research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of hypoxanthine salts involving 5-sulfosalicylate and perchlorate anions

crossmark logo

aCentre for Research and Development, PRIST Deemed to be University, Thanjavur 613 403, Tamil Nadu, India, bDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Thanjavur 613 403, Tamil Nadu, India, cFaculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna, pot 113, PO Box 537, SI-1000 Ljubljana, Slovenia, and dX-ray Crystallography Unit, School of Physics, University Sains Malaysia, 11800, USM, Penang, Malaysia
*Correspondence e-mail: nirmalramjs@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 March 2022; accepted 3 May 2022; online 13 May 2022)

Two salts of 1,9-di­hydro­purin-6-one (hypoxanthine), namely, 6-oxo-1,9-di­hydro­purin-7-ium 5-sulfosalicylate dihydrate, C5H5N4O+·C7H5O6S·2H2O, (I), and 6-oxo-1,9-di­hydro­purin-7-ium perchlorate monohydrate, C5H5N4O+·ClO4·H2O, (II), have been synthesized and characterized using single-crystal X-ray diffraction and Hirshfeld analysis. In both salts, the hypoxanthine mol­ecule is protonated at the N7 position of the purine ring. In salt (I), the cation and anion are connected through N—H⋯O inter­actions. The protonated hypoxanthine cations of salt (I) form base pairs with another symmetry-related hypoxanthine cation through N—H⋯O hydrogen bonds with an R22(8) ring motif, while in salt (II), the hypoxanthine cations are paired through a water mol­ecule via N—H⋯O and O—H⋯N hydrogen bonds with an R33(11) ring motif. The packings within the crystal structures are stabilized by ππ stacking inter­actions in salt (I) and C—O⋯π inter­actions in salt (II). The combination of several inter­actions leads to the formation of supra­molecular sheets extending parallel to (010) in salts (I) and (II). Hirshfeld surface analysis and fingerprint plots reveal that O⋯H/H⋯O contacts play the major role in the crystal packing of each of the salts, with a 54.1% contribution in salt (I) and 62.3% in salt (II).

1. Chemical context

1,9-Di­hydro­purin-6-one (hypoxanthine, C5H4N4O), a notable purine-based nucleotide (Emel'yanenko et al., 2017[Emel'yanenko, V. N., Zaitsau, D. H. & Verevkin, S. P. (2017). J. Chem. Eng. Data, 62, 2606-2609.]), is present in the anti­codon as nucleoside inosine in t-RNA (Costas & Acevedo-Chávez, 1997[Costas, M. E. & Acevedo-Chávez, R. (1997). J. Phys. Chem. A, 101, 8309-8318.]; Holley et al., 1965[Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., Penswick, J. R. & Zamir, A. (1965). Science, 147, 1462-1465.]; Stryer, 1988[Stryer, L. (1988). In Biochemistry, 3rd ed., New York: Freeman.]; Plekan et al., 2012[Plekan, O., Feyer, V., Richter, R., Moise, A., Coreno, M., Prince, K. C., Zaytseva, I. L., Moskovskaya, T. E., Soshnikov, D. Y. & Trofimov, A. B. (2012). J. Phys. Chem. A, 116, 5653-5664.]; Hughes, 1981[Hughes, M. N. (1981). In The Inorganic Chemistry of Biological Processes, 2nd ed. New York: John Wiley & Sons.]; Schmalle et al., 1988[Schmalle, H. W., Hänggi, G. & Dubler, E. (1988). Acta Cryst. C44, 732-736.]). Hypoxanthine and xanthine are significant as drugs in the treatment of infections like gout and xanthinuria. Hypoxanthine is additionally utilized against hypoxia and is known to repress the impact of few medications (Dubler et al., 1987a[Dubler, E., Hänggi, G. & Bensch, W. (1987a). J. Inorg. Biochem. 29, 269-288.],b[Dubler, E., Hänggi, G. & Schmalle, H. (1987b). Acta Cryst. C43, 1872-1875.]; Biradha et al., 2010[Biradha, K., Samai, S., Maity, A. C. & Goswami, S. (2010). Cryst. Growth Des. 10, 937-942.]).

Hypoxanthine (HX), a potential oxygen-free radical generator, is a strong agent against cancer cells (Susithra et al., 2018[Susithra, G., Ramalingam, S., Periandy, S. & Aarthi, R. (2018). Egypt. J. Basic Appl. Sci. 5, 313-326.]; Latosińska et al., 2014[Latosińska, J. N., Latosińska, M., Seliger, J., Žagar, V. & Kazimierczuk, Z. (2014). J. Phys. Chem. B, 118, 10837-10853.]; Rutledge et al., 2007[Rutledge, L. R., Wheaton, C. A. & Wetmore, S. D. (2007). Phys. Chem. Chem. Phys. 9, 497-509.]). The presence of the imine group in its structure is responsible for its pharmacological activity. Hypoxanthine can exist in two stable tautomers, viz. as the oxo-N7(H) form and as the oxo-N9(H) form. When hypoxanthine inter­acts with strong acids, it becomes protonated at position N7 or N9. A limited number of hypoxanthine salts like hypoxanthine nitrate (Cabaj & Dominiak, 2021[Cabaj, M. K. & Dominiak, P. M. (2021). Cryst. Growth Des. 21, 424-435.]; Cabaj et al., 2019[Cabaj, M. K., Gajda, R., Hoser, A., Makal, A. & Dominiak, P. M. (2019). Acta Cryst. C75, 1036-1044.]) and hypoxanthine hydro­chloride monohydrate (Sletten & Jensen, 1969[Sletten, J. & Jensen, L. H. (1969). Acta Cryst. B25, 1608-1614.]) have been reported so far in the literature.

The current article reports the crystal structures of hypoxanthinium 5-sulfosalicylate dihydrate, (I), and hypoxan­thin­ium perchlorate monohydrate, (II), salts and the noncovalent inter­actions that govern their crystal packings.

2. Structural commentary

Salt (I) crystallizes with two hypoxanthinium cations (A+ and B+), two 5-sufosalicylate anions (5SCA; A and B) and four solvent water mol­ecules (O1W, O2W, O3W and O4W) in the asymmetric unit, as shown in Fig. 1[link]. In salt (I), the B cation is equally disordered over two sets of sites for atoms C5B/C5C, C6B/C6C and O6B/O6C. Atoms H1B/H1C and H7B/H7C attached to N1B and N7B, respectively, are also disordered. The solvent water mol­ecule O3W is also disordered over two positions. Atoms N7A and N7B are protonated, which is confirmed by widening of the C5A—N7A—C8A angle to 107.1 (4)° compared to the value of 103.8° in the two polymorphic forms of the neutral HX mol­ecule (Schmalle et al., 1988[Schmalle, H. W., Hänggi, G. & Dubler, E. (1988). Acta Cryst. C44, 732-736.]; Yang & Xie, 2007[Yang, R.-Q. & Xie, Y.-R. (2007). Acta Cryst. E63, o3309.]); the situation for C5B—N7B—C8B is less clear due to the observed disorder. The torsion angles of N3A—C4A—C5A—N7A = −179.2 (4)° and N3B—C4B—C5C—N7B = −178.3 (6)° are similar to those of the two forms of the neutral HX mol­ecule (−179.55 and −178.99°; Schmalle et al., 1988[Schmalle, H. W., Hänggi, G. & Dubler, E. (1988). Acta Cryst. C44, 732-736.]; Yang & Xie, 2007[Yang, R.-Q. & Xie, Y.-R. (2007). Acta Cryst. E63, o3309.]). The carb­oxy­lic acid group in each of the two 5SCA anions is coplanar with the benzene ring [O7A—C9A—C10A—C11A = −178.2 (4)° and O7B—C9B—C10B—C11B = 175.9 (4)°], a situation that is likewise observed for previously reported crystal structures involving 5SCA anions.

[Scheme 1]
[Figure 1]
Figure 1
The asymmetric unit of salt (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonding and the disorder of cation B+ is shown.

Salt (II) crystallizes with one hypoxanthinium cation, one perchlorate anion (PCA) and one solvent water mol­ecule in the asymmetric unit. The mol­ecular structure of salt (II) is shown in Fig. 2[link]. Again, the N7 atom of the purine ring is protonated, as confirmed by the widening of the C5—N7—C8 angle to 108.00 (12)°. The N3—C4—C5—N7 torsion angle of 179.34 (14)° is similar to the values determined for salt (I). The PCA anion has the characteristic tetra­hedral shape, with Cl—O bond lengths between 1.4116 (15) and 1.4421 (15) Å, and O—Cl—O angles between 108.29 (9) and 111.24 (12)°.

[Figure 2]
Figure 2
The asymmetric unit of salt (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonding.

3. Supra­molecular features

In the crystal structure of salt (I), (010) sheets of cations and sheets of anions are stacked alternately along [010]. The crystal packing is governed by N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds (Table 1[link]). Symmetry-related A+ cations inter­act through a pair of N1A—H1A⋯O6A hydrogen bonds with a robust R22(8) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Motherwell et al., 2000[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857-871.]). Solvent water mol­ecule OW1 connects the A+ cation via N7A—H7A⋯O1W and O1W—H1WA⋯O6A hydrogen bonds with an R44(14) motif. The A+ cations are further connected via C2A—H2A⋯O1W, C8A—H8A⋯O2W, N9A—H9A⋯O2W and O2W—H2WA⋯N3A, N1A—H1A⋯O6A hydrogen bonds with R32(7), R44(14), R43(10) and R42(10) motifs (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N7B—H7B⋯O3WAi 0.86 2.26 3.08 158
O7A—H7D⋯O10Aii 0.82 1.86 2.677 170
O7B—H7E⋯O10Bi 0.82 1.84 2.655 175
O9A—H9D⋯O12Bii 0.82 2.34 2.924 128
O9B—H9E⋯O12Aiii 0.82 2.54 3.143 131
O1W—H1WA⋯O6Aiv 0.85 2.31 2.801 117
O1W—H1WA⋯O10Biv 0.85 2.28 2.917 132
N9B—H9B⋯O6Bv 0.86 2.42 3.044 130
N9B—H9B⋯O3WAvi 0.86 2.47 3.07 128
N1A—H1A⋯O6Avii 0.86 2.05 2.898 170
N1B—H1C⋯O4W 0.86 2.22 2.890 135
N1B—H1C⋯O11A 0.86 2.45 2.998 122
O1W—H1WB⋯O12B 0.85 2.01 2.844 169
O2W—H2WA⋯N3A 0.83 2.07 2.849 157
O2W—H2WB⋯O12A 0.82 2.03 2.815 160
N7A—H7A⋯O1W 0.86 1.77 2.615 168
N9A—H9A⋯O2W 0.86 1.89 2.697 157
C2A—H2A⋯O1Wii 0.93 2.43 3.149 134
C2B—H2B⋯O11A 0.93 2.46 2.974 114
C8A—H8A⋯O2Wviii 0.93 2.40 3.310 167
C15B—H15B⋯O9A 0.93 2.59 3.510 172
Symmetry codes: (i) x+1, y, z; (ii) [x-1, y, z]; (iii) [x+1, y, z-1]; (iv) [-x+1, -y+1, -z+1]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [-x, -y+1, -z+1]; (viii) [-x+1, -y+1, -z+2].
[Figure 3]
Figure 3
The crystal packing of (I), showing the N—H⋯O and O—H⋯O ring motifs formed between the A+ cation and water mol­ecules.

The B+ cations inter­act with the O atom of the solvent water mol­ecules O3W and O4W through N1B—H1C⋯O4W and N9B—H9B⋯O3WA, and with N9B—H9B⋯O6B with an R22(7) motif. Short O3WA⋯O4W contacts with an R55(20) motif are also observed (Fig. 4[link]). Furthermore, the two 5SCA anions (A and B) self assemble into sheets by inter­action of symmetry-related counterparts through O7A—H7D⋯O10A and O7B—H7E⋯O10B, respectively (Fig. 5[link]). A and B sheets are inter­connected through O9B—H9E⋯O12A and through O9A—H9D⋯O12B and C15B—H15B⋯O9A inter­actions, resulting in R22(7), R44(23) and R44(26) ring motifs. Moreover, cation B+ inter­acts with 5SCA (A) via N1B—H1C⋯O11A and C2B—H2B⋯O11A with an R21(5) motif. Another inter­connection between cationic and anionic sheets involves the solvent water mol­ecules through O1W—H1WA⋯O10B, O1W—H1WB⋯O12B, O2W—H2WA⋯N3A and O2W—H2WB⋯O12A (Fig. 6[link]).

[Figure 4]
Figure 4
The crystal packing of (I), showing the N—H⋯O and O—H⋯O ring motifs formed between the B+ cation and (disordered) water mol­ecules.
[Figure 5]
Figure 5
The supra­molecular layer of assembled 5SCA anions in salt (I).
[Figure 6]
Figure 6
The alternating arrangement of cationic and anionic sheets in salt (I).

The crystal structure of (I) is consolidated by ππ inter­actions between the phenyl rings of the two 5SCA anions (C10A–C15A and C10B–C15B), and the imidazole ring (C4A–N9A) and the pyrimidine ring (N1A–C6A) of cation A+, with centroid-to-centroid distances of 3.547 (3), 3.562 (3), 3.554 (3) and 3.533 (3) Å, and slippages of 0.815, 1.300, 1.182 and 1.105 Å (Fig. 7[link]).

[Figure 7]
Figure 7
ππ stacking inter­actions in (I) between the imidazole and pyrimidine rings of the cations and the phenyl rings of the anions.

In the crystal structure of salt (II), (010) sheets of cations and sheets of anions are stacked alternately along [010]. The crystal packing of salt (II) is dominated by N—H⋯O and O—H⋯O hydrogen bonds, and to a minor extent by C—H⋯O hydrogen bonds (Table 2[link]). The protonated N atom of the cation forms an N7—H7⋯O1Wii hydrogen bond with the O atom of the water mol­ecule. The water mol­ecule disrupts the formation of base pairs but connects symmetry-related cations through O1W—H2W⋯N3iv. Additional N9—H9⋯O6iii inter­actions with an R33(11) ring motif generate a cationic strand along [201]. Parallel cationic strands are connected through the solvent water mol­ecule and the PCA anion through O1W—H1W⋯O3 and bifurcated N1—H1⋯O4 and N1—H1⋯O5 inter­actions, respectively, forming R32(9), R64(14) and R66(20) motifs. The crystal packing of salt (II) is shown in Fig. 8[link]. The crystal structure is further stabilized by carbon­yl⋯π (π refers to the ring system of the cation) inter­actions, with distances of 3.6097 (13), 3.2983 (13), 3.4580 (13) and 3.7236 (14) Å (Fig. 9[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.82 2.60 3.249 138
N1—H1⋯O5 0.82 2.09 2.879 162
N7—H7⋯O2i 0.91 2.60 3.031 110.2
N7—H7⋯O1Wii 0.91 1.76 2.6489 165
N9—H9⋯O6iii 0.84 1.93 2.7602 166
O1W—H1W⋯O3iv 0.85 2.17 3.018 172
O1W—H2W⋯N3 0.85 2.11 2.951 172
C8—H8⋯O2i 0.93 2.47 2.970 114
C8—H8⋯O3iii 0.93 2.47 3.268 144
C8—H8⋯O4iii 0.93 2.55 3.072 116
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, -y+1, -z+1].
[Figure 8]
Figure 8
A view of the supra­molecular arrangement involving hydrogen-bonded rings in salt (II).
[Figure 9]
Figure 9
A view of the PCA anions and water mol­ecules connecting sheets through O—H⋯O hydrogen bonds and a view of the C—O⋯π inter­actions (π = imidazole and pyrimidine rings of the cation) in salt (II). [Symmetry codes: (i) −x + 2, y − [{1\over 2}], −z + [{1\over 2}]; (ii) x + 1, −y + [{1\over 2}], z − [{1\over 2}].]

4. Hirshfeld surface analysis

Hirshfeld surface (HS) analyses of salts (I) and (II) were performed using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. https://hirshfeldsurface.net.]). The results of the HS analysis mapped over dnorm are shown in Figs. 10[link](a) and 10(b) for (I) and (II), respectively. Corresponding two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) for (I) and (II) are shown in Figs. 11[link] and 12[link], respectively. The contributions of the noncovalent inter­actions to the HS in the two salts are: O⋯H/H⋯O 54.1% (I), 62.3% (II); N⋯H/H⋯N 3.1% (I), 6.8% (II); C⋯H/H⋯C 5.9% (I), 5.4% (II); H⋯H/H⋯H 16.0% (I), 5.3% (II); C⋯C/C⋯C 0.9% (I), 0.1% (II).

[Figure 10]
Figure 10
Hirshfeld surface for salts (a) (I) and (b) (II) mapped over dnorm.
[Figure 11]
Figure 11
Fingerprint plots of salt (I) showing all inter­molecular inter­actions and delineated into O⋯H/H⋯O, H⋯N/N⋯H, C⋯O, C⋯N, C⋯H/H⋯C and H⋯H contacts.
[Figure 12]
Figure 12
Fingerprint plots of salt (II) showing all inter­molecular inter­actions and delineated into O⋯H/H⋯O, H⋯N/N⋯H, C⋯O, C⋯H/H⋯C and H⋯H contacts.

5. Comparison with the structures of related compounds

Crystal data, supra­molecular inter­actions and hydrogen bonding motifs of structurally similar halide/nitrate/phosphite/phosphate/perchlorate or sulfate salts like guanidinium bro­mide (Wei, 1977[Wei, C. H. (1977). Cryst. Struct. Commun. 6, 525-529.]), guanidinium chloride (Maixner & Zachová, 1991[Maixner, J. & Zachová, J. (1991). Acta Cryst. C47, 2474-2476.]), bis­(guanidinium) hydrogen phosphate 2.5-hydrate (Low et al., 1986[Low, J. N., Tollin, P., Young, D. W. & Scrimgeour, S. N. (1986). Acta Cryst. C42, 1045-1047.]), guanidinium phosphite (Bendeif et al., 2007[Bendeif, E.-E., Dahaoui, S., Benali-Cherif, N. & Lecomte, C. (2007). Acta Cryst. B63, 448-458.]), guanidinium sulfate (Cherouana et al., 2003[Cherouana, A., Benali-Cherif, N. & Bendjeddou, L. (2003). Acta Cryst. E59, o180-o182.]), guanidinium dinitrate dihydrate (Bouchouit et al., 2002[Bouchouit, K., Benali-Cherif, N., Benguedouar, L., Bendheif, L. & Merazig, H. (2002). Acta Cryst. E58, o1397-o1399.]), xanthinium nitrate, xanthinium sulfate (Sridhar, 2011[Sridhar, B. (2011). Acta Cryst. C67, o382-o386.]), xanthinium perchlorate dihydrate (Biradha et al., 2010[Biradha, K., Samai, S., Maity, A. C. & Goswami, S. (2010). Cryst. Growth Des. 10, 937-942.]), hypoxanthinium chloride monohydrate (Sletten & Jensen, 1969[Sletten, J. & Jensen, L. H. (1969). Acta Cryst. B25, 1608-1614.]) and hypoxanthinium nitrate monohydrate (Cabaj et al., 2019[Cabaj, M. K., Gajda, R., Hoser, A., Makal, A. & Dominiak, P. M. (2019). Acta Cryst. C75, 1036-1044.]) are listed and compared in Table 3[link].

Table 3
Comparison of salt forms of purine derivatives containing halides/nitrate/phosphite/phosphate/sulfate and perchlorates as anions

Compound Space group Primary inter­action between Graph-set motif Motif type Secondary inter­action between Graph-set motif Motif type  
Guanidinium hydro­chloride Monoclinic P21/c, N—H⋯N, R22(8), IV and V N—H⋯Cl, R32(8), XII and XIII  
  a = 4.479 Å N—H⋯O R22(10)   C—H⋯Cl, R43(11)    
  b = 9.995 Å       O—H⋯N,      
  c = 19.304 Å       O—H⋯Cl      
  β = 107.90°              
Guanidinium hydro­bromide Monoclinic P21/c N—H⋯N, R22(8), IV and V N—H⋯Br, R32(8), XII and XIII  
  a = 4.8708 Å N—H⋯O R22(10)   N—H⋯N, R43(11)    
  b = 13.237 Å       O—H⋯Br,      
  c = 14.638 Å       C—H⋯Br      
  β = 93.906°              
Guanidinium dinitrate dihydrate Monoclinic P21/c N—H⋯O R22(8) V N—H⋯O, R43(12) XII  
  a = 6.6340 Å       O—H⋯O      
  b = 10.2020 Å              
  c = 11.0440 Å              
  β = 106.04°              
Guanidinium phosphite monohydrate Monoclinic P21/c N—H⋯N R22(8) IV N—H⋯O R21(6), XII and XVIII  
  a = 4.9700 Å         R43(10)    
  b = 12.7506 Å              
  c = 15.0499 Å              
  β = 92.293°              
Guanidinium phosphite dihydrate form (I) Monoclinic P21/c N—H⋯N R22(8) IV N—H⋯N, R32(8), XIII and XVIII  
  a = 4.6812 Å       N—H⋯O R21(6)    
  b = 24.0561 Å              
  c = 9.5186 Å              
  β = 99.773°              
Guanidinium phosphite dihydrate form (II) Monoclinic P21/c N—H⋯N R22(8) IV N—H⋯N, R32(8), XIII and XVIII  
  a = 4.7340 Å       N—H⋯O R21(6)    
  b = 24.0450 Å              
  c = 9.5050 Å              
  β = 98.860°              
Guanidinium phosphate hydrate form (I) Triclinic, P[\overline{1}] N—H⋯N R22(8) IV N—H⋯O, R22(9) XVI and XVII  
  a = 9.607 Å       O—H⋯O R22(10)    
  b = 10.221 Å              
  c = 10.603 Å              
  α = 84.5°              
  β = 108.2°              
  γ = 119.7°              
Guanidinium phosphate monohydrate form (II) Monoclinic P21/n N—H⋯N R22(8) IV N—H⋯O, R22(8), VI, XIII and XVI  
  a = 4.5414 Å       O—H⋯O R32(8),    
  b = 12.5774 Å         R22(9)    
  c = 18.1485 Å              
  β = 93.689 °              
Guanidinium sulfate monohydrate Monoclinic P21/c N—H⋯O R22(8) VI N—H⋯O, R43(12) XV  
  a = 8.9940 Å       O—H⋯O      
  b = 10.2020 Å              
  c = 11.0440 Å              
  β = 106.04°              
Xanthinium nitrate monohydrate Triclinic, P[\overline{1}] N—H⋯O R22(8) I O—H⋯N, R22(4), VIII, XI and XIII  
  a = 5.0416 Å       O—H⋯O R32(8),    
  b = 7.4621 Å         R64(14)    
  c = 12.1396 Å              
  α = 80.248°              
  β = 80.800°              
  γ = 75.657°              
Xanthinium sulfate monohydrate Monoclinic P21 N—H⋯O R22(8) I O—H⋯N, R32(8) XIII  
  a = 5.183 Å              
  b = 24.805 Å              
  c = 7.701 Å              
  β = 103.510°              
Xanthinium perchlorate dihydrate Triclinic, P[\overline{1}] N—H⋯O R22(8) I O—H⋯N, R32(8) XIII  
  a = 5.1625 Å       O—H⋯O      
  b = 7.7449 Å              
  c = 13.696 Å              
  α = 100.214°              
  β = 91.591°              
  γ = 100.880°              
Hypoxanthinium hydro­chloride monohydrate Monoclinic P21/c N—H⋯Cl R32(9) III N—H⋯Cl, R33(11), IX, X and XI  
  a = 4.8295 Å       C—H⋯Cl, R44(16),    
  b = 17.7285 Å       O—H⋯N, R64(14)    
  c = 9.0077 Å       O—H⋯Cl      
  β = 94.59°              
Hypoxanthinium nitrate monohydrate form (I) Ortho­rhom­bic Pnma N—H⋯O R22(8) II N—H⋯O, R22(6), XIII and XIV  
  a = 13.701 Å       O—H⋯O, R32(8),    
  b = 6.236 Å         R66(20)    
  c = 10.078 Å              
Hypoxanthinium nitrate monohydrate form (II) Monoclinic P21/n N—H⋯O R22(8) II N—H⋯O, R22(6), XIII and XIV  
  a = 6.1452 Å       O—H⋯O, R32(8)    
  b = 13.7517 Å              
  c = 10.0414 Å              
  β = 95.601°              

A comparison of salts (I) and (II) with the related salt forms of guanine, xanthinium and hypoxanthine reveal that, in most of the crystal structures containing purine derivatives, the purine forms base pairs through pairs of N—H⋯O or N—H⋯N hydrogen bonds with an R22(8) primary ring motif. When it comes to an inter­action between the purine base and a strong acid, the chloride/nitrate/sulfate/phosphite/phosphate or perchlorate salts of guanine/xanthine and hypoxanthine have different mol­ecular recognition patterns. The most important primary and secondary motifs formed by hypoxanthine and similar compounds are summarized in Figs. 13[link] and 14[link]. Crystallographic studies of salts involving perchlorate and sulfate anions reveal that most of these salts have similar crystal packing arrangements (Bishop et al., 2014[Bishop, J. L., Quinn, R. & Dyar, M. D. (2014). Am. Mineral. 99, 1580-1592.]). In general, salts of structurally similar systems will have similar mol­ecular recognition patterns and supra­molecular motifs. However, for salts (I) and (II) and related systems compiled in Table 3[link], great similarities are not observed. The differences in mol­ecular recognition and supra­molecular self-assembly might be due to the involvement of other functional groups or substituents in the structures, the intrusion of water mol­ecules in the crystal structure, or the ratio of anions and cations present in the asymmetric unit.

[Figure 13]
Figure 13
Primary ring motifs observed in purine derivatives.
[Figure 14]
Figure 14
Secondary ring motifs observed in purine derivatives.

6. Synthesis and crystallization

Salt (I) was synthesized by mixing an equimolar ratio of hypoxanthine (0.0340 g) and 5-sulfosalicylic acid (0.0545 g) in hot water. The solution was heated to 333 K for 1 h and then allowed to cool slowly to room tem­per­ature. Colourless needle-shaped crystals were harvested from the mother liquid after one week.

Salt (II) was synthesized by mixing an equimolar ratio of hypoxanthine (0.0340 g) and iron perchlorate monohydrate (0.0681 g) in hot water. The solution was heated to 333 K with constant stirring for 1 h and then allowed to cool slowly to room tem­per­ature. Colourless plate-like crystals were harvested from the mother liquid after one week.

7. Refinement

Crystal data, data collection and structure refinement details of salts (I) and (II) are summarized in Table 4[link]. In salt (I), carbon (C5 and C6) and oxygen (O6) atoms of cation B are equally disordered over two sets of sites, with a refined occupancy ratio of 0.503 (18):0.497 (18). The solvent water mol­ecule O3W is disordered over two positions, with a refined site-occupancy ratio of 0.58 (6):0.42 (6). The H atoms of water mol­ecules O1W and O2W were located from a difference Fourier map, and the O—H distance restrained to 0.82 Å. Attempts to localize the H atoms of O3W and O4W in (I) from difference Fourier maps failed as there were no relevant electron densities close to these atoms. Hence, these H atoms are not part of the model but are included in the formula. All C- and N-bound H atoms in (I) were placed in idealized positions and refined freely using a riding model, with C—H = 0.95 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N). In salt (II), the N-bound H atoms were located in a difference Fourier map and refined freely. The H atoms of the water mol­ecule were likewise located from a difference Fourier map. The geometry of the water mol­ecule was restrained using DFIX commands with an O—H distance of 0.85 Å and an H⋯H distance of 1.36 Å. All C-bound H atoms were treated as for salt (I).

Table 4
Experimental details

  (I) (II)
Crystal data
Chemical formula C5H5N4O+·C7H5O6S·2H2O C5H5N4O+·ClO4·H2O
Mr 388.32 254.60
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 293 296
a, b, c (Å) 8.7055 (3), 25.9927 (13), 13.6479 (5) 5.0307 (6), 20.386 (2), 9.0181 (10)
β (°) 91.864 (3) 94.233 (2)
V3) 3086.6 (2) 922.33 (18)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.27 0.44
Crystal size (mm) 0.55 × 0.20 × 0.10 0.45 × 0.02 × 0.003
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.957, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21075, 7079, 5905 16360, 2752, 2370
Rint 0.032 0.025
(sin θ/λ)max−1) 0.649 0.711
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.190, 1.22 0.038, 0.111, 1.05
No. of reflections 7079 2752
No. of parameters 521 165
No. of restraints 2 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.74, −0.43 0.37, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), POVRay (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: https://www.povray.org.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and POVRay (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).

6-Oxo-1,9-dihydropurin-7-ium 5-sulfosalicylate dihydrate (I) top
Crystal data top
C5H5N4O+·C7H5O6S·2H2OF(000) = 1600
Mr = 388.32Dx = 1.671 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.7055 (3) ÅCell parameters from 7079 reflections
b = 25.9927 (13) Åθ = 2.8–27.5°
c = 13.6479 (5) ŵ = 0.27 mm1
β = 91.864 (3)°T = 293 K
V = 3086.6 (2) Å3Needle, colourless
Z = 80.55 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.032
φ and ω scansθmax = 27.5°, θmin = 2.9°
21075 measured reflectionsh = 1111
7079 independent reflectionsk = 2333
5905 reflections with I > 2σ(I)l = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.087 w = 1/[σ2(Fo2) + (0.0167P)2 + 13.1153P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.190(Δ/σ)max < 0.001
S = 1.22Δρmax = 0.74 e Å3
7079 reflectionsΔρmin = 0.43 e Å3
521 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0013 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O6A0.1947 (4)0.49617 (15)0.5394 (2)0.0415 (8)
N1A0.0096 (4)0.49891 (15)0.6407 (3)0.0312 (8)
H1A0.0721220.4976380.5906940.037*
N3A0.0062 (4)0.50335 (15)0.8125 (3)0.0311 (8)
N7A0.3886 (4)0.49922 (15)0.7338 (3)0.0321 (8)
H7A0.4598230.4978460.6916260.038*
N9A0.2725 (4)0.50320 (16)0.8730 (3)0.0331 (9)
H9A0.2577400.5048290.9348760.040*
C2A0.0710 (5)0.50158 (18)0.7299 (3)0.0325 (10)
H2A0.1775760.5021970.7323240.039*
C4A0.1607 (5)0.50245 (17)0.8000 (3)0.0263 (9)
C5A0.2318 (4)0.50003 (17)0.7134 (3)0.0261 (9)
C6A0.1473 (5)0.49805 (18)0.6231 (3)0.0287 (9)
C8A0.4084 (5)0.50097 (19)0.8307 (3)0.0355 (10)
H8A0.5031780.5006830.8642220.043*
N1B0.7702 (5)0.25698 (19)0.9705 (5)0.0620 (15)
H1C0.6898660.2589411.0054450.074*0.497 (18)
H1B0.7165860.2585131.0223120.074*0.503 (18)
C2B0.7345 (7)0.2589 (2)0.8774 (6)0.0581 (16)
H2B0.6318790.2624540.8573290.070*
N3B0.8390 (5)0.25613 (17)0.8117 (3)0.0445 (10)
C4B0.9779 (5)0.25070 (18)0.8592 (3)0.0331 (10)
O6B0.9419 (18)0.2493 (6)1.1190 (8)0.054 (3)0.497 (18)
C5C1.0267 (15)0.2496 (4)0.9577 (8)0.035 (3)0.497 (18)
C6B0.9094 (14)0.2524 (4)1.0314 (7)0.035 (3)0.497 (18)
O6C1.0195 (19)0.2484 (6)1.1206 (10)0.062 (3)0.503 (18)
C5B0.9336 (17)0.2513 (4)0.9552 (8)0.040 (3)0.503 (18)
C6C1.0442 (17)0.2479 (4)1.0326 (7)0.048 (4)0.503 (18)
N7B1.1875 (6)0.2444 (2)0.9780 (5)0.0680 (16)
H7B1.2419710.2428641.0316660.082*0.497 (18)
H7C1.2677260.2431411.0164230.082*0.503 (18)
C8B1.2225 (7)0.2428 (2)0.8848 (6)0.0565 (16)
H8B1.3242950.2391390.8673830.068*
N9B1.1141 (5)0.24629 (17)0.8172 (4)0.0479 (11)
H9B1.1278570.2458440.7550810.058*
O3WA0.367 (4)0.2714 (4)1.1689 (17)0.063 (5)0.58 (6)
O3WB0.296 (4)0.2700 (6)1.1468 (11)0.043 (6)0.42 (6)
S1A0.40654 (12)0.36757 (5)0.96698 (8)0.0300 (3)
O7A0.1915 (4)0.38972 (17)0.9153 (3)0.0473 (10)
H7D0.2842610.3943800.9193810.071*
O8A0.2547 (4)0.38674 (17)0.7567 (3)0.0489 (10)
O9A0.0354 (4)0.37374 (16)0.6296 (2)0.0453 (9)
H9D0.1232610.3801420.6458750.068*
O10A0.5153 (4)0.40963 (14)0.9514 (3)0.0386 (8)
O11A0.4769 (4)0.31756 (14)0.9629 (3)0.0467 (9)
O12A0.3208 (4)0.37511 (15)1.0554 (2)0.0429 (9)
C9A0.1574 (5)0.38438 (18)0.8225 (3)0.0309 (9)
C10A0.0083 (5)0.37720 (17)0.8061 (3)0.0295 (9)
C11A0.0590 (5)0.37254 (18)0.7101 (3)0.0322 (10)
C12A0.2158 (5)0.3673 (2)0.6944 (4)0.0381 (11)
H12A0.2501920.3644240.6308520.046*
C13A0.3201 (5)0.36641 (19)0.7726 (3)0.0352 (10)
H13A0.4245670.3632450.7614670.042*
C14A0.2696 (5)0.37022 (17)0.8681 (3)0.0299 (9)
C15A0.1145 (5)0.37553 (17)0.8842 (3)0.0287 (9)
H15A0.0809050.3780030.9480390.034*
S1B0.56102 (12)0.37011 (5)0.45829 (9)0.0341 (3)
O7B1.1577 (4)0.38612 (17)0.4147 (2)0.0443 (9)
H7E1.2483910.3945760.4187880.066*
O8B1.2092 (4)0.37883 (17)0.2566 (3)0.0497 (10)
O9B0.9832 (4)0.36982 (17)0.1295 (2)0.0492 (9)
H9E1.0735330.3691360.1484630.074*
O10B0.4520 (4)0.41174 (15)0.4380 (3)0.0465 (9)
O11B0.4889 (4)0.31994 (16)0.4549 (3)0.0542 (10)
O12B0.6496 (4)0.37900 (17)0.5491 (3)0.0509 (10)
C9B1.1165 (5)0.37948 (18)0.3224 (3)0.0317 (10)
C10B0.9504 (5)0.37406 (17)0.3041 (3)0.0280 (9)
C11B0.8925 (5)0.37007 (18)0.2071 (3)0.0333 (10)
C12B0.7338 (6)0.3667 (2)0.1889 (4)0.0405 (11)
H12B0.6951900.3637370.1247810.049*
C13B0.6350 (5)0.36764 (19)0.2646 (4)0.0365 (11)
H13B0.5295540.3659680.2516420.044*
C14B0.6914 (5)0.37113 (17)0.3618 (3)0.0287 (9)
C15B0.8480 (5)0.37456 (16)0.3811 (3)0.0269 (9)
H15B0.8853720.3772140.4455310.032*
O1W0.6140 (4)0.48175 (16)0.6162 (2)0.0449 (9)
H1WA0.6058420.5030250.5690010.067*
H1WB0.6130010.4524090.5887980.067*
O2W0.2476 (4)0.48039 (15)1.0649 (3)0.0412 (8)
O4W0.6239 (8)0.2277 (2)1.1488 (4)0.100 (2)
H2WA0.161 (5)0.487 (4)1.082 (7)0.150*
H2WB0.270 (12)0.4502 (13)1.075 (8)0.150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O6A0.0336 (17)0.066 (2)0.0244 (16)0.0003 (17)0.0008 (13)0.0022 (16)
N1A0.0239 (18)0.041 (2)0.0279 (19)0.0016 (16)0.0058 (14)0.0027 (17)
N3A0.0270 (18)0.040 (2)0.0268 (19)0.0015 (16)0.0048 (15)0.0003 (16)
N7A0.0220 (17)0.045 (2)0.0296 (19)0.0007 (16)0.0021 (14)0.0066 (17)
N9A0.0300 (19)0.049 (2)0.0205 (17)0.0018 (17)0.0007 (14)0.0037 (17)
C2A0.026 (2)0.036 (2)0.036 (2)0.0014 (18)0.0062 (18)0.002 (2)
C4A0.028 (2)0.031 (2)0.0198 (19)0.0007 (17)0.0007 (16)0.0010 (17)
C5A0.0191 (18)0.036 (2)0.023 (2)0.0006 (17)0.0023 (15)0.0005 (18)
C6A0.030 (2)0.034 (2)0.023 (2)0.0007 (18)0.0008 (16)0.0000 (18)
C8A0.025 (2)0.047 (3)0.034 (2)0.003 (2)0.0002 (18)0.007 (2)
N1B0.034 (2)0.046 (3)0.106 (5)0.002 (2)0.006 (3)0.012 (3)
C2B0.046 (3)0.044 (3)0.086 (5)0.003 (3)0.017 (3)0.002 (3)
N3B0.037 (2)0.043 (2)0.052 (3)0.0017 (19)0.008 (2)0.003 (2)
C4B0.038 (2)0.029 (2)0.032 (2)0.0005 (19)0.0027 (19)0.0034 (19)
O6B0.058 (7)0.077 (7)0.026 (4)0.009 (7)0.003 (5)0.003 (4)
C5C0.023 (6)0.030 (5)0.051 (7)0.004 (4)0.005 (5)0.003 (4)
C6B0.052 (8)0.034 (5)0.020 (5)0.003 (5)0.004 (4)0.001 (4)
O6C0.061 (8)0.081 (7)0.044 (6)0.014 (8)0.012 (6)0.009 (5)
C5B0.040 (8)0.031 (5)0.048 (7)0.006 (5)0.001 (5)0.001 (5)
C6C0.094 (12)0.032 (5)0.018 (5)0.013 (6)0.020 (5)0.004 (4)
N7B0.041 (3)0.047 (3)0.115 (5)0.003 (2)0.009 (3)0.002 (3)
C8B0.035 (3)0.044 (3)0.089 (5)0.005 (2)0.015 (3)0.004 (3)
N9B0.047 (3)0.044 (3)0.053 (3)0.004 (2)0.011 (2)0.008 (2)
O3WA0.054 (12)0.070 (6)0.065 (7)0.018 (5)0.002 (9)0.012 (5)
O3WB0.039 (13)0.056 (6)0.032 (6)0.001 (6)0.005 (5)0.005 (5)
S1A0.0190 (5)0.0406 (6)0.0304 (5)0.0041 (4)0.0014 (4)0.0024 (5)
O7A0.0204 (15)0.082 (3)0.0395 (19)0.0058 (18)0.0025 (14)0.0025 (19)
O8A0.0254 (16)0.081 (3)0.040 (2)0.0042 (17)0.0062 (14)0.0015 (19)
O9A0.0374 (19)0.064 (2)0.0339 (18)0.0009 (19)0.0081 (15)0.0020 (18)
O10A0.0233 (15)0.048 (2)0.045 (2)0.0038 (14)0.0008 (14)0.0051 (16)
O11A0.0363 (19)0.045 (2)0.058 (2)0.0119 (16)0.0007 (17)0.0030 (18)
O12A0.0297 (17)0.066 (2)0.0331 (18)0.0037 (17)0.0043 (14)0.0005 (17)
C9A0.024 (2)0.036 (2)0.033 (2)0.0022 (18)0.0001 (17)0.0048 (19)
C10A0.0214 (19)0.029 (2)0.038 (2)0.0005 (17)0.0022 (17)0.0051 (19)
C11A0.032 (2)0.031 (2)0.033 (2)0.0002 (19)0.0038 (18)0.0015 (19)
C12A0.036 (2)0.048 (3)0.031 (2)0.001 (2)0.0036 (19)0.001 (2)
C13A0.024 (2)0.044 (3)0.038 (2)0.005 (2)0.0063 (18)0.004 (2)
C14A0.024 (2)0.031 (2)0.035 (2)0.0021 (17)0.0004 (17)0.0004 (19)
C15A0.024 (2)0.032 (2)0.031 (2)0.0006 (17)0.0008 (16)0.0007 (18)
S1B0.0199 (5)0.0449 (7)0.0374 (6)0.0012 (5)0.0017 (4)0.0018 (5)
O7B0.0216 (15)0.080 (3)0.0314 (17)0.0009 (17)0.0012 (13)0.0034 (18)
O8B0.0331 (18)0.080 (3)0.0366 (19)0.0020 (18)0.0085 (15)0.0028 (19)
O9B0.048 (2)0.069 (3)0.0303 (18)0.000 (2)0.0063 (15)0.0004 (18)
O10B0.0261 (17)0.053 (2)0.060 (2)0.0086 (16)0.0035 (16)0.0015 (19)
O11B0.041 (2)0.052 (2)0.070 (3)0.0094 (18)0.0085 (19)0.003 (2)
O12B0.0287 (17)0.088 (3)0.0354 (19)0.0048 (19)0.0048 (14)0.003 (2)
C9B0.029 (2)0.036 (2)0.030 (2)0.0049 (19)0.0029 (18)0.0043 (19)
C10B0.025 (2)0.029 (2)0.030 (2)0.0021 (17)0.0024 (16)0.0034 (18)
C11B0.038 (2)0.035 (2)0.027 (2)0.000 (2)0.0025 (18)0.0020 (19)
C12B0.039 (3)0.050 (3)0.032 (2)0.002 (2)0.007 (2)0.006 (2)
C13B0.027 (2)0.041 (3)0.041 (3)0.003 (2)0.0124 (19)0.002 (2)
C14B0.025 (2)0.031 (2)0.030 (2)0.0007 (17)0.0004 (16)0.0033 (19)
C15B0.0243 (19)0.029 (2)0.027 (2)0.0013 (17)0.0014 (16)0.0012 (18)
O1W0.0373 (19)0.064 (2)0.0336 (18)0.0042 (19)0.0112 (16)0.0006 (17)
O2W0.0378 (19)0.057 (2)0.0288 (17)0.0041 (17)0.0081 (14)0.0002 (17)
O4W0.165 (6)0.065 (3)0.067 (3)0.006 (4)0.048 (4)0.014 (3)
Geometric parameters (Å, º) top
O6A—C6A1.228 (5)S1A—O12A1.453 (3)
N1A—C2A1.346 (6)S1A—O10A1.466 (3)
N1A—C6A1.395 (5)S1A—C14A1.772 (4)
N1A—H1A0.8600O7A—C9A1.318 (6)
N3A—C2A1.293 (6)O7A—H7D0.8200
N3A—C4A1.362 (5)O8A—C9A1.216 (5)
N7A—C8A1.330 (6)O9A—C11A1.350 (5)
N7A—C5A1.384 (5)O9A—H9D0.8200
N7A—H7A0.8600C9A—C10A1.479 (6)
N9A—C8A1.334 (6)C10A—C15A1.389 (6)
N9A—C4A1.370 (5)C10A—C11A1.402 (6)
N9A—H9A0.8600C11A—C12A1.395 (6)
C2A—H2A0.9300C12A—C13A1.378 (7)
C4A—C5A1.354 (6)C12A—H12A0.9300
C5A—C6A1.415 (6)C13A—C14A1.394 (6)
C8A—H8A0.9300C13A—H13A0.9300
N1B—C2B1.300 (9)C14A—C15A1.382 (6)
N1B—C6B1.452 (12)C15A—H15A0.9300
N1B—C5B1.452 (15)S1B—O11B1.447 (4)
N1B—H1C0.8600S1B—O12B1.456 (4)
N1B—H1B0.8600S1B—O10B1.460 (4)
C2B—N3B1.301 (7)S1B—C14B1.767 (4)
C2B—C5B2.013 (16)O7B—C9B1.310 (5)
C2B—H2B0.9300O7B—H7E0.8200
N3B—C4B1.361 (6)O8B—C9B1.227 (5)
C4B—N9B1.339 (6)O9B—C11B1.342 (6)
C4B—C5B1.378 (12)O9B—H9E0.8200
C4B—C5C1.396 (12)C9B—C10B1.466 (6)
O6B—C6B1.222 (15)C10B—C15B1.401 (6)
C5C—N7B1.425 (13)C10B—C11B1.405 (6)
C5C—C6B1.458 (18)C11B—C12B1.399 (7)
C5C—C8B2.009 (15)C12B—C13B1.366 (7)
O6C—C6C1.227 (16)C12B—H12B0.9300
C5B—C6C1.41 (2)C13B—C14B1.401 (6)
C6C—N7B1.476 (14)C13B—H13B0.9300
N7B—C8B1.319 (9)C14B—C15B1.383 (6)
N7B—H7B0.8600C15B—H15B0.9300
N7B—H7C0.8600O1W—H1WA0.8501
C8B—N9B1.301 (7)O1W—H1WB0.8493
C8B—H8B0.9300O2W—H2WA0.821 (10)
N9B—H9B0.8600O2W—H2WB0.820 (10)
S1A—O11A1.439 (4)
C2A—N1A—C6A125.2 (4)N9B—C8B—C5C74.8 (5)
C2A—N1A—H1A117.4N7B—C8B—C5C45.0 (4)
C6A—N1A—H1A117.4N9B—C8B—H8B120.1
C2A—N3A—C4A112.2 (4)N7B—C8B—H8B120.1
C8A—N7A—C5A107.1 (4)C5C—C8B—H8B165.1
C8A—N7A—H7A126.4C8B—N9B—C4B109.5 (5)
C5A—N7A—H7A126.4C8B—N9B—H9B125.2
C8A—N9A—C4A107.7 (4)C4B—N9B—H9B125.2
C8A—N9A—H9A126.1O11A—S1A—O12A112.6 (2)
C4A—N9A—H9A126.1O11A—S1A—O10A113.0 (2)
N3A—C2A—N1A125.4 (4)O12A—S1A—O10A111.8 (2)
N3A—C2A—H2A117.3O11A—S1A—C14A106.4 (2)
N1A—C2A—H2A117.3O12A—S1A—C14A106.0 (2)
C5A—C4A—N3A126.3 (4)O10A—S1A—C14A106.4 (2)
C5A—C4A—N9A107.5 (4)C9A—O7A—H7D109.5
N3A—C4A—N9A126.2 (4)C11A—O9A—H9D109.5
C4A—C5A—N7A107.5 (4)O8A—C9A—O7A122.1 (4)
C4A—C5A—C6A121.5 (4)O8A—C9A—C10A123.6 (4)
N7A—C5A—C6A131.0 (4)O7A—C9A—C10A114.2 (4)
O6A—C6A—N1A121.4 (4)C15A—C10A—C11A119.5 (4)
O6A—C6A—C5A129.1 (4)C15A—C10A—C9A121.1 (4)
N1A—C6A—C5A109.5 (4)C11A—C10A—C9A119.4 (4)
N7A—C8A—N9A110.1 (4)O9A—C11A—C12A116.8 (4)
N7A—C8A—H8A125.0O9A—C11A—C10A123.8 (4)
N9A—C8A—H8A125.0C12A—C11A—C10A119.4 (4)
C2B—N1B—C6B137.0 (7)C13A—C12A—C11A120.5 (4)
C2B—N1B—C5B93.9 (7)C13A—C12A—H12A119.8
C2B—N1B—H1C111.5C11A—C12A—H12A119.8
C6B—N1B—H1C111.5C12A—C13A—C14A120.2 (4)
C2B—N1B—H1B133.1C12A—C13A—H13A119.9
C5B—N1B—H1B133.1C14A—C13A—H13A119.9
N1B—C2B—N3B121.5 (6)C15A—C14A—C13A119.7 (4)
N1B—C2B—C5B46.0 (5)C15A—C14A—S1A121.3 (3)
N3B—C2B—C5B75.5 (5)C13A—C14A—S1A119.0 (3)
N1B—C2B—H2B119.3C14A—C15A—C10A120.7 (4)
N3B—C2B—H2B119.3C14A—C15A—H15A119.6
C5B—C2B—H2B165.3C10A—C15A—H15A119.6
C2B—N3B—C4B107.9 (5)O11B—S1B—O12B112.8 (3)
N9B—C4B—N3B126.2 (5)O11B—S1B—O10B112.5 (2)
N9B—C4B—C5B133.4 (8)O12B—S1B—O10B111.5 (2)
N3B—C4B—C5B100.4 (7)O11B—S1B—C14B106.2 (2)
N9B—C4B—C5C99.5 (7)O12B—S1B—C14B107.3 (2)
N3B—C4B—C5C134.3 (7)O10B—S1B—C14B106.1 (2)
C4B—C5C—N7B117.1 (10)C9B—O7B—H7E109.5
C4B—C5C—C6B117.7 (10)C11B—O9B—H9E109.5
N7B—C5C—C6B125.2 (10)O8B—C9B—O7B122.7 (4)
C4B—C5C—C8B76.2 (6)O8B—C9B—C10B122.9 (4)
N7B—C5C—C8B40.9 (5)O7B—C9B—C10B114.4 (4)
C6B—C5C—C8B166.0 (9)C15B—C10B—C11B119.4 (4)
O6B—C6B—N1B136.7 (11)C15B—C10B—C9B121.3 (4)
O6B—C6B—C5C121.8 (11)C11B—C10B—C9B119.3 (4)
N1B—C6B—C5C101.5 (8)O9B—C11B—C12B117.6 (4)
C4B—C5B—C6C120.4 (12)O9B—C11B—C10B122.8 (4)
C4B—C5B—N1B116.4 (10)C12B—C11B—C10B119.6 (4)
C6C—C5B—N1B123.2 (10)C13B—C12B—C11B120.5 (4)
C4B—C5B—C2B76.3 (7)C13B—C12B—H12B119.8
C6C—C5B—C2B163.3 (10)C11B—C12B—H12B119.8
N1B—C5B—C2B40.1 (5)C12B—C13B—C14B120.5 (4)
O6C—C6C—C5B126.6 (13)C12B—C13B—H13B119.8
O6C—C6C—N7B132.2 (13)C14B—C13B—H13B119.8
C5B—C6C—N7B101.2 (8)C15B—C14B—C13B119.8 (4)
C8B—N7B—C5C94.1 (7)C15B—C14B—S1B120.8 (3)
C8B—N7B—C6C135.6 (7)C13B—C14B—S1B119.4 (3)
C8B—N7B—H7B133.0C14B—C15B—C10B120.2 (4)
C5C—N7B—H7B133.0C14B—C15B—H15B119.9
C8B—N7B—H7C112.2C10B—C15B—H15B119.9
C6C—N7B—H7C112.2H1WA—O1W—H1WB104.5
N9B—C8B—N7B119.8 (6)H2WA—O2W—H2WB112 (10)
C4A—N3A—C2A—N1A0.3 (7)C6B—C5C—N7B—C8B178.1 (9)
C6A—N1A—C2A—N3A0.5 (8)O6C—C6C—N7B—C8B178.6 (13)
C2A—N3A—C4A—C5A0.0 (7)C5B—C6C—N7B—C8B2.0 (12)
C2A—N3A—C4A—N9A179.1 (4)C5C—N7B—C8B—N9B0.3 (8)
C8A—N9A—C4A—C5A0.4 (5)C6C—N7B—C8B—N9B2.6 (12)
C8A—N9A—C4A—N3A179.0 (4)N7B—C8B—N9B—C4B0.6 (8)
N3A—C4A—C5A—N7A179.2 (4)C5C—C8B—N9B—C4B0.4 (5)
N9A—C4A—C5A—N7A0.1 (5)N3B—C4B—N9B—C8B178.7 (5)
N3A—C4A—C5A—C6A0.1 (7)C5B—C4B—N9B—C8B1.3 (10)
N9A—C4A—C5A—C6A179.2 (4)C5C—C4B—N9B—C8B0.5 (7)
C8A—N7A—C5A—C4A0.2 (5)O8A—C9A—C10A—C15A179.1 (5)
C8A—N7A—C5A—C6A178.8 (5)O7A—C9A—C10A—C15A1.1 (6)
C2A—N1A—C6A—O6A179.1 (5)O8A—C9A—C10A—C11A0.3 (7)
C2A—N1A—C6A—C5A0.4 (6)O7A—C9A—C10A—C11A178.2 (4)
C4A—C5A—C6A—O6A179.4 (5)C15A—C10A—C11A—O9A180.0 (4)
N7A—C5A—C6A—O6A1.7 (9)C9A—C10A—C11A—O9A0.6 (7)
C4A—C5A—C6A—N1A0.1 (6)C15A—C10A—C11A—C12A1.3 (7)
N7A—C5A—C6A—N1A178.7 (4)C9A—C10A—C11A—C12A178.1 (4)
C5A—N7A—C8A—N9A0.4 (6)O9A—C11A—C12A—C13A179.2 (5)
C4A—N9A—C8A—N7A0.5 (6)C10A—C11A—C12A—C13A0.4 (7)
C6B—N1B—C2B—N3B0.6 (12)C11A—C12A—C13A—C14A0.6 (8)
C5B—N1B—C2B—N3B0.6 (8)C12A—C13A—C14A—C15A0.8 (7)
N1B—C2B—N3B—C4B0.6 (8)C12A—C13A—C14A—S1A178.7 (4)
C5B—C2B—N3B—C4B0.2 (5)O11A—S1A—C14A—C15A116.8 (4)
C2B—N3B—C4B—N9B179.7 (5)O12A—S1A—C14A—C15A3.4 (5)
C2B—N3B—C4B—C5B0.2 (7)O10A—S1A—C14A—C15A122.5 (4)
C2B—N3B—C4B—C5C2.7 (10)O11A—S1A—C14A—C13A62.7 (4)
N9B—C4B—C5C—N7B0.4 (9)O12A—S1A—C14A—C13A177.2 (4)
N3B—C4B—C5C—N7B178.3 (6)O10A—S1A—C14A—C13A58.0 (4)
N9B—C4B—C5C—C6B178.6 (8)C13A—C14A—C15A—C10A0.1 (7)
N3B—C4B—C5C—C6B3.4 (13)S1A—C14A—C15A—C10A179.6 (3)
N9B—C4B—C5C—C8B0.3 (4)C11A—C10A—C15A—C14A1.1 (7)
N3B—C4B—C5C—C8B178.3 (6)C9A—C10A—C15A—C14A178.2 (4)
C2B—N1B—C6B—O6B177.8 (13)O8B—C9B—C10B—C15B179.5 (5)
C2B—N1B—C6B—C5C0.1 (12)O7B—C9B—C10B—C15B1.8 (6)
C4B—C5C—C6B—O6B176.7 (11)O8B—C9B—C10B—C11B2.8 (7)
N7B—C5C—C6B—O6B1.4 (17)O7B—C9B—C10B—C11B175.9 (4)
C8B—C5C—C6B—O6B4 (4)C15B—C10B—C11B—O9B179.4 (4)
C4B—C5C—C6B—N1B1.5 (11)C9B—C10B—C11B—O9B1.6 (7)
N7B—C5C—C6B—N1B179.6 (8)C15B—C10B—C11B—C12B0.0 (7)
C8B—C5C—C6B—N1B174 (3)C9B—C10B—C11B—C12B177.8 (5)
N9B—C4B—C5B—C6C1.7 (14)O9B—C11B—C12B—C13B178.9 (5)
N3B—C4B—C5B—C6C178.4 (9)C10B—C11B—C12B—C13B0.5 (8)
N9B—C4B—C5B—N1B179.9 (6)C11B—C12B—C13B—C14B1.1 (8)
N3B—C4B—C5B—N1B0.1 (9)C12B—C13B—C14B—C15B1.2 (7)
N9B—C4B—C5B—C2B179.8 (6)C12B—C13B—C14B—S1B177.9 (4)
N3B—C4B—C5B—C2B0.1 (4)O11B—S1B—C14B—C15B114.7 (4)
C2B—N1B—C5B—C4B0.4 (9)O12B—S1B—C14B—C15B6.0 (5)
C2B—N1B—C5B—C6C178.6 (9)O10B—S1B—C14B—C15B125.3 (4)
C4B—C5B—C6C—O6C179.4 (12)O11B—S1B—C14B—C13B64.3 (4)
N1B—C5B—C6C—O6C1.2 (19)O12B—S1B—C14B—C13B174.9 (4)
C2B—C5B—C6C—O6C4 (4)O10B—S1B—C14B—C13B55.6 (4)
C4B—C5B—C6C—N7B0.0 (12)C13B—C14B—C15B—C10B0.6 (7)
N1B—C5B—C6C—N7B178.2 (8)S1B—C14B—C15B—C10B178.4 (3)
C2B—C5B—C6C—N7B175 (3)C11B—C10B—C15B—C14B0.0 (7)
C4B—C5C—N7B—C8B0.1 (9)C9B—C10B—C15B—C14B177.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7B—H7B···O3WAi0.862.263.08158
O7A—H7D···O10Aii0.821.862.677170
O7B—H7E···O10Bi0.821.842.655175
O9A—H9D···O12Bii0.822.342.924128
O9B—H9E···O12Aiii0.822.543.143131
O1W—H1WA···O6Aiv0.852.312.801117
O1W—H1WA···O10Biv0.852.282.917132
N9B—H9B···O6Bv0.862.423.044130
N9B—H9B···O3WAvi0.862.473.07128
N1A—H1A···O6Avii0.862.052.898170
N1B—H1C···O4W0.862.222.890135
N1B—H1C···O11A0.862.452.998122
O1W—H1WB···O12B0.852.012.844169
O2W—H2WA···N3A0.832.072.849157
O2W—H2WB···O12A0.822.032.815160
N7A—H7A···O1W0.861.772.615168
N9A—H9A···O2W0.861.892.697157
C2A—H2A···O1Wii0.932.433.149134
C2B—H2B···O11A0.932.462.974114
C8A—H8A···O2Wviii0.932.403.310167
C15B—H15B···O9A0.932.593.510172
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z1; (iv) x+1, y+1, z+1; (v) x, y+1/2, z1/2; (vi) x+1, y+1/2, z1/2; (vii) x, y+1, z+1; (viii) x+1, y+1, z+2.
6-Oxo-1,9-dihydropurin-7-ium perchlorate monohydrate (II) top
Crystal data top
C5H5N4O+·ClO4·H2OF(000) = 520
Mr = 254.60Dx = 1.833 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.0307 (6) ÅCell parameters from 2752 reflections
b = 20.386 (2) Åθ = 2.0–30.3°
c = 9.0181 (10) ŵ = 0.44 mm1
β = 94.233 (2)°T = 296 K
V = 922.33 (18) Å3Plate, colourless
Z = 40.45 × 0.02 × 0.003 mm
Data collection top
Bruker APEXII CCD
diffractometer
2370 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 30.3°, θmin = 2.0°
Tmin = 0.957, Tmax = 1.000h = 77
16360 measured reflectionsk = 2828
2752 independent reflectionsl = 1212
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.3728P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2752 reflectionsΔρmax = 0.37 e Å3
165 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.32826 (7)0.47612 (2)0.23036 (5)0.03437 (13)
O61.1975 (2)0.28099 (6)0.28926 (13)0.0395 (3)
O21.2250 (4)0.53538 (8)0.1690 (2)0.0699 (5)
O31.6141 (3)0.47706 (8)0.2342 (2)0.0627 (4)
O41.2288 (3)0.42071 (7)0.14577 (18)0.0571 (4)
O51.2456 (3)0.46991 (8)0.37946 (17)0.0598 (4)
N10.9409 (3)0.35230 (6)0.41720 (15)0.0334 (3)
H11.018 (4)0.3843 (12)0.387 (3)0.049 (6)*
N70.8829 (2)0.17434 (6)0.43852 (14)0.0281 (3)
H70.992 (5)0.1492 (12)0.387 (3)0.060 (7)*
N90.5789 (2)0.20049 (6)0.58838 (14)0.0284 (3)
H90.462 (5)0.1993 (11)0.650 (3)0.046 (6)*
C20.7509 (3)0.36488 (7)0.51258 (18)0.0342 (3)
H20.7162290.4085910.5334220.041*
N30.6127 (3)0.32029 (6)0.57756 (14)0.0312 (3)
C40.6819 (3)0.25866 (7)0.53983 (15)0.0246 (3)
C50.8730 (3)0.24168 (7)0.44524 (15)0.0243 (3)
C61.0223 (3)0.29051 (7)0.37512 (16)0.0272 (3)
C80.7053 (3)0.15077 (7)0.52526 (17)0.0311 (3)
H80.6726040.1064620.5404200.037*
O1W0.2214 (3)0.38054 (6)0.76425 (18)0.0511 (4)
H1W0.252 (5)0.4216 (5)0.765 (3)0.066 (7)*
H2W0.344 (4)0.3627 (10)0.718 (3)0.081 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0347 (2)0.02074 (17)0.0495 (2)0.00172 (12)0.01561 (16)0.00075 (13)
O60.0398 (6)0.0391 (6)0.0428 (6)0.0012 (5)0.0248 (5)0.0054 (5)
O20.0807 (12)0.0369 (7)0.0952 (13)0.0172 (7)0.0277 (10)0.0222 (8)
O30.0351 (7)0.0545 (9)0.1004 (13)0.0050 (6)0.0182 (7)0.0109 (8)
O40.0551 (8)0.0419 (8)0.0757 (10)0.0102 (6)0.0147 (7)0.0226 (7)
O50.0734 (10)0.0587 (9)0.0503 (8)0.0211 (8)0.0244 (7)0.0040 (6)
N10.0377 (7)0.0255 (6)0.0388 (7)0.0043 (5)0.0146 (5)0.0030 (5)
N70.0305 (6)0.0236 (5)0.0317 (6)0.0031 (4)0.0130 (5)0.0006 (4)
N90.0282 (6)0.0285 (6)0.0304 (6)0.0020 (4)0.0141 (5)0.0016 (4)
C20.0410 (8)0.0242 (6)0.0385 (8)0.0007 (6)0.0120 (6)0.0031 (6)
N30.0331 (6)0.0269 (6)0.0351 (6)0.0024 (5)0.0132 (5)0.0026 (5)
C40.0233 (6)0.0261 (6)0.0254 (6)0.0003 (5)0.0075 (5)0.0005 (5)
C50.0246 (6)0.0241 (6)0.0251 (6)0.0007 (5)0.0085 (5)0.0023 (5)
C60.0269 (6)0.0279 (6)0.0277 (6)0.0020 (5)0.0083 (5)0.0032 (5)
C80.0338 (7)0.0245 (6)0.0367 (7)0.0007 (5)0.0128 (6)0.0022 (5)
O1W0.0546 (8)0.0302 (6)0.0739 (9)0.0081 (6)0.0417 (7)0.0050 (6)
Geometric parameters (Å, º) top
Cl1—O21.4116 (15)N9—C81.3452 (19)
Cl1—O41.4324 (13)N9—C41.3784 (17)
Cl1—O31.4359 (15)N9—H90.84 (2)
Cl1—O51.4421 (15)C2—N31.309 (2)
O6—C61.2307 (17)C2—H20.9300
N1—C21.357 (2)N3—C41.3539 (18)
N1—C61.3860 (19)C4—C51.3758 (17)
N1—H10.82 (2)C5—C61.4229 (18)
N7—C81.3204 (18)C8—H80.9300
N7—C51.3752 (18)O1W—H1W0.852 (9)
N7—H70.90 (3)O1W—H2W0.850 (9)
O2—Cl1—O4111.24 (12)N3—C2—H2117.4
O2—Cl1—O3109.68 (11)N1—C2—H2117.4
O4—Cl1—O3109.46 (9)C2—N3—C4112.14 (12)
O2—Cl1—O5108.50 (11)N3—C4—C5126.43 (12)
O4—Cl1—O5108.29 (9)N3—C4—N9127.50 (12)
O3—Cl1—O5109.63 (11)C5—C4—N9106.07 (12)
C2—N1—C6125.56 (13)N7—C5—C4107.91 (11)
C2—N1—H1115.8 (16)N7—C5—C6131.06 (12)
C6—N1—H1118.5 (16)C4—C5—C6121.02 (13)
C8—N7—C5108.00 (12)O6—C6—N1123.73 (13)
C8—N7—H7124.0 (16)O6—C6—C5126.53 (14)
C5—N7—H7128.0 (16)N1—C6—C5109.75 (12)
C8—N9—C4108.26 (11)N7—C8—N9109.76 (12)
C8—N9—H9129.5 (15)N7—C8—H8125.1
C4—N9—H9122.2 (15)N9—C8—H8125.1
N3—C2—N1125.11 (14)H1W—O1W—H2W106.9 (14)
C6—N1—C2—N31.1 (3)N3—C4—C5—C60.0 (2)
N1—C2—N3—C40.5 (2)N9—C4—C5—C6179.54 (13)
C2—N3—C4—C50.0 (2)C2—N1—C6—O6179.27 (16)
C2—N3—C4—N9179.42 (15)C2—N1—C6—C51.0 (2)
C8—N9—C4—N3179.25 (14)N7—C5—C6—O60.6 (3)
C8—N9—C4—C50.24 (16)C4—C5—C6—O6179.83 (15)
C8—N7—C5—C40.01 (17)N7—C5—C6—N1179.65 (14)
C8—N7—C5—C6179.31 (15)C4—C5—C6—N10.4 (2)
N3—C4—C5—N7179.34 (14)C5—N7—C8—N90.15 (18)
N9—C4—C5—N70.15 (15)C4—N9—C8—N70.24 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.822.603.249138
N1—H1···O50.822.092.879162
N7—H7···O2i0.912.603.031110.2
N7—H7···O1Wii0.911.762.6489165
N9—H9···O6iii0.841.932.7602166
O1W—H1W···O3iv0.852.173.018172
O1W—H2W···N30.852.112.951172
C8—H8···O2i0.932.472.970114
C8—H8···O3iii0.932.473.268144
C8—H8···O4iii0.932.553.072116
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1/2, z1/2; (iii) x1, y+1/2, z+1/2; (iv) x+2, y+1, z+1.
Comparison of salt forms of purine derivatives containing halides/nitrate/phosphite/phosphate/sulfate and perchlorates as anions top
CompoundSpace groupPrimary interaction betweenGraph-set motifMotif typeSecondary interaction betweenGraph-set motifMotif type
Guaninidinium hydrochlorideMonoclinic P21/c,N—H···N, N—H···OR22(8),IV and VN—H···Cl,R32(8),XII and XIII
a = 4.479 ÅR22(10)C—H···Cl,R43(11)
b = 9.995 ÅO—H···N,
c = 19.304 ÅO—H···Cl
β = 107.90°
Guaninidinium hydrobromideMonoclinic P21/cN—H···N, N—H···OR22(8),IV and VN—H···Br,R32(8),XII and XIII
a = 4.8708 ÅR22(10)N—H···N,R43(11)
b = 13.237 ÅO—H···Br,
c = 14.638 ÅC—H···Br
β = 93.906°
Guaninidinium dinitrate dihydrateMonoclinic P21/cN—H···OR22(8)VN—H···O,R43(12)XII
a = 6.6340 ÅO—H···O
b = 10.2020 Å
c = 11.0440 Å
β = 106.04°
Guaninidinium phosphite monohydrateMonoclinic P21/cN—H···NR22(8)IVN—H···OR21(6),XII and XVIII
a = 4.9700 ÅR43(10)
b = 12.7506 Å
c = 15.0499 Å
β = 92.293°
Guaninidinium phosphite dihydrate form (I)Monoclinic P21/cN—H···NR22(8)IVN—H···N,R32(8),XIII and XVIII
a = 4.6812 ÅN—H···OR21(6)
b = 24.0561 Å
c = 9.5186 Å
β = 99.773°
Guaninidinium phosphite dihydrate form (II)Monoclinic P21/cN—H···NR22(8)IVN—H···N,R32(8),XIII and XVIII
a = 4.7340 ÅN—H···OR21(6)
b = 24.0450 Å
c = 9.5050 Å
β = 98.860°
Guaninidinium phosphate hydrate form (I)Triclinic, P1N—H···NR22(8)IVN—H···O,R22(9)XVI and XVII
a = 9.607 ÅO—H···OR22(10)
b = 10.221 Å
c = 10.603 Å
α = 84.5°
β = 108.2°
γ = 119.7°
Guaninidinium phosphate monohydrate form (II)Monoclinic P21/nN—H···NR22(8)IVN—H···O,R22(8),VI, XIII and XVI
a = 4.5414 ÅO—H···OR32(8),
b = 12.5774 ÅR22(9)
c = 18.1485 Å
β = 93.689 °
Guaninidinium sulfate monohydrateMonoclinic P21/cN—H···OR22(8)VIN—H···O, O-H···OR43(12)XV
a = 8.9940 Å
b = 10.2020 Å
c = 11.0440 Å
β = 106.04°
Xanthinium nitrate monohydrateTriclinic, P1N—H···OR22(8)IO—H···N,R22(4),VIII, XI and XIII
a = 5.0416 ÅO—H···OR32(8),
b = 7.4621 ÅR64(14)
c = 12.1396 Å
α = 80.248°
β = 80.800°
γ = 75.657°
Xanthinium sulfate monohydrateMonoclinic P21N—H···OR22(8)IO—H···N,R32(8)XIII
a = 5.183 Å
b = 24.805 Å
c = 7.701 Å
β = 103.510°
Xanthinium perchlorate dihydrateTriclinic, P1N—H···OR22(8)IO—H···N,R32(8)XIII
a = 5.1625 ÅO—H···O
b = 7.7449 Å
c = 13.696 Å
α = 100.214°
β = 91.591°
γ = 100.880°
Hypoxanthinium hydrochloride monohydrateMonoclinic P21/cN—H···ClR32(9)IIIN—H···Cl,R33(11),IX, X and XI
a = 4.8295 ÅC—H···Cl,R44(16),
b = 17.7285 ÅO—H···N,R64(14)
c = 9.0077 ÅO—H···Cl
β = 94.59°
Hypoxanthinium nitrate monohydrate form (I)Orthorhombic PnmaN—H···OR22(8)IIN—H···O,R22(6),XIII and XIV
a = 13.701 ÅO—H···O,R32(8),
b = 6.236 ÅR66(20)
c = 10.078 Å
Hypoxanthinium nitrate monohydrate form (II)Monoclinic P21/nN—H···OR22(8)IIN—H···O,R22(6),XIII and XIV
a = 6.1452 ÅO—H···O,R32(8)
b = 13.7517 Å
c = 10.0414 Å
β = 95.601°
 

References

First citationBendeif, E.-E., Dahaoui, S., Benali-Cherif, N. & Lecomte, C. (2007). Acta Cryst. B63, 448–458.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiradha, K., Samai, S., Maity, A. C. & Goswami, S. (2010). Cryst. Growth Des. 10, 937–942.  Web of Science CSD CrossRef CAS Google Scholar
First citationBishop, J. L., Quinn, R. & Dyar, M. D. (2014). Am. Mineral. 99, 1580–1592.  Web of Science CrossRef PubMed Google Scholar
First citationBouchouit, K., Benali-Cherif, N., Benguedouar, L., Bendheif, L. & Merazig, H. (2002). Acta Cryst. E58, o1397–o1399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabaj, M. K. & Dominiak, P. M. (2021). Cryst. Growth Des. 21, 424–435.  Web of Science CSD CrossRef CAS Google Scholar
First citationCabaj, M. K., Gajda, R., Hoser, A., Makal, A. & Dominiak, P. M. (2019). Acta Cryst. C75, 1036–1044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: https://www.povray.orgGoogle Scholar
First citationCherouana, A., Benali-Cherif, N. & Bendjeddou, L. (2003). Acta Cryst. E59, o180–o182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCostas, M. E. & Acevedo-Chávez, R. (1997). J. Phys. Chem. A, 101, 8309–8318.  CrossRef CAS Web of Science Google Scholar
First citationDubler, E., Hänggi, G. & Bensch, W. (1987a). J. Inorg. Biochem. 29, 269–288.  CSD CrossRef CAS Web of Science Google Scholar
First citationDubler, E., Hänggi, G. & Schmalle, H. (1987b). Acta Cryst. C43, 1872–1875.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEmel'yanenko, V. N., Zaitsau, D. H. & Verevkin, S. P. (2017). J. Chem. Eng. Data, 62, 2606–2609.  CAS Google Scholar
First citationHolley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., Penswick, J. R. & Zamir, A. (1965). Science, 147, 1462–1465.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHughes, M. N. (1981). In The Inorganic Chemistry of Biological Processes, 2nd ed. New York: John Wiley & Sons.  Google Scholar
First citationLatosińska, J. N., Latosińska, M., Seliger, J., Žagar, V. & Kazimierczuk, Z. (2014). J. Phys. Chem. B, 118, 10837–10853.  Web of Science PubMed Google Scholar
First citationLow, J. N., Tollin, P., Young, D. W. & Scrimgeour, S. N. (1986). Acta Cryst. C42, 1045–1047.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaixner, J. & Zachová, J. (1991). Acta Cryst. C47, 2474–2476.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPlekan, O., Feyer, V., Richter, R., Moise, A., Coreno, M., Prince, K. C., Zaytseva, I. L., Moskovskaya, T. E., Soshnikov, D. Y. & Trofimov, A. B. (2012). J. Phys. Chem. A, 116, 5653–5664.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRutledge, L. R., Wheaton, C. A. & Wetmore, S. D. (2007). Phys. Chem. Chem. Phys. 9, 497–509.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmalle, H. W., Hänggi, G. & Dubler, E. (1988). Acta Cryst. C44, 732–736.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSletten, J. & Jensen, L. H. (1969). Acta Cryst. B25, 1608–1614.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSridhar, B. (2011). Acta Cryst. C67, o382–o386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStryer, L. (1988). In Biochemistry, 3rd ed., New York: Freeman.  Google Scholar
First citationSusithra, G., Ramalingam, S., Periandy, S. & Aarthi, R. (2018). Egypt. J. Basic Appl. Sci. 5, 313–326.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWei, C. H. (1977). Cryst. Struct. Commun. 6, 525–529.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, R.-Q. & Xie, Y.-R. (2007). Acta Cryst. E63, o3309.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds