0.3970 (2)0.0237 (7)
C30.3584 (3)0.65671 (18)0.2611 (2)0.0170 (6)
C40.3288 (3)0.7092 (2)0.1773 (2)0.0280 (8)
C70.2064 (3)0.65978 (18)0.5141 (2)0.0176 (6)
C80.1216 (3)0.7149 (2)0.5428 (2)0.0241 (7)
C90.5313 (3)0.71245 (18)0.6826 (2)0.0181 (6)
C100.5304 (3)0.7826 (2)0.7442 (2)0.0258 (7)
C110.8490 (3)0.55266 (18)0.6861 (2)0.0209 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.01250 (6)0.01161 (6)0.01467 (7)0.00037 (4)0.00311 (5)0.00005 (4)
Yb20.01271 (7)0.01391 (7)0.01816 (7)0.00026 (4)0.00445 (5)0.00032 (5)
Yb30.01161 (7)0.01416 (7)0.01668 (7)0.00050 (4)0.00478 (5)0.00059 (5)
F10.0149 (8)0.0153 (8)0.0143 (8)0.0003 (7)0.0037 (7)0.0003 (7)
F20.0134 (8)0.0141 (8)0.0177 (9)0.0005 (7)0.0039 (7)0.0011 (7)
F30.0131 (8)0.0143 (8)0.0161 (9)0.0005 (6)0.0039 (7)0.0006 (6)
F40.0144 (8)0.0140 (8)0.0148 (8)0.0004 (7)0.0027 (7)0.0005 (7)
F50.100 (2)0.0670 (19)0.0231 (13)0.0320 (17)0.0179 (14)0.0085 (12)
F60.0210 (11)0.0392 (14)0.081 (2)0.0076 (10)0.0033 (12)0.0276 (13)
F70.0431 (14)0.0205 (11)0.0783 (19)0.0005 (10)0.0238 (14)0.0125 (11)
F80.051 (3)0.057 (3)0.056 (4)0.001 (2)0.034 (3)0.027 (3)
F90.039 (2)0.023 (2)0.027 (2)0.0093 (17)0.005 (2)0.0089 (15)
F100.072 (4)0.035 (2)0.016 (2)0.005 (2)0.006 (2)0.0019 (16)
F8A0.051 (8)0.061 (9)0.022 (8)0.014 (7)0.013 (6)0.004 (6)
F9A0.072 (8)0.067 (9)0.037 (7)0.005 (6)0.031 (6)0.022 (6)
F10A0.094 (15)0.027 (7)0.040 (8)0.009 (8)0.017 (11)0.016 (5)
F110.046 (3)0.134 (5)0.060 (3)0.020 (3)0.021 (3)0.031 (4)
F120.132 (7)0.055 (4)0.065 (5)0.014 (4)0.069 (5)0.016 (3)
F130.089 (4)0.062 (3)0.070 (4)0.027 (3)0.042 (3)0.045 (3)
O80.018 (4)0.029 (3)0.014 (3)0.002 (3)0.003 (3)0.002 (2)
O90.016 (2)0.021 (4)0.017 (2)0.003 (2)0.0043 (15)0.000 (2)
C50.022 (2)0.0148 (19)0.018 (2)0.0031 (16)0.0091 (17)0.0011 (15)
C60.023 (2)0.039 (3)0.029 (3)0.003 (2)0.014 (2)0.004 (2)
F11A0.061 (7)0.059 (7)0.040 (6)0.001 (5)0.027 (5)0.012 (5)
F12A0.119 (12)0.049 (7)0.097 (10)0.000 (7)0.073 (10)0.022 (7)
F13A0.097 (10)0.098 (11)0.065 (9)0.032 (8)0.046 (8)0.009 (8)
O8A0.018 (4)0.029 (3)0.014 (3)0.002 (3)0.003 (3)0.002 (2)
O9A0.025 (5)0.035 (6)0.033 (6)0.013 (5)0.005 (5)0.006 (5)
C5A0.017 (6)0.024 (7)0.012 (6)0.002 (5)0.004 (5)0.005 (5)
C6A0.047 (8)0.044 (7)0.016 (6)0.000 (7)0.008 (6)0.001 (6)
C6B0.023 (2)0.039 (3)0.029 (3)0.003 (2)0.014 (2)0.004 (2)
F11B0.039 (7)0.107 (12)0.029 (7)0.004 (8)0.005 (5)0.044 (8)
F12B0.048 (5)0.057 (5)0.045 (5)0.021 (4)0.034 (4)0.009 (4)
F13B0.068 (6)0.040 (5)0.037 (5)0.020 (4)0.025 (4)0.004 (4)
F140.0543 (16)0.0700 (19)0.0323 (13)0.0223 (14)0.0084 (12)0.0208 (13)
F150.0373 (13)0.0237 (11)0.0648 (17)0.0139 (9)0.0218 (12)0.0038 (11)
F160.0192 (11)0.0327 (12)0.0807 (19)0.0015 (9)0.0185 (11)0.0160 (12)
F170.037 (2)0.064 (4)0.071 (4)0.017 (2)0.006 (2)0.039 (4)
F180.066 (4)0.028 (2)0.072 (4)0.019 (3)0.028 (3)0.024 (2)
F190.123 (7)0.039 (3)0.023 (2)0.019 (3)0.004 (3)0.0125 (19)
F17A0.035 (4)0.044 (4)0.047 (5)0.005 (3)0.013 (3)0.031 (4)
F18A0.063 (6)0.063 (5)0.068 (6)0.012 (4)0.049 (5)0.032 (5)
F19A0.101 (10)0.022 (3)0.026 (3)0.015 (4)0.010 (4)0.004 (2)
C120.0169 (18)0.034 (3)0.023 (2)0.0023 (17)0.0010 (15)0.003 (2)
F200.0298 (19)0.077 (3)0.053 (3)0.001 (2)0.0149 (18)0.029 (2)
F210.0161 (17)0.094 (4)0.037 (2)0.005 (3)0.0057 (16)0.024 (3)
F220.0268 (18)0.058 (3)0.063 (3)0.0015 (18)0.0120 (18)0.037 (2)
C12A0.0169 (18)0.034 (3)0.023 (2)0.0023 (17)0.0010 (15)0.003 (2)
F20A0.030 (7)0.070 (8)0.056 (7)0.029 (7)0.001 (5)0.010 (7)
F21A0.031 (6)0.138 (13)0.029 (6)0.001 (8)0.007 (5)0.030 (8)
F22A0.034 (6)0.045 (6)0.089 (9)0.014 (5)0.019 (6)0.008 (6)
N10.035 (2)0.014 (4)0.033 (3)0.002 (2)0.008 (2)0.002 (2)
O10.035 (2)0.014 (4)0.033 (3)0.002 (2)0.008 (2)0.002 (2)
O20.061 (4)0.082 (4)0.050 (3)0.013 (4)0.013 (3)0.018 (3)
O30.057 (3)0.067 (4)0.067 (5)0.002 (3)0.003 (4)0.008 (4)
O2A0.061 (4)0.082 (4)0.050 (3)0.013 (4)0.013 (3)0.018 (3)
O3A0.057 (3)0.067 (4)0.067 (5)0.002 (3)0.003 (4)0.008 (4)
O40.0186 (11)0.0205 (12)0.0256 (12)0.0030 (9)0.0070 (10)0.0004 (9)
O50.0182 (11)0.0177 (11)0.0229 (12)0.0036 (9)0.0060 (9)0.0008 (9)
O60.0212 (11)0.0203 (11)0.0174 (11)0.0005 (9)0.0029 (9)0.0028 (9)
O70.0213 (11)0.0220 (12)0.0168 (11)0.0013 (9)0.0026 (9)0.0021 (9)
O100.0173 (11)0.0177 (11)0.0199 (11)0.0038 (9)0.0042 (9)0.0008 (9)
O110.0180 (11)0.0182 (11)0.0300 (13)0.0015 (9)0.0097 (10)0.0013 (9)
O120.0192 (11)0.0175 (11)0.0184 (11)0.0010 (9)0.0033 (9)0.0021 (9)
O130.0231 (12)0.0208 (12)0.0178 (11)0.0013 (9)0.0031 (9)0.0024 (9)
O140.0181 (11)0.0262 (12)0.0227 (12)0.0018 (9)0.0030 (9)0.0039 (10)
O150.0163 (11)0.0228 (12)0.0206 (12)0.0024 (9)0.0010 (9)0.0029 (9)
O160.0165 (11)0.0257 (12)0.0236 (13)0.0030 (10)0.0043 (10)0.0022 (10)
O170.0266 (18)0.0310 (18)0.0194 (17)0.0003 (15)0.0009 (15)0.0031 (14)
O17A0.016 (2)0.021 (4)0.017 (2)0.003 (2)0.0043 (15)0.000 (2)
C10.0202 (15)0.0158 (14)0.0131 (14)0.0061 (12)0.0013 (12)0.0008 (11)
C20.0206 (16)0.0244 (17)0.0257 (18)0.0033 (13)0.0046 (14)0.0070 (13)
C30.0121 (14)0.0215 (16)0.0171 (15)0.0013 (12)0.0031 (12)0.0047 (12)
C40.037 (2)0.0267 (18)0.0210 (17)0.0025 (15)0.0070 (15)0.0056 (14)
C70.0156 (15)0.0197 (15)0.0167 (15)0.0035 (12)0.0020 (12)0.0027 (12)
C80.0190 (16)0.0241 (17)0.0289 (18)0.0024 (13)0.0048 (14)0.0065 (14)
C90.0154 (14)0.0196 (15)0.0196 (16)0.0035 (12)0.0045 (12)0.0036 (12)
C100.0313 (19)0.0241 (17)0.0215 (17)0.0025 (14)0.0046 (14)0.0034 (13)
C110.0179 (16)0.0179 (15)0.0236 (17)0.0011 (12)0.0026 (13)0.0017 (13)
Geometric parameters (Å, º) top
Yb1—F12.2375 (17)F14—C81.317 (4)
Yb1—F22.2382 (17)F15—C81.327 (4)
Yb1—F32.2431 (17)F16—C81.321 (4)
Yb1—F4i2.2444 (17)F17—C101.305 (5)
Yb1—O52.273 (2)F18—C101.342 (5)
Yb1—O102.291 (2)F19—C101.305 (6)
Yb1—O62.306 (2)F17A—C101.316 (7)
Yb1—O122.309 (2)F18A—C101.313 (7)
Yb2—O8A2.23 (4)F19A—C101.297 (7)
Yb2—O15i2.286 (2)C12—F211.315 (7)
Yb2—F2i2.2895 (17)C12—F221.316 (7)
Yb2—O82.299 (13)C12—F201.326 (8)
Yb2—O72.303 (2)C12—C111.549 (6)
Yb2—F42.3035 (17)C12A—F20A1.296 (18)
Yb2—F32.3061 (17)C12A—F22A1.301 (18)
Yb2—F12.3276 (17)C12A—F21A1.302 (18)
Yb2—O13i2.329 (2)C12A—C111.531 (15)
Yb2—O172.544 (3)N1—H120.9100
Yb2—C5A3.054 (11)N1—H130.9100
Yb3—O17A2.27 (4)N1—H140.9099
Yb3—O142.290 (2)N1—H150.9099
Yb3—O92.312 (11)O1—H10.8400
Yb3—O11i2.321 (2)O1—H20.8401
Yb3—F3i2.3210 (17)O1—H30.8401
Yb3—O42.323 (2)O2—H40.830 (2)
Yb3—F22.3316 (17)O2—H50.830 (2)
Yb3—F12.3321 (17)O3—H60.852 (17)
Yb3—F42.3509 (17)O3—H70.849 (18)
Yb3—O162.448 (2)O2A—H4A0.830 (2)
F5—C21.306 (4)O2A—H5A0.830 (3)
F6—C21.312 (4)O3A—H6A0.83 (2)
F7—C21.327 (4)O3A—H7A0.84 (2)
F8—C41.322 (6)O4—C11.244 (4)
F9—C41.341 (6)O5—C11.246 (4)
F10—C41.333 (6)O6—C31.244 (4)
F8A—C41.315 (14)O7—C31.239 (4)
F9A—C41.302 (14)O10—C71.248 (4)
F10A—C41.311 (15)O11—C71.236 (4)
F11—C61.317 (2)O12—C91.246 (4)
F12—C61.319 (2)O13—C91.239 (4)
F13—C61.315 (2)O14—C111.231 (4)
O8—C51.240 (10)O15—C111.251 (4)
O9—C51.250 (11)O16—H80.831 (19)
C5—C61.519 (6)O16—H8A0.84 (2)
F11A—C6A1.320 (2)O16—H90.817 (19)
F12A—C6A1.320 (2)O17—H100.81 (2)
F13A—C6A1.320 (2)O17—H110.84 (2)
O8A—C5A1.26 (4)O17A—H10A0.830 (2)
O9A—C5A1.207 (17)O17A—H11A0.830 (2)
C5A—C6A1.532 (14)C1—C21.544 (4)
C6B—F11B1.266 (14)C3—C41.545 (5)
C6B—F12B1.318 (11)C7—C81.544 (4)
C6B—F13B1.355 (12)C9—C101.546 (4)
F1—Yb1—F268.51 (6)Yb1i—F4—Yb2111.42 (7)
F1—Yb1—F368.68 (6)Yb1i—F4—Yb3112.27 (7)
F2—Yb1—F3105.52 (6)Yb2—F4—Yb3115.81 (7)
F1—Yb1—F4i105.62 (6)C5—O8—Yb2135.7 (7)
F2—Yb1—F4i68.79 (6)C5—O9—Yb3136.4 (7)
F3—Yb1—F4i68.20 (6)O8—C5—O9129.5 (8)
F1—Yb1—O579.54 (7)O8—C5—C6114.2 (6)
F2—Yb1—O579.72 (7)O9—C5—C6116.3 (6)
F3—Yb1—O5142.37 (7)F13—C6—F11107.9 (5)
F4i—Yb1—O5142.72 (7)F13—C6—F12107.5 (6)
F1—Yb1—O10142.97 (7)F11—C6—F12106.4 (6)
F2—Yb1—O10141.71 (7)F13—C6—C5110.7 (4)
F3—Yb1—O1079.93 (7)F11—C6—C5114.2 (4)
F4i—Yb1—O1079.02 (7)F12—C6—C5109.9 (6)
O5—Yb1—O10119.28 (8)C5A—O8A—Yb2120 (2)
F1—Yb1—O679.31 (7)O9A—C5A—O8A126 (2)
F2—Yb1—O6142.28 (7)O9A—C5A—C6A120.0 (12)
F3—Yb1—O679.24 (7)O8A—C5A—C6A114 (2)
F4i—Yb1—O6141.72 (7)O9A—C5A—Yb288.0 (8)
O5—Yb1—O675.44 (8)C6A—C5A—Yb2151.3 (8)
O10—Yb1—O675.89 (8)F13A—C6A—F12A106.3 (11)
F1—Yb1—O12142.51 (7)F13A—C6A—F11A105.6 (11)
F2—Yb1—O1279.38 (7)F12A—C6A—F11A105.7 (9)
F3—Yb1—O12141.46 (7)F13A—C6A—C5A117.8 (13)
F4i—Yb1—O1278.91 (7)F12A—C6A—C5A109.5 (10)
O5—Yb1—O1276.05 (8)F11A—C6A—C5A111.1 (10)
O10—Yb1—O1274.46 (8)F11B—C6B—F12B108.8 (9)
O6—Yb1—O12120.44 (8)F11B—C6B—F13B105.8 (8)
O8A—Yb2—O15i122.8 (7)F12B—C6B—F13B101.0 (8)
O15i—Yb2—F2i77.47 (7)F21—C12—F22107.6 (6)
O15i—Yb2—O8130.11 (18)F21—C12—F20108.1 (5)
F2i—Yb2—O8141.6 (3)F22—C12—F20105.7 (5)
O8A—Yb2—O778.4 (11)F21—C12—C11112.7 (5)
O15i—Yb2—O781.21 (8)F22—C12—C11111.6 (5)
F2i—Yb2—O7137.25 (7)F20—C12—C11110.9 (5)
O8—Yb2—O779.2 (3)F20A—C12A—F22A106.1 (14)
O8A—Yb2—F482.4 (9)F20A—C12A—F21A107.0 (15)
O15i—Yb2—F4140.92 (7)F22A—C12A—F21A107.2 (15)
F2i—Yb2—F466.91 (6)F20A—C12A—C11113.2 (16)
O8—Yb2—F477.2 (3)F22A—C12A—C11112.6 (13)
O7—Yb2—F4136.54 (7)F21A—C12A—C11110.4 (14)
O8A—Yb2—F3142.9 (10)H12—N1—H13109.5
O15i—Yb2—F378.19 (7)H12—N1—H14109.5
F2i—Yb2—F364.51 (6)H13—N1—H14109.5
O8—Yb2—F3137.7 (3)H12—N1—H15109.5
O7—Yb2—F375.12 (7)H13—N1—H15109.5
F4—Yb2—F399.50 (6)H14—N1—H15109.5
O8A—Yb2—F182.3 (8)H1—O1—H2111.7
O15i—Yb2—F1140.92 (7)H1—O1—H3111.7
F2i—Yb2—F199.78 (6)H2—O1—H3111.6
O8—Yb2—F175.12 (19)H4—O2—H5105.4 (6)
O7—Yb2—F174.92 (7)H6—O3—H7107 (5)
F4—Yb2—F164.05 (6)H4A—O2A—H5A105.4 (6)
F3—Yb2—F166.11 (6)H6A—O3A—H7A106 (5)
O15i—Yb2—O13i81.76 (8)C1—O4—Yb3138.0 (2)
F2i—Yb2—O13i76.31 (7)C1—O5—Yb1131.0 (2)
O8—Yb2—O13i81.8 (3)C3—O6—Yb1129.9 (2)
O7—Yb2—O13i136.28 (8)C3—O7—Yb2138.1 (2)
F4—Yb2—O13i74.85 (7)C7—O10—Yb1129.8 (2)
F3—Yb2—O13i138.88 (7)C7—O11—Yb3i138.6 (2)
F1—Yb2—O13i136.15 (7)C9—O12—Yb1130.9 (2)
O15i—Yb2—O1765.63 (10)C9—O13—Yb2i136.9 (2)
F2i—Yb2—O17131.62 (10)C11—O14—Yb3138.5 (2)
O8—Yb2—O1764.50 (19)C11—O15—Yb2i133.8 (2)
O7—Yb2—O1767.64 (10)Yb3—O16—H8109 (4)
F4—Yb2—O17129.63 (9)Yb3—O16—H8A118 (10)
F3—Yb2—O17130.81 (9)Yb3—O16—H9111 (3)
F1—Yb2—O17128.60 (9)H8—O16—H9105 (4)
O13i—Yb2—O1768.65 (10)H8A—O16—H9104 (5)
O8A—Yb2—C5A20.9 (8)Yb2—O17—H1094 (4)
O15i—Yb2—C5A101.9 (2)Yb2—O17—H11108 (6)
F2i—Yb2—C5A149.4 (2)H10—O17—H11109 (4)
O7—Yb2—C5A71.3 (2)Yb3—O17A—H10A92 (5)
F4—Yb2—C5A100.8 (2)Yb3—O17A—H11A116 (10)
F3—Yb2—C5A145.9 (2)H10A—O17A—H11A106 (5)
F1—Yb2—C5A99.1 (2)O4—C1—O5129.6 (3)
O13i—Yb2—C5A73.4 (2)O4—C1—C2115.3 (3)
O17A—Yb3—O14133.8 (9)O5—C1—C2115.0 (3)
O14—Yb3—O9135.5 (3)F5—C2—F6109.2 (3)
O14—Yb3—O11i82.90 (8)F5—C2—F7106.5 (3)
O9—Yb3—O11i84.38 (16)F6—C2—F7106.3 (3)
O14—Yb3—F3i74.74 (7)F5—C2—C1109.5 (3)
O9—Yb3—F3i141.5 (2)F6—C2—C1112.9 (3)
O11i—Yb3—F3i75.69 (7)F7—C2—C1112.1 (3)
O17A—Yb3—O485.1 (7)O7—C3—O6130.2 (3)
O14—Yb3—O484.13 (9)O7—C3—C4114.6 (3)
O9—Yb3—O478.74 (19)O6—C3—C4115.1 (3)
O11i—Yb3—O4139.80 (8)F9A—C4—F10A108.5 (11)
F3i—Yb3—O4136.04 (7)F9A—C4—F8A106.7 (9)
O17A—Yb3—F2141.7 (7)F10A—C4—F8A107.9 (11)
O14—Yb3—F276.44 (7)F8—C4—F10108.0 (4)
O9—Yb3—F2135.08 (17)F8—C4—F9107.7 (4)
O11i—Yb3—F2137.83 (7)F10—C4—F9106.6 (5)
F3i—Yb3—F263.63 (6)F9A—C4—C3111.9 (9)
O4—Yb3—F274.24 (7)F10A—C4—C3114.5 (12)
O17A—Yb3—F178.4 (8)F8A—C4—C3107.0 (10)
O14—Yb3—F1140.07 (7)F8—C4—C3109.0 (4)
O9—Yb3—F173.3 (2)F10—C4—C3113.1 (4)
O11i—Yb3—F1133.95 (7)F9—C4—C3112.2 (4)
F3i—Yb3—F197.34 (6)O11—C7—O10130.0 (3)
O4—Yb3—F174.91 (7)O11—C7—C8115.3 (3)
F2—Yb3—F165.39 (6)O10—C7—C8114.6 (3)
O17A—Yb3—F474.9 (9)F14—C8—F16107.6 (3)
O14—Yb3—F4136.97 (7)F14—C8—F15107.5 (3)
O9—Yb3—F477.7 (2)F16—C8—F15107.1 (3)
O11i—Yb3—F472.99 (7)F14—C8—C7109.4 (3)
F3i—Yb3—F465.16 (6)F16—C8—C7112.3 (3)
O4—Yb3—F4136.25 (7)F15—C8—C7112.8 (3)
F2—Yb3—F498.13 (6)O13—C9—O12129.9 (3)
F1—Yb3—F463.25 (6)O13—C9—C10115.8 (3)
O17A—Yb3—O1665.8 (9)O12—C9—C10114.3 (3)
O14—Yb3—O1668.32 (8)F19—C10—F17108.5 (5)
O9—Yb3—O1667.3 (3)F19A—C10—F18A108.5 (6)
O11i—Yb3—O1669.60 (8)F19A—C10—F17A107.1 (6)
F3i—Yb3—O16131.44 (7)F18A—C10—F17A106.6 (6)
O4—Yb3—O1670.24 (8)F19—C10—F18105.9 (5)
F2—Yb3—O16131.62 (7)F17—C10—F18105.6 (4)
F1—Yb3—O16131.20 (7)F19A—C10—C9114.2 (4)
F4—Yb3—O16130.25 (7)F19—C10—C9114.2 (3)
Yb1—F1—Yb2111.91 (7)F17—C10—C9112.0 (3)
Yb1—F1—Yb3112.59 (7)F18A—C10—C9109.5 (4)
Yb2—F1—Yb3115.60 (7)F17A—C10—C9110.7 (4)
Yb1—F2—Yb2i112.17 (7)F18—C10—C9110.2 (3)
Yb1—F2—Yb3112.58 (7)O14—C11—O15129.8 (3)
Yb2i—F2—Yb3115.21 (7)O14—C11—C12A110.5 (8)
Yb1—F3—Yb2112.51 (7)O15—C11—C12A119.4 (8)
Yb1—F3—Yb3i113.46 (7)O14—C11—C12117.3 (4)
Yb2—F3—Yb3i114.98 (7)O15—C11—C12112.9 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H12···O60.912.212.883 (8)131
N1—H15···O17ii0.911.862.766 (7)172
N1—H13···O100.912.082.853 (10)142
N1—H14···O20.911.952.837 (9)165
O1—H2···O2A0.841.782.619 (18)175
O1—H3···O9Aii0.842.012.842 (16)173
O1—H1···O100.842.303.03 (3)145
O2—H4···O30.83 (1)1.91 (3)2.704 (11)159 (7)
O2—H5···O120.83 (1)2.31 (5)2.978 (7)138 (6)
O3—H6···O2iii0.85 (2)2.22 (2)3.055 (10)167 (8)
O3—H7···O17iv0.85 (2)2.01 (2)2.835 (9)163 (8)
O2A—H4A···F19A0.83 (1)1.90 (7)2.68 (2)156 (17)
O2A—H5A···O3Aiii0.83 (1)2.35 (14)2.96 (3)131 (16)
O3A—H7A···O2A0.84 (2)2.20 (15)2.91 (4)143 (23)
O3A—H6A···O9Aiv0.83 (2)2.6 (2)3.03 (4)115 (19)
O16—H8···O90.83 (2)2.28 (6)2.639 (10)107 (4)
O16—H8A···O16v0.84 (2)2.07 (2)2.903 (5)179 (17)
O16—H9···F16vi0.82 (2)2.17 (2)2.954 (3)160 (4)
O17—H11···O80.84 (2)2.25 (8)2.593 (7)105 (7)
O17—H10···O13i0.81 (2)2.22 (5)2.754 (4)123 (5)
O17A—H10A···O160.83 (1)1.92 (2)2.56 (3)134 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+2, z+1; (iv) x+1/2, y+3/2, z+1/2; (v) x+2, y+1, z+1; (vi) x+1, y, z.
Selected structural parameters (Å) and empirical bond valences si (valence units) for Yb1–Yb3 top
Calculation of empirical bond valences according to: S = Σ si = Σ{exp[(dd0) / B]} (Brown & Altermatt, 1985), with d0(YbIII—F) = 1.875 Å, B = 0.37 (Brese & O'Keeffe, 1991) and d0(YbIII—O) = 1.965 Å, B = 0.37 (Brown & Altermatt, 1985).
XYdis.o.f. of atom Ysi
Yb1—F12.2375 (17)10.38
Yb1—F22.2382 (17)10.37
Yb1—F32.2431 (17)10.37
Yb1—F4vi2.2444 (17)10.37
Yb1—O52.273 (2)10.43
Yb1—O102.291 (2)10.41
Yb1—O62.306 (2)10.40
Yb1—O122.309 (2)10.39
S = 3.13
Yb2—F2vi2.2895 (17)10.33
Yb2—F42.3035 (17)10.31
Yb2—F32.3061 (17)10.31
Yb2—F12.3276 (17)10.29
Yb2—O8A2.23 (4)0.251 (4)0.12
Yb2—O15vi2.286 (2)10.42
Yb2—O82.299 (13)0.749 (4)0.30
Yb2—O72.303 (2)10.40
Yb2—O13vi2.329 (2)10.37
Yb2—O172.544 (3)0.749 (4)0.16
S = 3.02
Yb3—F3vi2.3210 (17)10.30
Yb3—F22.3316 (17)10.29
Yb3—F12.3321 (17)10.29
Yb3—F42.3509 (17)10.28
Yb3—O17A2.27 (4)0.251 (4)0.11
Yb3—O142.290 (2)10.42
Yb3—O92.312 (11)0.749 (4)0.29
Yb3—O11vi2.321 (2)10.38
Yb3—O42.323 (2)10.38
Yb3—O162.448 (2)10.27
S = 3.01
Yb1···Yb2vi3.7576 (3)Yb2···Yb3vi3.9020 (6)
Yb1···Yb23.7828 (3)Yb2···Yb33.9431 (5)
Yb1···Yb33.8018 (3)Yb3···Yb13.8018 (3)
Yb1···Yb3vi3.8163 (3)Yb3···Yb1vi3.8163 (3)
Yb2···Yb1vi3.7576 (3)Yb3···Yb2vi3.9020 (6)
Yb2···Yb13.7828 (3)Yb3···Yb23.9431 (5)
Symmetry code: (vi) -x + 1, -y + 1, -z + 1.
 

Acknowledgements

Technical support by E. Hammes and T. Herrmann is gratefully acknowledged.

Funding information

Financial support of this research was provided by: Jürgen Manchot Stiftung (scholarship to Florian Morsbach).

References

First citationBaillie, M. J., Brown, D. H., Moss, K. C. & Sharp, D. W. A. (1968). J. Chem. Soc. A, pp. 3110–3114.  CrossRef Web of Science Google Scholar
First citationBasciano, L. C. & Peterson, R. C. (2007). Miner. Mag. 71, 427–441.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBelsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoeyens, J. C. A., McDougal, G. J. & van Smit, J. (1976). J. Solid State Chem. 18, 191–199.  CrossRef ICSD CAS Web of Science Google Scholar
First citationBrandenburg, K. (2020). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstantine, S. P., De Lima, G. M., Hitchcock, P. B., Keates, J. M. & Lawless, G. A. (1996). Chem. Commun. pp. 2421–2422.  CSD CrossRef Web of Science Google Scholar
First citationCunha, T. T. da, Pointillart, F., Le Guennic, B., Pereira, C. L. M., Golhen, S., Cador, O. & Ouahab, L. (2013). Inorg. Chem. 52, 9711–9713.  Web of Science PubMed Google Scholar
First citationDuan, G.-X., Xie, Y.-P., Jin, J.-L., Bao, L.-P., Lu, X. & Mak, T. C. W. (2018). Chem. Eur. J. 24, 6762–6768.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationElementar Analysensysteme GmbH (2015). vario MICRO cube. Elementar Analysensysteme GmbH, Langenselbold, Germany.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFaniran, J. A. & Patel, K. S. (1976). Spectrochim. Acta A, 32, 1351–1354.  CrossRef Web of Science Google Scholar
First citationFeng, Y., Xin, X., Zhang, Y., Guo, B., Li, F., Kong, X., Wang, Y., Wang, X., Wang, Y., Zhang, L. & Sun, D. (2019). Cryst. Growth Des. 19, 1509–1513.  Web of Science CSD CrossRef CAS Google Scholar
First citationFérey, G., Loiseau, T., Lacorre, P. & Taulelle, F. (1993). J. Solid State Chem. 105, 179–190.  Google Scholar
First citationFischer, E. O. & Fischer, H. (1965). J. Organomet. Chem. 3, 181–187.  CrossRef CAS Web of Science Google Scholar
First citationGörne, A. L., George, J., van Leusen, J., Dück, G., Jacobs, P., Muniraju, N. K. C. & Dronskowski, R. (2016). Inorg. Chem. 55, 6161–6168.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHadenfeldt, C., Jacobs, H. & Juza, R. (1970). Z. Anorg. Allg. Chem. 379, 144–156.  CrossRef CAS Web of Science Google Scholar
First citationHadenfeldt, C. & Juza, R. (1969). Naturwissenschaften, 56, 282.  CrossRef PubMed Web of Science Google Scholar
First citationHayes, R. G. & Thomas, J. L. (1969). Inorg. Chem. 8, 2521–2522.  CrossRef CAS Web of Science Google Scholar
First citationHowell, J. K. & Pytlewski, L. L. (1969). J. Less-Common Met. 18, 437–439.  CrossRef CAS Web of Science Google Scholar
First citationJiang, J. C., Chang, H. C., Lee, Y. T. & Lin, S. H. (1999). J. Phys. Chem. A, 103, 3123–3135.  Web of Science CrossRef CAS Google Scholar
First citationKarraker, D. G. (1970). J. Chem. Educ. 47, 424–430.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLing, B.-K., Li, J., Zhai, Y.-Q., Hsu, H.-K., Chan, Y.-T., Chen, W.-P., Han, T. & Zheng, Y.-Z. (2020). Chem. Commun. 56, 9130–9133.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, T.-Y., Das, P., White, D. L., Liu, C., Star, A. & Rosi, N. L. (2020). J. Am. Chem. Soc. 142, 2897–2904.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMeot-Ner (Mautner), M. (2005). Chem. Rev. 105, 213–284.  Google Scholar
First citationMorsbach, F., Klenner, S., Pöttgen, R. & Frank, W. (2022). Dalton Trans. 51, 4814–4828.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPerkin Elmer (2008). SpectrumTM 10. Perkin Elmer Inc., Waltham, Massachusetts, USA.  Google Scholar
First citationPytlewsky, L. L. & Howell, J. K. (1967). Chem. Commun. pp. 1280.  Google Scholar
First citationRillings, K. W. & Roberts, J. E. (1974). Thermochim. Acta, 10, 269–277.  CrossRef Google Scholar
First citationRohde, A. & Urland, W. (2006). Z. Anorg. Allg. Chem. 632, 1141–1144.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaielli, G. (2010). J. Phys. Chem. A, 114, 7261–7265.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaft, R. W., Wolf, J. F., Beauchamp, J. L., Scorrano, G. & Arnett, E. M. (1978). J. Am. Chem. Soc. 100, 1240–1249.  CrossRef CAS Web of Science Google Scholar
First citationThomas, J. O. & Farrington, G. C. (1983). Acta Cryst. B39, 227–235.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationWarf, J. C. (1970). Angew. Chem. Int. Ed. Engl. 9, 383.  CrossRef Web of Science Google Scholar
First citationWarf, J. C. & Korst, W. L. (1956). J. Phys. Chem. 60, 1590–1591.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Wang, Y., Liu, L., Wei, N., Gao, M.-L., Zhao, D. & Han, Z.-B. (2018). Inorg. Chem. 57, 2193–2198.  Web of Science CSD CrossRef ICSD CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds