research communications
Crystal structures and Hirshfeld surface analyses of hypoxanthine salts involving 5-sulfosalicylate and perchlorate anions
aCentre for Research and Development, PRIST Deemed to be University, Thanjavur 613 403, Tamil Nadu, India, bDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Thanjavur 613 403, Tamil Nadu, India, cFaculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna, pot 113, PO Box 537, SI-1000 Ljubljana, Slovenia, and dX-ray Crystallography Unit, School of Physics, University Sains Malaysia, 11800, USM, Penang, Malaysia
*Correspondence e-mail: nirmalramjs@gmail.com
Two salts of 1,9-dihydropurin-6-one (hypoxanthine), namely, 6-oxo-1,9-dihydropurin-7-ium 5-sulfosalicylate dihydrate, C5H5N4O+·C7H5O6S−·2H2O, (I), and 6-oxo-1,9-dihydropurin-7-ium perchlorate monohydrate, C5H5N4O+·ClO4−·H2O, (II), have been synthesized and characterized using single-crystal X-ray diffraction and Hirshfeld analysis. In both salts, the hypoxanthine molecule is protonated at the N7 position of the purine ring. In salt (I), the cation and anion are connected through N—H⋯O interactions. The protonated hypoxanthine cations of salt (I) form base pairs with another symmetry-related hypoxanthine cation through N—H⋯O hydrogen bonds with an R22(8) ring motif, while in salt (II), the hypoxanthine cations are paired through a water molecule via N—H⋯O and O—H⋯N hydrogen bonds with an R33(11) ring motif. The packings within the crystal structures are stabilized by π–π stacking interactions in salt (I) and C—O⋯π interactions in salt (II). The combination of several interactions leads to the formation of supramolecular sheets extending parallel to (010) in salts (I) and (II). Hirshfeld surface analysis and fingerprint plots reveal that O⋯H/H⋯O contacts play the major role in the crystal packing of each of the salts, with a 54.1% contribution in salt (I) and 62.3% in salt (II).
1. Chemical context
1,9-Dihydropurin-6-one (hypoxanthine, C5H4N4O), a notable purine-based nucleotide (Emel'yanenko et al., 2017), is present in the anticodon as nucleoside inosine in t-RNA (Costas & Acevedo-Chávez, 1997; Holley et al., 1965; Stryer, 1988; Plekan et al., 2012; Hughes, 1981; Schmalle et al., 1988). Hypoxanthine and xanthine are significant as drugs in the treatment of infections like gout and xanthinuria. Hypoxanthine is additionally utilized against hypoxia and is known to repress the impact of few medications (Dubler et al., 1987a,b; Biradha et al., 2010).
Hypoxanthine (HX), a potential oxygen-free radical generator, is a strong agent against cancer cells (Susithra et al., 2018; Latosińska et al., 2014; Rutledge et al., 2007). The presence of the imine group in its structure is responsible for its pharmacological activity. Hypoxanthine can exist in two stable tautomers, viz. as the oxo-N7(H) form and as the oxo-N9(H) form. When hypoxanthine interacts with strong acids, it becomes protonated at position N7 or N9. A limited number of hypoxanthine salts like hypoxanthine nitrate (Cabaj & Dominiak, 2021; Cabaj et al., 2019) and hypoxanthine hydrochloride monohydrate (Sletten & Jensen, 1969) have been reported so far in the literature.
The current article reports the crystal structures of hypoxanthinium 5-sulfosalicylate dihydrate, (I), and hypoxanthinium perchlorate monohydrate, (II), salts and the noncovalent interactions that govern their crystal packings.
2. Structural commentary
Salt (I) crystallizes with two hypoxanthinium cations (A+ and B+), two 5-sufosalicylate anions (5SCA−; A and B) and four solvent water molecules (O1W, O2W, O3W and O4W) in the as shown in Fig. 1. In salt (I), the B cation is equally disordered over two sets of sites for atoms C5B/C5C, C6B/C6C and O6B/O6C. Atoms H1B/H1C and H7B/H7C attached to N1B and N7B, respectively, are also disordered. The solvent water molecule O3W is also disordered over two positions. Atoms N7A and N7B are protonated, which is confirmed by widening of the C5A—N7A—C8A angle to 107.1 (4)° compared to the value of 103.8° in the two polymorphic forms of the neutral HX molecule (Schmalle et al., 1988; Yang & Xie, 2007); the situation for C5B—N7B—C8B is less clear due to the observed disorder. The torsion angles of N3A—C4A—C5A—N7A = −179.2 (4)° and N3B—C4B—C5C—N7B = −178.3 (6)° are similar to those of the two forms of the neutral HX molecule (−179.55 and −178.99°; Schmalle et al., 1988; Yang & Xie, 2007). The carboxylic acid group in each of the two 5SCA− anions is coplanar with the benzene ring [O7A—C9A—C10A—C11A = −178.2 (4)° and O7B—C9B—C10B—C11B = 175.9 (4)°], a situation that is likewise observed for previously reported crystal structures involving 5SCA− anions.
Salt (II) crystallizes with one hypoxanthinium cation, one perchlorate anion (PCA−) and one solvent water molecule in the The molecular structure of salt (II) is shown in Fig. 2. Again, the N7 atom of the purine ring is protonated, as confirmed by the widening of the C5—N7—C8 angle to 108.00 (12)°. The N3—C4—C5—N7 torsion angle of 179.34 (14)° is similar to the values determined for salt (I). The PCA− anion has the characteristic tetrahedral shape, with Cl—O bond lengths between 1.4116 (15) and 1.4421 (15) Å, and O—Cl—O angles between 108.29 (9) and 111.24 (12)°.
3. Supramolecular features
In the I), (010) sheets of cations and sheets of anions are stacked alternately along [010]. The crystal packing is governed by N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds (Table 1). Symmetry-related A+ cations interact through a pair of N1A—H1A⋯O6A hydrogen bonds with a robust R22(8) motif (Bernstein et al., 1995; Motherwell et al., 2000). Solvent water molecule OW1 connects the A+ cation via N7A—H7A⋯O1W and O1W—H1WA⋯O6A hydrogen bonds with an R44(14) motif. The A+ cations are further connected via C2A—H2A⋯O1W, C8A—H8A⋯O2W, N9A—H9A⋯O2W and O2W—H2WA⋯N3A, N1A—H1A⋯O6A hydrogen bonds with R32(7), R44(14), R43(10) and R42(10) motifs (Fig. 3).
of salt (The B+ cations interact with the O atom of the solvent water molecules O3W and O4W through N1B—H1C⋯O4W and N9B—H9B⋯O3WA, and with N9B—H9B⋯O6B with an R22(7) motif. Short O3WA⋯O4W contacts with an R55(20) motif are also observed (Fig. 4). Furthermore, the two 5SCA− anions (A and B) self assemble into sheets by interaction of symmetry-related counterparts through O7A—H7D⋯O10A and O7B—H7E⋯O10B, respectively (Fig. 5). A and B sheets are interconnected through O9B—H9E⋯O12A and through O9A—H9D⋯O12B and C15B—H15B⋯O9A interactions, resulting in R22(7), R44(23) and R44(26) ring motifs. Moreover, cation B+ interacts with 5SCA− (A) via N1B—H1C⋯O11A and C2B—H2B⋯O11A with an R21(5) motif. Another interconnection between cationic and anionic sheets involves the solvent water molecules through O1W—H1WA⋯O10B, O1W—H1WB⋯O12B, O2W—H2WA⋯N3A and O2W—H2WB⋯O12A (Fig. 6).
The I) is consolidated by π–π interactions between the phenyl rings of the two 5SCA anions (C10A–C15A and C10B–C15B), and the imidazole ring (C4A–N9A) and the pyrimidine ring (N1A–C6A) of cation A+, with centroid-to-centroid distances of 3.547 (3), 3.562 (3), 3.554 (3) and 3.533 (3) Å, and slippages of 0.815, 1.300, 1.182 and 1.105 Å (Fig. 7).
of (In the II), (010) sheets of cations and sheets of anions are stacked alternately along [010]. The crystal packing of salt (II) is dominated by N—H⋯O and O—H⋯O hydrogen bonds, and to a minor extent by C—H⋯O hydrogen bonds (Table 2). The protonated N atom of the cation forms an N7—H7⋯O1Wii hydrogen bond with the O atom of the water molecule. The water molecule disrupts the formation of base pairs but connects symmetry-related cations through O1W—H2W⋯N3iv. Additional N9—H9⋯O6iii interactions with an R33(11) ring motif generate a cationic strand along [201]. Parallel cationic strands are connected through the solvent water molecule and the PCA− anion through O1W—H1W⋯O3 and bifurcated N1—H1⋯O4 and N1—H1⋯O5 interactions, respectively, forming R32(9), R64(14) and R66(20) motifs. The crystal packing of salt (II) is shown in Fig. 8. The is further stabilized by carbonyl⋯π (π refers to the ring system of the cation) interactions, with distances of 3.6097 (13), 3.2983 (13), 3.4580 (13) and 3.7236 (14) Å (Fig. 9).
of salt (
|
4. Hirshfeld surface analysis
Hirshfeld surface (HS) analyses of salts (I) and (II) were performed using CrystalExplorer17 (Turner et al., 2017). The results of the HS analysis mapped over dnorm are shown in Figs. 10(a) and 10(b) for (I) and (II), respectively. Corresponding two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009) for (I) and (II) are shown in Figs. 11 and 12, respectively. The contributions of the noncovalent interactions to the HS in the two salts are: O⋯H/H⋯O 54.1% (I), 62.3% (II); N⋯H/H⋯N 3.1% (I), 6.8% (II); C⋯H/H⋯C 5.9% (I), 5.4% (II); H⋯H/H⋯H 16.0% (I), 5.3% (II); C⋯C/C⋯C 0.9% (I), 0.1% (II).
5. Comparison with the structures of related compounds
Crystal data, supramolecular interactions and hydrogen bonding motifs of structurally similar halide/nitrate/phosphite/phosphate/perchlorate or sulfate salts like guanidinium bromide (Wei, 1977), guanidinium chloride (Maixner & Zachová, 1991), bis(guanidinium) hydrogen phosphate 2.5-hydrate (Low et al., 1986), guanidinium phosphite (Bendeif et al., 2007), guanidinium sulfate (Cherouana et al., 2003), guanidinium dinitrate dihydrate (Bouchouit et al., 2002), xanthinium nitrate, xanthinium sulfate (Sridhar, 2011), xanthinium perchlorate dihydrate (Biradha et al., 2010), hypoxanthinium chloride monohydrate (Sletten & Jensen, 1969) and hypoxanthinium nitrate monohydrate (Cabaj et al., 2019) are listed and compared in Table 3.
|
A comparison of salts (I) and (II) with the related salt forms of guanine, xanthinium and hypoxanthine reveal that, in most of the crystal structures containing purine derivatives, the purine forms base pairs through pairs of N—H⋯O or N—H⋯N hydrogen bonds with an R22(8) primary ring motif. When it comes to an interaction between the purine base and a strong acid, the chloride/nitrate/sulfate/phosphite/phosphate or perchlorate salts of guanine/xanthine and hypoxanthine have different molecular recognition patterns. The most important primary and secondary motifs formed by hypoxanthine and similar compounds are summarized in Figs. 13 and 14. Crystallographic studies of salts involving perchlorate and sulfate anions reveal that most of these salts have similar crystal packing arrangements (Bishop et al., 2014). In general, salts of structurally similar systems will have similar molecular recognition patterns and supramolecular motifs. However, for salts (I) and (II) and related systems compiled in Table 3, great similarities are not observed. The differences in molecular recognition and supramolecular self-assembly might be due to the involvement of other functional groups or substituents in the structures, the intrusion of water molecules in the or the ratio of anions and cations present in the asymmetric unit.
6. Synthesis and crystallization
Salt (I) was synthesized by mixing an equimolar ratio of hypoxanthine (0.0340 g) and 5-sulfosalicylic acid (0.0545 g) in hot water. The solution was heated to 333 K for 1 h and then allowed to cool slowly to room temperature. Colourless needle-shaped crystals were harvested from the mother liquid after one week.
Salt (II) was synthesized by mixing an equimolar ratio of hypoxanthine (0.0340 g) and iron perchlorate monohydrate (0.0681 g) in hot water. The solution was heated to 333 K with constant stirring for 1 h and then allowed to cool slowly to room temperature. Colourless plate-like crystals were harvested from the mother liquid after one week.
7. Refinement
Crystal data, data collection and structure I) and (II) are summarized in Table 4. In salt (I), carbon (C5 and C6) and oxygen (O6) atoms of cation B are equally disordered over two sets of sites, with a refined occupancy ratio of 0.503 (18):0.497 (18). The solvent water molecule O3W is disordered over two positions, with a refined site-occupancy ratio of 0.58 (6):0.42 (6). The H atoms of water molecules O1W and O2W were located from a difference Fourier map, and the O—H distance restrained to 0.82 Å. Attempts to localize the H atoms of O3W and O4W in (I) from difference Fourier maps failed as there were no relevant electron densities close to these atoms. Hence, these H atoms are not part of the model but are included in the formula. All C- and N-bound H atoms in (I) were placed in idealized positions and refined freely using a riding model, with C—H = 0.95 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N). In salt (II), the N-bound H atoms were located in a difference Fourier map and refined freely. The H atoms of the water molecule were likewise located from a difference Fourier map. The geometry of the water molecule was restrained using DFIX commands with an O—H distance of 0.85 Å and an H⋯H distance of 1.36 Å. All C-bound H atoms were treated as for salt (I).
details of salts (
|
Supporting information
https://doi.org/10.1107/S2056989022004753/wm5640sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022004753/wm5640Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989022004753/wm5640IIsup3.hkl
For both structures, data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and POVRay (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).C5H5N4O+·C7H5O6S−·2H2O | F(000) = 1600 |
Mr = 388.32 | Dx = 1.671 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7055 (3) Å | Cell parameters from 7079 reflections |
b = 25.9927 (13) Å | θ = 2.8–27.5° |
c = 13.6479 (5) Å | µ = 0.27 mm−1 |
β = 91.864 (3)° | T = 293 K |
V = 3086.6 (2) Å3 | Needle, colourless |
Z = 8 | 0.55 × 0.20 × 0.10 mm |
Bruker APEXII CCD diffractometer | Rint = 0.032 |
φ and ω scans | θmax = 27.5°, θmin = 2.9° |
21075 measured reflections | h = −11→11 |
7079 independent reflections | k = −23→33 |
5905 reflections with I > 2σ(I) | l = −17→17 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.087 | w = 1/[σ2(Fo2) + (0.0167P)2 + 13.1153P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.190 | (Δ/σ)max < 0.001 |
S = 1.22 | Δρmax = 0.74 e Å−3 |
7079 reflections | Δρmin = −0.43 e Å−3 |
521 parameters | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.0013 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O6A | 0.1947 (4) | 0.49617 (15) | 0.5394 (2) | 0.0415 (8) | |
N1A | −0.0096 (4) | 0.49891 (15) | 0.6407 (3) | 0.0312 (8) | |
H1A | −0.072122 | 0.497638 | 0.590694 | 0.037* | |
N3A | 0.0062 (4) | 0.50335 (15) | 0.8125 (3) | 0.0311 (8) | |
N7A | 0.3886 (4) | 0.49922 (15) | 0.7338 (3) | 0.0321 (8) | |
H7A | 0.459823 | 0.497846 | 0.691626 | 0.038* | |
N9A | 0.2725 (4) | 0.50320 (16) | 0.8730 (3) | 0.0331 (9) | |
H9A | 0.257740 | 0.504829 | 0.934876 | 0.040* | |
C2A | −0.0710 (5) | 0.50158 (18) | 0.7299 (3) | 0.0325 (10) | |
H2A | −0.177576 | 0.502197 | 0.732324 | 0.039* | |
C4A | 0.1607 (5) | 0.50245 (17) | 0.8000 (3) | 0.0263 (9) | |
C5A | 0.2318 (4) | 0.50003 (17) | 0.7134 (3) | 0.0261 (9) | |
C6A | 0.1473 (5) | 0.49805 (18) | 0.6231 (3) | 0.0287 (9) | |
C8A | 0.4084 (5) | 0.50097 (19) | 0.8307 (3) | 0.0355 (10) | |
H8A | 0.503178 | 0.500683 | 0.864222 | 0.043* | |
N1B | 0.7702 (5) | 0.25698 (19) | 0.9705 (5) | 0.0620 (15) | |
H1C | 0.689866 | 0.258941 | 1.005445 | 0.074* | 0.497 (18) |
H1B | 0.716586 | 0.258513 | 1.022312 | 0.074* | 0.503 (18) |
C2B | 0.7345 (7) | 0.2589 (2) | 0.8774 (6) | 0.0581 (16) | |
H2B | 0.631879 | 0.262454 | 0.857329 | 0.070* | |
N3B | 0.8390 (5) | 0.25613 (17) | 0.8117 (3) | 0.0445 (10) | |
C4B | 0.9779 (5) | 0.25070 (18) | 0.8592 (3) | 0.0331 (10) | |
O6B | 0.9419 (18) | 0.2493 (6) | 1.1190 (8) | 0.054 (3) | 0.497 (18) |
C5C | 1.0267 (15) | 0.2496 (4) | 0.9577 (8) | 0.035 (3) | 0.497 (18) |
C6B | 0.9094 (14) | 0.2524 (4) | 1.0314 (7) | 0.035 (3) | 0.497 (18) |
O6C | 1.0195 (19) | 0.2484 (6) | 1.1206 (10) | 0.062 (3) | 0.503 (18) |
C5B | 0.9336 (17) | 0.2513 (4) | 0.9552 (8) | 0.040 (3) | 0.503 (18) |
C6C | 1.0442 (17) | 0.2479 (4) | 1.0326 (7) | 0.048 (4) | 0.503 (18) |
N7B | 1.1875 (6) | 0.2444 (2) | 0.9780 (5) | 0.0680 (16) | |
H7B | 1.241971 | 0.242864 | 1.031666 | 0.082* | 0.497 (18) |
H7C | 1.267726 | 0.243141 | 1.016423 | 0.082* | 0.503 (18) |
C8B | 1.2225 (7) | 0.2428 (2) | 0.8848 (6) | 0.0565 (16) | |
H8B | 1.324295 | 0.239139 | 0.867383 | 0.068* | |
N9B | 1.1141 (5) | 0.24629 (17) | 0.8172 (4) | 0.0479 (11) | |
H9B | 1.127857 | 0.245844 | 0.755081 | 0.058* | |
O3WA | 0.367 (4) | 0.2714 (4) | 1.1689 (17) | 0.063 (5) | 0.58 (6) |
O3WB | 0.296 (4) | 0.2700 (6) | 1.1468 (11) | 0.043 (6) | 0.42 (6) |
S1A | 0.40654 (12) | 0.36757 (5) | 0.96698 (8) | 0.0300 (3) | |
O7A | −0.1915 (4) | 0.38972 (17) | 0.9153 (3) | 0.0473 (10) | |
H7D | −0.284261 | 0.394380 | 0.919381 | 0.071* | |
O8A | −0.2547 (4) | 0.38674 (17) | 0.7567 (3) | 0.0489 (10) | |
O9A | −0.0354 (4) | 0.37374 (16) | 0.6296 (2) | 0.0453 (9) | |
H9D | −0.123261 | 0.380142 | 0.645875 | 0.068* | |
O10A | 0.5153 (4) | 0.40963 (14) | 0.9514 (3) | 0.0386 (8) | |
O11A | 0.4769 (4) | 0.31756 (14) | 0.9629 (3) | 0.0467 (9) | |
O12A | 0.3208 (4) | 0.37511 (15) | 1.0554 (2) | 0.0429 (9) | |
C9A | −0.1574 (5) | 0.38438 (18) | 0.8225 (3) | 0.0309 (9) | |
C10A | 0.0083 (5) | 0.37720 (17) | 0.8061 (3) | 0.0295 (9) | |
C11A | 0.0590 (5) | 0.37254 (18) | 0.7101 (3) | 0.0322 (10) | |
C12A | 0.2158 (5) | 0.3673 (2) | 0.6944 (4) | 0.0381 (11) | |
H12A | 0.250192 | 0.364424 | 0.630852 | 0.046* | |
C13A | 0.3201 (5) | 0.36641 (19) | 0.7726 (3) | 0.0352 (10) | |
H13A | 0.424567 | 0.363245 | 0.761467 | 0.042* | |
C14A | 0.2696 (5) | 0.37022 (17) | 0.8681 (3) | 0.0299 (9) | |
C15A | 0.1145 (5) | 0.37553 (17) | 0.8842 (3) | 0.0287 (9) | |
H15A | 0.080905 | 0.378003 | 0.948039 | 0.034* | |
S1B | 0.56102 (12) | 0.37011 (5) | 0.45829 (9) | 0.0341 (3) | |
O7B | 1.1577 (4) | 0.38612 (17) | 0.4147 (2) | 0.0443 (9) | |
H7E | 1.248391 | 0.394576 | 0.418788 | 0.066* | |
O8B | 1.2092 (4) | 0.37883 (17) | 0.2566 (3) | 0.0497 (10) | |
O9B | 0.9832 (4) | 0.36982 (17) | 0.1295 (2) | 0.0492 (9) | |
H9E | 1.073533 | 0.369136 | 0.148463 | 0.074* | |
O10B | 0.4520 (4) | 0.41174 (15) | 0.4380 (3) | 0.0465 (9) | |
O11B | 0.4889 (4) | 0.31994 (16) | 0.4549 (3) | 0.0542 (10) | |
O12B | 0.6496 (4) | 0.37900 (17) | 0.5491 (3) | 0.0509 (10) | |
C9B | 1.1165 (5) | 0.37948 (18) | 0.3224 (3) | 0.0317 (10) | |
C10B | 0.9504 (5) | 0.37406 (17) | 0.3041 (3) | 0.0280 (9) | |
C11B | 0.8925 (5) | 0.37007 (18) | 0.2071 (3) | 0.0333 (10) | |
C12B | 0.7338 (6) | 0.3667 (2) | 0.1889 (4) | 0.0405 (11) | |
H12B | 0.695190 | 0.363737 | 0.124781 | 0.049* | |
C13B | 0.6350 (5) | 0.36764 (19) | 0.2646 (4) | 0.0365 (11) | |
H13B | 0.529554 | 0.365968 | 0.251642 | 0.044* | |
C14B | 0.6914 (5) | 0.37113 (17) | 0.3618 (3) | 0.0287 (9) | |
C15B | 0.8480 (5) | 0.37456 (16) | 0.3811 (3) | 0.0269 (9) | |
H15B | 0.885372 | 0.377214 | 0.445531 | 0.032* | |
O1W | 0.6140 (4) | 0.48175 (16) | 0.6162 (2) | 0.0449 (9) | |
H1WA | 0.605842 | 0.503025 | 0.569001 | 0.067* | |
H1WB | 0.613001 | 0.452409 | 0.588798 | 0.067* | |
O2W | 0.2476 (4) | 0.48039 (15) | 1.0649 (3) | 0.0412 (8) | |
O4W | 0.6239 (8) | 0.2277 (2) | 1.1488 (4) | 0.100 (2) | |
H2WA | 0.161 (5) | 0.487 (4) | 1.082 (7) | 0.150* | |
H2WB | 0.270 (12) | 0.4502 (13) | 1.075 (8) | 0.150* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O6A | 0.0336 (17) | 0.066 (2) | 0.0244 (16) | −0.0003 (17) | 0.0008 (13) | −0.0022 (16) |
N1A | 0.0239 (18) | 0.041 (2) | 0.0279 (19) | 0.0016 (16) | −0.0058 (14) | −0.0027 (17) |
N3A | 0.0270 (18) | 0.040 (2) | 0.0268 (19) | 0.0015 (16) | 0.0048 (15) | 0.0003 (16) |
N7A | 0.0220 (17) | 0.045 (2) | 0.0296 (19) | 0.0007 (16) | 0.0021 (14) | 0.0066 (17) |
N9A | 0.0300 (19) | 0.049 (2) | 0.0205 (17) | 0.0018 (17) | −0.0007 (14) | 0.0037 (17) |
C2A | 0.026 (2) | 0.036 (2) | 0.036 (2) | 0.0014 (18) | 0.0062 (18) | −0.002 (2) |
C4A | 0.028 (2) | 0.031 (2) | 0.0198 (19) | 0.0007 (17) | 0.0007 (16) | 0.0010 (17) |
C5A | 0.0191 (18) | 0.036 (2) | 0.023 (2) | 0.0006 (17) | 0.0023 (15) | 0.0005 (18) |
C6A | 0.030 (2) | 0.034 (2) | 0.023 (2) | −0.0007 (18) | 0.0008 (16) | 0.0000 (18) |
C8A | 0.025 (2) | 0.047 (3) | 0.034 (2) | −0.003 (2) | 0.0002 (18) | 0.007 (2) |
N1B | 0.034 (2) | 0.046 (3) | 0.106 (5) | 0.002 (2) | 0.006 (3) | −0.012 (3) |
C2B | 0.046 (3) | 0.044 (3) | 0.086 (5) | 0.003 (3) | 0.017 (3) | −0.002 (3) |
N3B | 0.037 (2) | 0.043 (2) | 0.052 (3) | 0.0017 (19) | −0.008 (2) | 0.003 (2) |
C4B | 0.038 (2) | 0.029 (2) | 0.032 (2) | 0.0005 (19) | 0.0027 (19) | 0.0034 (19) |
O6B | 0.058 (7) | 0.077 (7) | 0.026 (4) | −0.009 (7) | −0.003 (5) | −0.003 (4) |
C5C | 0.023 (6) | 0.030 (5) | 0.051 (7) | 0.004 (4) | −0.005 (5) | −0.003 (4) |
C6B | 0.052 (8) | 0.034 (5) | 0.020 (5) | −0.003 (5) | −0.004 (4) | −0.001 (4) |
O6C | 0.061 (8) | 0.081 (7) | 0.044 (6) | −0.014 (8) | −0.012 (6) | 0.009 (5) |
C5B | 0.040 (8) | 0.031 (5) | 0.048 (7) | −0.006 (5) | 0.001 (5) | −0.001 (5) |
C6C | 0.094 (12) | 0.032 (5) | 0.018 (5) | −0.013 (6) | 0.020 (5) | 0.004 (4) |
N7B | 0.041 (3) | 0.047 (3) | 0.115 (5) | −0.003 (2) | −0.009 (3) | 0.002 (3) |
C8B | 0.035 (3) | 0.044 (3) | 0.089 (5) | 0.005 (2) | −0.015 (3) | −0.004 (3) |
N9B | 0.047 (3) | 0.044 (3) | 0.053 (3) | −0.004 (2) | 0.011 (2) | −0.008 (2) |
O3WA | 0.054 (12) | 0.070 (6) | 0.065 (7) | −0.018 (5) | 0.002 (9) | 0.012 (5) |
O3WB | 0.039 (13) | 0.056 (6) | 0.032 (6) | 0.001 (6) | −0.005 (5) | −0.005 (5) |
S1A | 0.0190 (5) | 0.0406 (6) | 0.0304 (5) | 0.0041 (4) | 0.0014 (4) | 0.0024 (5) |
O7A | 0.0204 (15) | 0.082 (3) | 0.0395 (19) | 0.0058 (18) | 0.0025 (14) | 0.0025 (19) |
O8A | 0.0254 (16) | 0.081 (3) | 0.040 (2) | 0.0042 (17) | −0.0062 (14) | 0.0015 (19) |
O9A | 0.0374 (19) | 0.064 (2) | 0.0339 (18) | 0.0009 (19) | −0.0081 (15) | 0.0020 (18) |
O10A | 0.0233 (15) | 0.048 (2) | 0.045 (2) | −0.0038 (14) | −0.0008 (14) | 0.0051 (16) |
O11A | 0.0363 (19) | 0.045 (2) | 0.058 (2) | 0.0119 (16) | −0.0007 (17) | 0.0030 (18) |
O12A | 0.0297 (17) | 0.066 (2) | 0.0331 (18) | 0.0037 (17) | 0.0043 (14) | 0.0005 (17) |
C9A | 0.024 (2) | 0.036 (2) | 0.033 (2) | −0.0022 (18) | −0.0001 (17) | 0.0048 (19) |
C10A | 0.0214 (19) | 0.029 (2) | 0.038 (2) | 0.0005 (17) | 0.0022 (17) | 0.0051 (19) |
C11A | 0.032 (2) | 0.031 (2) | 0.033 (2) | 0.0002 (19) | −0.0038 (18) | 0.0015 (19) |
C12A | 0.036 (2) | 0.048 (3) | 0.031 (2) | 0.001 (2) | 0.0036 (19) | −0.001 (2) |
C13A | 0.024 (2) | 0.044 (3) | 0.038 (2) | 0.005 (2) | 0.0063 (18) | −0.004 (2) |
C14A | 0.024 (2) | 0.031 (2) | 0.035 (2) | 0.0021 (17) | −0.0004 (17) | −0.0004 (19) |
C15A | 0.024 (2) | 0.032 (2) | 0.031 (2) | 0.0006 (17) | 0.0008 (16) | −0.0007 (18) |
S1B | 0.0199 (5) | 0.0449 (7) | 0.0374 (6) | 0.0012 (5) | −0.0017 (4) | 0.0018 (5) |
O7B | 0.0216 (15) | 0.080 (3) | 0.0314 (17) | −0.0009 (17) | −0.0012 (13) | 0.0034 (18) |
O8B | 0.0331 (18) | 0.080 (3) | 0.0366 (19) | −0.0020 (18) | 0.0085 (15) | −0.0028 (19) |
O9B | 0.048 (2) | 0.069 (3) | 0.0303 (18) | 0.000 (2) | 0.0063 (15) | −0.0004 (18) |
O10B | 0.0261 (17) | 0.053 (2) | 0.060 (2) | 0.0086 (16) | −0.0035 (16) | −0.0015 (19) |
O11B | 0.041 (2) | 0.052 (2) | 0.070 (3) | −0.0094 (18) | 0.0085 (19) | 0.003 (2) |
O12B | 0.0287 (17) | 0.088 (3) | 0.0354 (19) | 0.0048 (19) | −0.0048 (14) | −0.003 (2) |
C9B | 0.029 (2) | 0.036 (2) | 0.030 (2) | 0.0049 (19) | 0.0029 (18) | 0.0043 (19) |
C10B | 0.025 (2) | 0.029 (2) | 0.030 (2) | 0.0021 (17) | −0.0024 (16) | 0.0034 (18) |
C11B | 0.038 (2) | 0.035 (2) | 0.027 (2) | 0.000 (2) | 0.0025 (18) | 0.0020 (19) |
C12B | 0.039 (3) | 0.050 (3) | 0.032 (2) | −0.002 (2) | −0.007 (2) | −0.006 (2) |
C13B | 0.027 (2) | 0.041 (3) | 0.041 (3) | −0.003 (2) | −0.0124 (19) | −0.002 (2) |
C14B | 0.025 (2) | 0.031 (2) | 0.030 (2) | −0.0007 (17) | −0.0004 (16) | 0.0033 (19) |
C15B | 0.0243 (19) | 0.029 (2) | 0.027 (2) | 0.0013 (17) | −0.0014 (16) | −0.0012 (18) |
O1W | 0.0373 (19) | 0.064 (2) | 0.0336 (18) | −0.0042 (19) | 0.0112 (16) | 0.0006 (17) |
O2W | 0.0378 (19) | 0.057 (2) | 0.0288 (17) | 0.0041 (17) | 0.0081 (14) | 0.0002 (17) |
O4W | 0.165 (6) | 0.065 (3) | 0.067 (3) | 0.006 (4) | −0.048 (4) | −0.014 (3) |
O6A—C6A | 1.228 (5) | S1A—O12A | 1.453 (3) |
N1A—C2A | 1.346 (6) | S1A—O10A | 1.466 (3) |
N1A—C6A | 1.395 (5) | S1A—C14A | 1.772 (4) |
N1A—H1A | 0.8600 | O7A—C9A | 1.318 (6) |
N3A—C2A | 1.293 (6) | O7A—H7D | 0.8200 |
N3A—C4A | 1.362 (5) | O8A—C9A | 1.216 (5) |
N7A—C8A | 1.330 (6) | O9A—C11A | 1.350 (5) |
N7A—C5A | 1.384 (5) | O9A—H9D | 0.8200 |
N7A—H7A | 0.8600 | C9A—C10A | 1.479 (6) |
N9A—C8A | 1.334 (6) | C10A—C15A | 1.389 (6) |
N9A—C4A | 1.370 (5) | C10A—C11A | 1.402 (6) |
N9A—H9A | 0.8600 | C11A—C12A | 1.395 (6) |
C2A—H2A | 0.9300 | C12A—C13A | 1.378 (7) |
C4A—C5A | 1.354 (6) | C12A—H12A | 0.9300 |
C5A—C6A | 1.415 (6) | C13A—C14A | 1.394 (6) |
C8A—H8A | 0.9300 | C13A—H13A | 0.9300 |
N1B—C2B | 1.300 (9) | C14A—C15A | 1.382 (6) |
N1B—C6B | 1.452 (12) | C15A—H15A | 0.9300 |
N1B—C5B | 1.452 (15) | S1B—O11B | 1.447 (4) |
N1B—H1C | 0.8600 | S1B—O12B | 1.456 (4) |
N1B—H1B | 0.8600 | S1B—O10B | 1.460 (4) |
C2B—N3B | 1.301 (7) | S1B—C14B | 1.767 (4) |
C2B—C5B | 2.013 (16) | O7B—C9B | 1.310 (5) |
C2B—H2B | 0.9300 | O7B—H7E | 0.8200 |
N3B—C4B | 1.361 (6) | O8B—C9B | 1.227 (5) |
C4B—N9B | 1.339 (6) | O9B—C11B | 1.342 (6) |
C4B—C5B | 1.378 (12) | O9B—H9E | 0.8200 |
C4B—C5C | 1.396 (12) | C9B—C10B | 1.466 (6) |
O6B—C6B | 1.222 (15) | C10B—C15B | 1.401 (6) |
C5C—N7B | 1.425 (13) | C10B—C11B | 1.405 (6) |
C5C—C6B | 1.458 (18) | C11B—C12B | 1.399 (7) |
C5C—C8B | 2.009 (15) | C12B—C13B | 1.366 (7) |
O6C—C6C | 1.227 (16) | C12B—H12B | 0.9300 |
C5B—C6C | 1.41 (2) | C13B—C14B | 1.401 (6) |
C6C—N7B | 1.476 (14) | C13B—H13B | 0.9300 |
N7B—C8B | 1.319 (9) | C14B—C15B | 1.383 (6) |
N7B—H7B | 0.8600 | C15B—H15B | 0.9300 |
N7B—H7C | 0.8600 | O1W—H1WA | 0.8501 |
C8B—N9B | 1.301 (7) | O1W—H1WB | 0.8493 |
C8B—H8B | 0.9300 | O2W—H2WA | 0.821 (10) |
N9B—H9B | 0.8600 | O2W—H2WB | 0.820 (10) |
S1A—O11A | 1.439 (4) | ||
C2A—N1A—C6A | 125.2 (4) | N9B—C8B—C5C | 74.8 (5) |
C2A—N1A—H1A | 117.4 | N7B—C8B—C5C | 45.0 (4) |
C6A—N1A—H1A | 117.4 | N9B—C8B—H8B | 120.1 |
C2A—N3A—C4A | 112.2 (4) | N7B—C8B—H8B | 120.1 |
C8A—N7A—C5A | 107.1 (4) | C5C—C8B—H8B | 165.1 |
C8A—N7A—H7A | 126.4 | C8B—N9B—C4B | 109.5 (5) |
C5A—N7A—H7A | 126.4 | C8B—N9B—H9B | 125.2 |
C8A—N9A—C4A | 107.7 (4) | C4B—N9B—H9B | 125.2 |
C8A—N9A—H9A | 126.1 | O11A—S1A—O12A | 112.6 (2) |
C4A—N9A—H9A | 126.1 | O11A—S1A—O10A | 113.0 (2) |
N3A—C2A—N1A | 125.4 (4) | O12A—S1A—O10A | 111.8 (2) |
N3A—C2A—H2A | 117.3 | O11A—S1A—C14A | 106.4 (2) |
N1A—C2A—H2A | 117.3 | O12A—S1A—C14A | 106.0 (2) |
C5A—C4A—N3A | 126.3 (4) | O10A—S1A—C14A | 106.4 (2) |
C5A—C4A—N9A | 107.5 (4) | C9A—O7A—H7D | 109.5 |
N3A—C4A—N9A | 126.2 (4) | C11A—O9A—H9D | 109.5 |
C4A—C5A—N7A | 107.5 (4) | O8A—C9A—O7A | 122.1 (4) |
C4A—C5A—C6A | 121.5 (4) | O8A—C9A—C10A | 123.6 (4) |
N7A—C5A—C6A | 131.0 (4) | O7A—C9A—C10A | 114.2 (4) |
O6A—C6A—N1A | 121.4 (4) | C15A—C10A—C11A | 119.5 (4) |
O6A—C6A—C5A | 129.1 (4) | C15A—C10A—C9A | 121.1 (4) |
N1A—C6A—C5A | 109.5 (4) | C11A—C10A—C9A | 119.4 (4) |
N7A—C8A—N9A | 110.1 (4) | O9A—C11A—C12A | 116.8 (4) |
N7A—C8A—H8A | 125.0 | O9A—C11A—C10A | 123.8 (4) |
N9A—C8A—H8A | 125.0 | C12A—C11A—C10A | 119.4 (4) |
C2B—N1B—C6B | 137.0 (7) | C13A—C12A—C11A | 120.5 (4) |
C2B—N1B—C5B | 93.9 (7) | C13A—C12A—H12A | 119.8 |
C2B—N1B—H1C | 111.5 | C11A—C12A—H12A | 119.8 |
C6B—N1B—H1C | 111.5 | C12A—C13A—C14A | 120.2 (4) |
C2B—N1B—H1B | 133.1 | C12A—C13A—H13A | 119.9 |
C5B—N1B—H1B | 133.1 | C14A—C13A—H13A | 119.9 |
N1B—C2B—N3B | 121.5 (6) | C15A—C14A—C13A | 119.7 (4) |
N1B—C2B—C5B | 46.0 (5) | C15A—C14A—S1A | 121.3 (3) |
N3B—C2B—C5B | 75.5 (5) | C13A—C14A—S1A | 119.0 (3) |
N1B—C2B—H2B | 119.3 | C14A—C15A—C10A | 120.7 (4) |
N3B—C2B—H2B | 119.3 | C14A—C15A—H15A | 119.6 |
C5B—C2B—H2B | 165.3 | C10A—C15A—H15A | 119.6 |
C2B—N3B—C4B | 107.9 (5) | O11B—S1B—O12B | 112.8 (3) |
N9B—C4B—N3B | 126.2 (5) | O11B—S1B—O10B | 112.5 (2) |
N9B—C4B—C5B | 133.4 (8) | O12B—S1B—O10B | 111.5 (2) |
N3B—C4B—C5B | 100.4 (7) | O11B—S1B—C14B | 106.2 (2) |
N9B—C4B—C5C | 99.5 (7) | O12B—S1B—C14B | 107.3 (2) |
N3B—C4B—C5C | 134.3 (7) | O10B—S1B—C14B | 106.1 (2) |
C4B—C5C—N7B | 117.1 (10) | C9B—O7B—H7E | 109.5 |
C4B—C5C—C6B | 117.7 (10) | C11B—O9B—H9E | 109.5 |
N7B—C5C—C6B | 125.2 (10) | O8B—C9B—O7B | 122.7 (4) |
C4B—C5C—C8B | 76.2 (6) | O8B—C9B—C10B | 122.9 (4) |
N7B—C5C—C8B | 40.9 (5) | O7B—C9B—C10B | 114.4 (4) |
C6B—C5C—C8B | 166.0 (9) | C15B—C10B—C11B | 119.4 (4) |
O6B—C6B—N1B | 136.7 (11) | C15B—C10B—C9B | 121.3 (4) |
O6B—C6B—C5C | 121.8 (11) | C11B—C10B—C9B | 119.3 (4) |
N1B—C6B—C5C | 101.5 (8) | O9B—C11B—C12B | 117.6 (4) |
C4B—C5B—C6C | 120.4 (12) | O9B—C11B—C10B | 122.8 (4) |
C4B—C5B—N1B | 116.4 (10) | C12B—C11B—C10B | 119.6 (4) |
C6C—C5B—N1B | 123.2 (10) | C13B—C12B—C11B | 120.5 (4) |
C4B—C5B—C2B | 76.3 (7) | C13B—C12B—H12B | 119.8 |
C6C—C5B—C2B | 163.3 (10) | C11B—C12B—H12B | 119.8 |
N1B—C5B—C2B | 40.1 (5) | C12B—C13B—C14B | 120.5 (4) |
O6C—C6C—C5B | 126.6 (13) | C12B—C13B—H13B | 119.8 |
O6C—C6C—N7B | 132.2 (13) | C14B—C13B—H13B | 119.8 |
C5B—C6C—N7B | 101.2 (8) | C15B—C14B—C13B | 119.8 (4) |
C8B—N7B—C5C | 94.1 (7) | C15B—C14B—S1B | 120.8 (3) |
C8B—N7B—C6C | 135.6 (7) | C13B—C14B—S1B | 119.4 (3) |
C8B—N7B—H7B | 133.0 | C14B—C15B—C10B | 120.2 (4) |
C5C—N7B—H7B | 133.0 | C14B—C15B—H15B | 119.9 |
C8B—N7B—H7C | 112.2 | C10B—C15B—H15B | 119.9 |
C6C—N7B—H7C | 112.2 | H1WA—O1W—H1WB | 104.5 |
N9B—C8B—N7B | 119.8 (6) | H2WA—O2W—H2WB | 112 (10) |
C4A—N3A—C2A—N1A | 0.3 (7) | C6B—C5C—N7B—C8B | 178.1 (9) |
C6A—N1A—C2A—N3A | −0.5 (8) | O6C—C6C—N7B—C8B | 178.6 (13) |
C2A—N3A—C4A—C5A | 0.0 (7) | C5B—C6C—N7B—C8B | −2.0 (12) |
C2A—N3A—C4A—N9A | −179.1 (4) | C5C—N7B—C8B—N9B | 0.3 (8) |
C8A—N9A—C4A—C5A | −0.4 (5) | C6C—N7B—C8B—N9B | 2.6 (12) |
C8A—N9A—C4A—N3A | 179.0 (4) | N7B—C8B—N9B—C4B | −0.6 (8) |
N3A—C4A—C5A—N7A | −179.2 (4) | C5C—C8B—N9B—C4B | −0.4 (5) |
N9A—C4A—C5A—N7A | 0.1 (5) | N3B—C4B—N9B—C8B | 178.7 (5) |
N3A—C4A—C5A—C6A | −0.1 (7) | C5B—C4B—N9B—C8B | −1.3 (10) |
N9A—C4A—C5A—C6A | 179.2 (4) | C5C—C4B—N9B—C8B | 0.5 (7) |
C8A—N7A—C5A—C4A | 0.2 (5) | O8A—C9A—C10A—C15A | 179.1 (5) |
C8A—N7A—C5A—C6A | −178.8 (5) | O7A—C9A—C10A—C15A | 1.1 (6) |
C2A—N1A—C6A—O6A | −179.1 (5) | O8A—C9A—C10A—C11A | −0.3 (7) |
C2A—N1A—C6A—C5A | 0.4 (6) | O7A—C9A—C10A—C11A | −178.2 (4) |
C4A—C5A—C6A—O6A | 179.4 (5) | C15A—C10A—C11A—O9A | −180.0 (4) |
N7A—C5A—C6A—O6A | −1.7 (9) | C9A—C10A—C11A—O9A | −0.6 (7) |
C4A—C5A—C6A—N1A | −0.1 (6) | C15A—C10A—C11A—C12A | −1.3 (7) |
N7A—C5A—C6A—N1A | 178.7 (4) | C9A—C10A—C11A—C12A | 178.1 (4) |
C5A—N7A—C8A—N9A | −0.4 (6) | O9A—C11A—C12A—C13A | 179.2 (5) |
C4A—N9A—C8A—N7A | 0.5 (6) | C10A—C11A—C12A—C13A | 0.4 (7) |
C6B—N1B—C2B—N3B | 0.6 (12) | C11A—C12A—C13A—C14A | 0.6 (8) |
C5B—N1B—C2B—N3B | −0.6 (8) | C12A—C13A—C14A—C15A | −0.8 (7) |
N1B—C2B—N3B—C4B | 0.6 (8) | C12A—C13A—C14A—S1A | 178.7 (4) |
C5B—C2B—N3B—C4B | 0.2 (5) | O11A—S1A—C14A—C15A | 116.8 (4) |
C2B—N3B—C4B—N9B | 179.7 (5) | O12A—S1A—C14A—C15A | −3.4 (5) |
C2B—N3B—C4B—C5B | −0.2 (7) | O10A—S1A—C14A—C15A | −122.5 (4) |
C2B—N3B—C4B—C5C | −2.7 (10) | O11A—S1A—C14A—C13A | −62.7 (4) |
N9B—C4B—C5C—N7B | −0.4 (9) | O12A—S1A—C14A—C13A | 177.2 (4) |
N3B—C4B—C5C—N7B | −178.3 (6) | O10A—S1A—C14A—C13A | 58.0 (4) |
N9B—C4B—C5C—C6B | −178.6 (8) | C13A—C14A—C15A—C10A | −0.1 (7) |
N3B—C4B—C5C—C6B | 3.4 (13) | S1A—C14A—C15A—C10A | −179.6 (3) |
N9B—C4B—C5C—C8B | −0.3 (4) | C11A—C10A—C15A—C14A | 1.1 (7) |
N3B—C4B—C5C—C8B | −178.3 (6) | C9A—C10A—C15A—C14A | −178.2 (4) |
C2B—N1B—C6B—O6B | −177.8 (13) | O8B—C9B—C10B—C15B | 179.5 (5) |
C2B—N1B—C6B—C5C | −0.1 (12) | O7B—C9B—C10B—C15B | −1.8 (6) |
C4B—C5C—C6B—O6B | 176.7 (11) | O8B—C9B—C10B—C11B | −2.8 (7) |
N7B—C5C—C6B—O6B | −1.4 (17) | O7B—C9B—C10B—C11B | 175.9 (4) |
C8B—C5C—C6B—O6B | 4 (4) | C15B—C10B—C11B—O9B | 179.4 (4) |
C4B—C5C—C6B—N1B | −1.5 (11) | C9B—C10B—C11B—O9B | 1.6 (7) |
N7B—C5C—C6B—N1B | −179.6 (8) | C15B—C10B—C11B—C12B | 0.0 (7) |
C8B—C5C—C6B—N1B | −174 (3) | C9B—C10B—C11B—C12B | −177.8 (5) |
N9B—C4B—C5B—C6C | 1.7 (14) | O9B—C11B—C12B—C13B | −178.9 (5) |
N3B—C4B—C5B—C6C | −178.4 (9) | C10B—C11B—C12B—C13B | 0.5 (8) |
N9B—C4B—C5B—N1B | 179.9 (6) | C11B—C12B—C13B—C14B | −1.1 (8) |
N3B—C4B—C5B—N1B | −0.1 (9) | C12B—C13B—C14B—C15B | 1.2 (7) |
N9B—C4B—C5B—C2B | −179.8 (6) | C12B—C13B—C14B—S1B | −177.9 (4) |
N3B—C4B—C5B—C2B | 0.1 (4) | O11B—S1B—C14B—C15B | −114.7 (4) |
C2B—N1B—C5B—C4B | 0.4 (9) | O12B—S1B—C14B—C15B | 6.0 (5) |
C2B—N1B—C5B—C6C | 178.6 (9) | O10B—S1B—C14B—C15B | 125.3 (4) |
C4B—C5B—C6C—O6C | 179.4 (12) | O11B—S1B—C14B—C13B | 64.3 (4) |
N1B—C5B—C6C—O6C | 1.2 (19) | O12B—S1B—C14B—C13B | −174.9 (4) |
C2B—C5B—C6C—O6C | 4 (4) | O10B—S1B—C14B—C13B | −55.6 (4) |
C4B—C5B—C6C—N7B | 0.0 (12) | C13B—C14B—C15B—C10B | −0.6 (7) |
N1B—C5B—C6C—N7B | −178.2 (8) | S1B—C14B—C15B—C10B | 178.4 (3) |
C2B—C5B—C6C—N7B | −175 (3) | C11B—C10B—C15B—C14B | 0.0 (7) |
C4B—C5C—N7B—C8B | 0.1 (9) | C9B—C10B—C15B—C14B | 177.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N7B—H7B···O3WAi | 0.86 | 2.26 | 3.08 | 158 |
O7A—H7D···O10Aii | 0.82 | 1.86 | 2.677 | 170 |
O7B—H7E···O10Bi | 0.82 | 1.84 | 2.655 | 175 |
O9A—H9D···O12Bii | 0.82 | 2.34 | 2.924 | 128 |
O9B—H9E···O12Aiii | 0.82 | 2.54 | 3.143 | 131 |
O1W—H1WA···O6Aiv | 0.85 | 2.31 | 2.801 | 117 |
O1W—H1WA···O10Biv | 0.85 | 2.28 | 2.917 | 132 |
N9B—H9B···O6Bv | 0.86 | 2.42 | 3.044 | 130 |
N9B—H9B···O3WAvi | 0.86 | 2.47 | 3.07 | 128 |
N1A—H1A···O6Avii | 0.86 | 2.05 | 2.898 | 170 |
N1B—H1C···O4W | 0.86 | 2.22 | 2.890 | 135 |
N1B—H1C···O11A | 0.86 | 2.45 | 2.998 | 122 |
O1W—H1WB···O12B | 0.85 | 2.01 | 2.844 | 169 |
O2W—H2WA···N3A | 0.83 | 2.07 | 2.849 | 157 |
O2W—H2WB···O12A | 0.82 | 2.03 | 2.815 | 160 |
N7A—H7A···O1W | 0.86 | 1.77 | 2.615 | 168 |
N9A—H9A···O2W | 0.86 | 1.89 | 2.697 | 157 |
C2A—H2A···O1Wii | 0.93 | 2.43 | 3.149 | 134 |
C2B—H2B···O11A | 0.93 | 2.46 | 2.974 | 114 |
C8A—H8A···O2Wviii | 0.93 | 2.40 | 3.310 | 167 |
C15B—H15B···O9A | 0.93 | 2.59 | 3.510 | 172 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x+1, y, z−1; (iv) −x+1, −y+1, −z+1; (v) x, −y+1/2, z−1/2; (vi) x+1, −y+1/2, z−1/2; (vii) −x, −y+1, −z+1; (viii) −x+1, −y+1, −z+2. |
C5H5N4O+·ClO4−·H2O | F(000) = 520 |
Mr = 254.60 | Dx = 1.833 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.0307 (6) Å | Cell parameters from 2752 reflections |
b = 20.386 (2) Å | θ = 2.0–30.3° |
c = 9.0181 (10) Å | µ = 0.44 mm−1 |
β = 94.233 (2)° | T = 296 K |
V = 922.33 (18) Å3 | Plate, colourless |
Z = 4 | 0.45 × 0.02 × 0.003 mm |
Bruker APEXII CCD diffractometer | 2370 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.025 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 30.3°, θmin = 2.0° |
Tmin = 0.957, Tmax = 1.000 | h = −7→7 |
16360 measured reflections | k = −28→28 |
2752 independent reflections | l = −12→12 |
Refinement on F2 | 3 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0576P)2 + 0.3728P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2752 reflections | Δρmax = 0.37 e Å−3 |
165 parameters | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.32826 (7) | 0.47612 (2) | 0.23036 (5) | 0.03437 (13) | |
O6 | 1.1975 (2) | 0.28099 (6) | 0.28926 (13) | 0.0395 (3) | |
O2 | 1.2250 (4) | 0.53538 (8) | 0.1690 (2) | 0.0699 (5) | |
O3 | 1.6141 (3) | 0.47706 (8) | 0.2342 (2) | 0.0627 (4) | |
O4 | 1.2288 (3) | 0.42071 (7) | 0.14577 (18) | 0.0571 (4) | |
O5 | 1.2456 (3) | 0.46991 (8) | 0.37946 (17) | 0.0598 (4) | |
N1 | 0.9409 (3) | 0.35230 (6) | 0.41720 (15) | 0.0334 (3) | |
H1 | 1.018 (4) | 0.3843 (12) | 0.387 (3) | 0.049 (6)* | |
N7 | 0.8829 (2) | 0.17434 (6) | 0.43852 (14) | 0.0281 (3) | |
H7 | 0.992 (5) | 0.1492 (12) | 0.387 (3) | 0.060 (7)* | |
N9 | 0.5789 (2) | 0.20049 (6) | 0.58838 (14) | 0.0284 (3) | |
H9 | 0.462 (5) | 0.1993 (11) | 0.650 (3) | 0.046 (6)* | |
C2 | 0.7509 (3) | 0.36488 (7) | 0.51258 (18) | 0.0342 (3) | |
H2 | 0.716229 | 0.408591 | 0.533422 | 0.041* | |
N3 | 0.6127 (3) | 0.32029 (6) | 0.57756 (14) | 0.0312 (3) | |
C4 | 0.6819 (3) | 0.25866 (7) | 0.53983 (15) | 0.0246 (3) | |
C5 | 0.8730 (3) | 0.24168 (7) | 0.44524 (15) | 0.0243 (3) | |
C6 | 1.0223 (3) | 0.29051 (7) | 0.37512 (16) | 0.0272 (3) | |
C8 | 0.7053 (3) | 0.15077 (7) | 0.52526 (17) | 0.0311 (3) | |
H8 | 0.672604 | 0.106462 | 0.540420 | 0.037* | |
O1W | 0.2214 (3) | 0.38054 (6) | 0.76425 (18) | 0.0511 (4) | |
H1W | 0.252 (5) | 0.4216 (5) | 0.765 (3) | 0.066 (7)* | |
H2W | 0.344 (4) | 0.3627 (10) | 0.718 (3) | 0.081 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0347 (2) | 0.02074 (17) | 0.0495 (2) | −0.00172 (12) | 0.01561 (16) | −0.00075 (13) |
O6 | 0.0398 (6) | 0.0391 (6) | 0.0428 (6) | −0.0012 (5) | 0.0248 (5) | 0.0054 (5) |
O2 | 0.0807 (12) | 0.0369 (7) | 0.0952 (13) | 0.0172 (7) | 0.0277 (10) | 0.0222 (8) |
O3 | 0.0351 (7) | 0.0545 (9) | 0.1004 (13) | −0.0050 (6) | 0.0182 (7) | −0.0109 (8) |
O4 | 0.0551 (8) | 0.0419 (8) | 0.0757 (10) | −0.0102 (6) | 0.0147 (7) | −0.0226 (7) |
O5 | 0.0734 (10) | 0.0587 (9) | 0.0503 (8) | −0.0211 (8) | 0.0244 (7) | −0.0040 (6) |
N1 | 0.0377 (7) | 0.0255 (6) | 0.0388 (7) | −0.0043 (5) | 0.0146 (5) | 0.0030 (5) |
N7 | 0.0305 (6) | 0.0236 (5) | 0.0317 (6) | 0.0031 (4) | 0.0130 (5) | 0.0006 (4) |
N9 | 0.0282 (6) | 0.0285 (6) | 0.0304 (6) | −0.0020 (4) | 0.0141 (5) | 0.0016 (4) |
C2 | 0.0410 (8) | 0.0242 (6) | 0.0385 (8) | 0.0007 (6) | 0.0120 (6) | −0.0031 (6) |
N3 | 0.0331 (6) | 0.0269 (6) | 0.0351 (6) | 0.0024 (5) | 0.0132 (5) | −0.0026 (5) |
C4 | 0.0233 (6) | 0.0261 (6) | 0.0254 (6) | −0.0003 (5) | 0.0075 (5) | 0.0005 (5) |
C5 | 0.0246 (6) | 0.0241 (6) | 0.0251 (6) | 0.0007 (5) | 0.0085 (5) | 0.0023 (5) |
C6 | 0.0269 (6) | 0.0279 (6) | 0.0277 (6) | −0.0020 (5) | 0.0083 (5) | 0.0032 (5) |
C8 | 0.0338 (7) | 0.0245 (6) | 0.0367 (7) | −0.0007 (5) | 0.0128 (6) | 0.0022 (5) |
O1W | 0.0546 (8) | 0.0302 (6) | 0.0739 (9) | −0.0081 (6) | 0.0417 (7) | −0.0050 (6) |
Cl1—O2 | 1.4116 (15) | N9—C8 | 1.3452 (19) |
Cl1—O4 | 1.4324 (13) | N9—C4 | 1.3784 (17) |
Cl1—O3 | 1.4359 (15) | N9—H9 | 0.84 (2) |
Cl1—O5 | 1.4421 (15) | C2—N3 | 1.309 (2) |
O6—C6 | 1.2307 (17) | C2—H2 | 0.9300 |
N1—C2 | 1.357 (2) | N3—C4 | 1.3539 (18) |
N1—C6 | 1.3860 (19) | C4—C5 | 1.3758 (17) |
N1—H1 | 0.82 (2) | C5—C6 | 1.4229 (18) |
N7—C8 | 1.3204 (18) | C8—H8 | 0.9300 |
N7—C5 | 1.3752 (18) | O1W—H1W | 0.852 (9) |
N7—H7 | 0.90 (3) | O1W—H2W | 0.850 (9) |
O2—Cl1—O4 | 111.24 (12) | N3—C2—H2 | 117.4 |
O2—Cl1—O3 | 109.68 (11) | N1—C2—H2 | 117.4 |
O4—Cl1—O3 | 109.46 (9) | C2—N3—C4 | 112.14 (12) |
O2—Cl1—O5 | 108.50 (11) | N3—C4—C5 | 126.43 (12) |
O4—Cl1—O5 | 108.29 (9) | N3—C4—N9 | 127.50 (12) |
O3—Cl1—O5 | 109.63 (11) | C5—C4—N9 | 106.07 (12) |
C2—N1—C6 | 125.56 (13) | N7—C5—C4 | 107.91 (11) |
C2—N1—H1 | 115.8 (16) | N7—C5—C6 | 131.06 (12) |
C6—N1—H1 | 118.5 (16) | C4—C5—C6 | 121.02 (13) |
C8—N7—C5 | 108.00 (12) | O6—C6—N1 | 123.73 (13) |
C8—N7—H7 | 124.0 (16) | O6—C6—C5 | 126.53 (14) |
C5—N7—H7 | 128.0 (16) | N1—C6—C5 | 109.75 (12) |
C8—N9—C4 | 108.26 (11) | N7—C8—N9 | 109.76 (12) |
C8—N9—H9 | 129.5 (15) | N7—C8—H8 | 125.1 |
C4—N9—H9 | 122.2 (15) | N9—C8—H8 | 125.1 |
N3—C2—N1 | 125.11 (14) | H1W—O1W—H2W | 106.9 (14) |
C6—N1—C2—N3 | −1.1 (3) | N3—C4—C5—C6 | 0.0 (2) |
N1—C2—N3—C4 | 0.5 (2) | N9—C4—C5—C6 | −179.54 (13) |
C2—N3—C4—C5 | 0.0 (2) | C2—N1—C6—O6 | −179.27 (16) |
C2—N3—C4—N9 | 179.42 (15) | C2—N1—C6—C5 | 1.0 (2) |
C8—N9—C4—N3 | −179.25 (14) | N7—C5—C6—O6 | 0.6 (3) |
C8—N9—C4—C5 | 0.24 (16) | C4—C5—C6—O6 | 179.83 (15) |
C8—N7—C5—C4 | 0.01 (17) | N7—C5—C6—N1 | −179.65 (14) |
C8—N7—C5—C6 | 179.31 (15) | C4—C5—C6—N1 | −0.4 (2) |
N3—C4—C5—N7 | 179.34 (14) | C5—N7—C8—N9 | 0.15 (18) |
N9—C4—C5—N7 | −0.15 (15) | C4—N9—C8—N7 | −0.24 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4 | 0.82 | 2.60 | 3.249 | 138 |
N1—H1···O5 | 0.82 | 2.09 | 2.879 | 162 |
N7—H7···O2i | 0.91 | 2.60 | 3.031 | 110.2 |
N7—H7···O1Wii | 0.91 | 1.76 | 2.6489 | 165 |
N9—H9···O6iii | 0.84 | 1.93 | 2.7602 | 166 |
O1W—H1W···O3iv | 0.85 | 2.17 | 3.018 | 172 |
O1W—H2W···N3 | 0.85 | 2.11 | 2.951 | 172 |
C8—H8···O2i | 0.93 | 2.47 | 2.970 | 114 |
C8—H8···O3iii | 0.93 | 2.47 | 3.268 | 144 |
C8—H8···O4iii | 0.93 | 2.55 | 3.072 | 116 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x+1, −y+1/2, z−1/2; (iii) x−1, −y+1/2, z+1/2; (iv) −x+2, −y+1, −z+1. |
Compound | Space group | Primary interaction between | Graph-set motif | Motif type | Secondary interaction between | Graph-set motif | Motif type | |
Guaninidinium hydrochloride | Monoclinic P21/c, | N—H···N, N—H···O | R22(8), | IV and V | N—H···Cl, | R32(8), | XII and XIII | |
a = 4.479 Å | R22(10) | C—H···Cl, | R43(11) | |||||
b = 9.995 Å | O—H···N, | |||||||
c = 19.304 Å | O—H···Cl | |||||||
β = 107.90° | ||||||||
Guaninidinium hydrobromide | Monoclinic P21/c | N—H···N, N—H···O | R22(8), | IV and V | N—H···Br, | R32(8), | XII and XIII | |
a = 4.8708 Å | R22(10) | N—H···N, | R43(11) | |||||
b = 13.237 Å | O—H···Br, | |||||||
c = 14.638 Å | C—H···Br | |||||||
β = 93.906° | ||||||||
Guaninidinium dinitrate dihydrate | Monoclinic P21/c | N—H···O | R22(8) | V | N—H···O, | R43(12) | XII | |
a = 6.6340 Å | O—H···O | |||||||
b = 10.2020 Å | ||||||||
c = 11.0440 Å | ||||||||
β = 106.04° | ||||||||
Guaninidinium phosphite monohydrate | Monoclinic P21/c | N—H···N | R22(8) | IV | N—H···O | R21(6), | XII and XVIII | |
a = 4.9700 Å | R43(10) | |||||||
b = 12.7506 Å | ||||||||
c = 15.0499 Å | ||||||||
β = 92.293° | ||||||||
Guaninidinium phosphite dihydrate form (I) | Monoclinic P21/c | N—H···N | R22(8) | IV | N—H···N, | R32(8), | XIII and XVIII | |
a = 4.6812 Å | N—H···O | R21(6) | ||||||
b = 24.0561 Å | ||||||||
c = 9.5186 Å | ||||||||
β = 99.773° | ||||||||
Guaninidinium phosphite dihydrate form (II) | Monoclinic P21/c | N—H···N | R22(8) | IV | N—H···N, | R32(8), | XIII and XVIII | |
a = 4.7340 Å | N—H···O | R21(6) | ||||||
b = 24.0450 Å | ||||||||
c = 9.5050 Å | ||||||||
β = 98.860° | ||||||||
Guaninidinium phosphate hydrate form (I) | Triclinic, P1 | N—H···N | R22(8) | IV | N—H···O, | R22(9) | XVI and XVII | |
a = 9.607 Å | O—H···O | R22(10) | ||||||
b = 10.221 Å | ||||||||
c = 10.603 Å | ||||||||
α = 84.5° | ||||||||
β = 108.2° | ||||||||
γ = 119.7° | ||||||||
Guaninidinium phosphate monohydrate form (II) | Monoclinic P21/n | N—H···N | R22(8) | IV | N—H···O, | R22(8), | VI, XIII and XVI | |
a = 4.5414 Å | O—H···O | R32(8), | ||||||
b = 12.5774 Å | R22(9) | |||||||
c = 18.1485 Å | ||||||||
β = 93.689 ° | ||||||||
Guaninidinium sulfate monohydrate | Monoclinic P21/c | N—H···O | R22(8) | VI | N—H···O, O-H···O | R43(12) | XV | |
a = 8.9940 Å | ||||||||
b = 10.2020 Å | ||||||||
c = 11.0440 Å | ||||||||
β = 106.04° | ||||||||
Xanthinium nitrate monohydrate | Triclinic, P1 | N—H···O | R22(8) | I | O—H···N, | R22(4), | VIII, XI and XIII | |
a = 5.0416 Å | O—H···O | R32(8), | ||||||
b = 7.4621 Å | R64(14) | |||||||
c = 12.1396 Å | ||||||||
α = 80.248° | ||||||||
β = 80.800° | ||||||||
γ = 75.657° | ||||||||
Xanthinium sulfate monohydrate | Monoclinic P21 | N—H···O | R22(8) | I | O—H···N, | R32(8) | XIII | |
a = 5.183 Å | ||||||||
b = 24.805 Å | ||||||||
c = 7.701 Å | ||||||||
β = 103.510° | ||||||||
Xanthinium perchlorate dihydrate | Triclinic, P1 | N—H···O | R22(8) | I | O—H···N, | R32(8) | XIII | |
a = 5.1625 Å | O—H···O | |||||||
b = 7.7449 Å | ||||||||
c = 13.696 Å | ||||||||
α = 100.214° | ||||||||
β = 91.591° | ||||||||
γ = 100.880° | ||||||||
Hypoxanthinium hydrochloride monohydrate | Monoclinic P21/c | N—H···Cl | R32(9) | III | N—H···Cl, | R33(11), | IX, X and XI | |
a = 4.8295 Å | C—H···Cl, | R44(16), | ||||||
b = 17.7285 Å | O—H···N, | R64(14) | ||||||
c = 9.0077 Å | O—H···Cl | |||||||
β = 94.59° | ||||||||
Hypoxanthinium nitrate monohydrate form (I) | Orthorhombic Pnma | N—H···O | R22(8) | II | N—H···O, | R22(6), | XIII and XIV | |
a = 13.701 Å | O—H···O, | R32(8), | ||||||
b = 6.236 Å | R66(20) | |||||||
c = 10.078 Å | ||||||||
Hypoxanthinium nitrate monohydrate form (II) | Monoclinic P21/n | N—H···O | R22(8) | II | N—H···O, | R22(6), | XIII and XIV | |
a = 6.1452 Å | O—H···O, | R32(8) | ||||||
b = 13.7517 Å | ||||||||
c = 10.0414 Å | ||||||||
β = 95.601° |
References
Bendeif, E.-E., Dahaoui, S., Benali-Cherif, N. & Lecomte, C. (2007). Acta Cryst. B63, 448–458. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Biradha, K., Samai, S., Maity, A. C. & Goswami, S. (2010). Cryst. Growth Des. 10, 937–942. Web of Science CSD CrossRef CAS Google Scholar
Bishop, J. L., Quinn, R. & Dyar, M. D. (2014). Am. Mineral. 99, 1580–1592. Web of Science CrossRef PubMed Google Scholar
Bouchouit, K., Benali-Cherif, N., Benguedouar, L., Bendheif, L. & Merazig, H. (2002). Acta Cryst. E58, o1397–o1399. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2016). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cabaj, M. K. & Dominiak, P. M. (2021). Cryst. Growth Des. 21, 424–435. Web of Science CSD CrossRef CAS Google Scholar
Cabaj, M. K., Gajda, R., Hoser, A., Makal, A. & Dominiak, P. M. (2019). Acta Cryst. C75, 1036–1044. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: https://www.povray.org. Google Scholar
Cherouana, A., Benali-Cherif, N. & Bendjeddou, L. (2003). Acta Cryst. E59, o180–o182. Web of Science CSD CrossRef IUCr Journals Google Scholar
Costas, M. E. & Acevedo-Chávez, R. (1997). J. Phys. Chem. A, 101, 8309–8318. CrossRef CAS Web of Science Google Scholar
Dubler, E., Hänggi, G. & Bensch, W. (1987a). J. Inorg. Biochem. 29, 269–288. CSD CrossRef CAS Web of Science Google Scholar
Dubler, E., Hänggi, G. & Schmalle, H. (1987b). Acta Cryst. C43, 1872–1875. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Emel'yanenko, V. N., Zaitsau, D. H. & Verevkin, S. P. (2017). J. Chem. Eng. Data, 62, 2606–2609. CAS Google Scholar
Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., Penswick, J. R. & Zamir, A. (1965). Science, 147, 1462–1465. CrossRef PubMed CAS Web of Science Google Scholar
Hughes, M. N. (1981). In The Inorganic Chemistry of Biological Processes, 2nd ed. New York: John Wiley & Sons. Google Scholar
Latosińska, J. N., Latosińska, M., Seliger, J., Žagar, V. & Kazimierczuk, Z. (2014). J. Phys. Chem. B, 118, 10837–10853. Web of Science PubMed Google Scholar
Low, J. N., Tollin, P., Young, D. W. & Scrimgeour, S. N. (1986). Acta Cryst. C42, 1045–1047. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maixner, J. & Zachová, J. (1991). Acta Cryst. C47, 2474–2476. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871. Web of Science CrossRef CAS IUCr Journals Google Scholar
Plekan, O., Feyer, V., Richter, R., Moise, A., Coreno, M., Prince, K. C., Zaytseva, I. L., Moskovskaya, T. E., Soshnikov, D. Y. & Trofimov, A. B. (2012). J. Phys. Chem. A, 116, 5653–5664. Web of Science CrossRef CAS PubMed Google Scholar
Rutledge, L. R., Wheaton, C. A. & Wetmore, S. D. (2007). Phys. Chem. Chem. Phys. 9, 497–509. Web of Science CrossRef PubMed CAS Google Scholar
Schmalle, H. W., Hänggi, G. & Dubler, E. (1988). Acta Cryst. C44, 732–736. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sletten, J. & Jensen, L. H. (1969). Acta Cryst. B25, 1608–1614. CSD CrossRef IUCr Journals Web of Science Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sridhar, B. (2011). Acta Cryst. C67, o382–o386. Web of Science CSD CrossRef IUCr Journals Google Scholar
Stryer, L. (1988). In Biochemistry, 3rd ed., New York: Freeman. Google Scholar
Susithra, G., Ramalingam, S., Periandy, S. & Aarthi, R. (2018). Egypt. J. Basic Appl. Sci. 5, 313–326. Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Wei, C. H. (1977). Cryst. Struct. Commun. 6, 525–529. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, R.-Q. & Xie, Y.-R. (2007). Acta Cryst. E63, o3309. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.