research communications
and Hirshfeld surface analysis of 3-benzoyl-6-(1,3-dioxo-1-phenylbutan-2-yl)-2-hydroxy-2-methyl-4-phenylcyclohexane-1,1-dicarbonitrile
aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e`Composite Materials' Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
The central cyclohexane ring of the title compound, C32H28N2O4, adopts a chair conformation, with puckering parameters QT = 0.618 (2) Å, θ = 176.72 (19)° and φ = 290 (3)°. In the crystal, molecules are linked by O—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (100). These layers are linked by weak C—H⋯π interactions and A Hirshfeld surface analysis indicates that the contributions from the most prevalent interactions are H⋯H (41.2% contribution), C⋯H/H⋯C (20.3%), O⋯H/H⋯O (17.8%) and N⋯H/H⋯N (10.6%).
Keywords: crystal structure; cyclohexane conformation; hydrogen bond; van der Waals forces; Hirshfeld surface analysis.
CCDC reference: 2170547
1. Chemical context
Functionalized derivatives of carbo- and et al., 2018; Shikhaliyev et al., 2019; Viswanathan et al., 2019; Gurbanov et al., 2020; Khalilov et al., 2021). In particular, β-dicarbonyl compounds are important chemical substrates for the construction of various classes of organic compounds (Kaur et al., 2021).
are of great interest in the fields of organic synthesis, catalysis, materials science and medicinal chemistry (ZubkovTo the best of our knowledge, the interaction of β-dicarbonyl compounds with phenyl–allylidene–malononitriles leads to the formation of xanthene, benzo[b]pyran and pyridine derivatives (Bardasov et al., 2014; Amoozadeh et al., 2018). Interestingly, we discovered that in case of the reaction of one equivalent of phenyl–allylidene–malononitrile with two equivalents of benzoylacetone at room temperature, a substituted cyclohexane derivative was the product. In the context of ongoing structural studies (Safavora et al., 2019; Aliyeva et al., 2011; Mamedov et al., 2022), we report here the and Hirshfeld surface analysis of the title compound, 3-benzoyl-6-(1,3-dioxo-1-phenylbutan-2-yl)-2-hydroxy-2-methyl-4-phenylcyclohexane-1,1-dicarbonitrile.
2. Structural commentary
In the title compound (Fig. 1), the central cyclohexane ring (A: atoms C1–C6) adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975) QT = 0.618 (2) Å, θ = 176.72 (19)° and φ = 290 (3)°. The phenyl (B: C11–C16; C: C21–C26; D: C27–C32) rings make dihedral angles of 78.23 (10), 83.20 (11) and 82.09 (10)°, respectively, with the mean plane of the central cyclohexane ring. The dihedral angles between the phenyl rings are B/C = 21.88 (10)°, B/D = 21.88 (19)° and C/D = 73.64 (10)°. The C1—C7—C10—C11, C1—C7—C10—O2, C1—C7—C8—C9 and C1—C7—C8—O1 torsion angles are −157.13 (16), 27.9 (2), −73.6 (2) and 106.7 (2)°. The phenyl, benzoyl, hydroxy, cyano C2—C17≡N1 and 1,3-dioxo-1-phenylbutan-2-yl substituents all occupy equatorial sites, so that the cyano C2—C18≡N2 substituent necessarily occupies an axial site. There are five stereogenic centres and the about the C1, C3, C4, C5 and C7 atoms are S, R, R, S and R, respectively. The values of the geometric parameters of the title compound are normal and compatible with those of related compounds compiled in the Database survey section (§5).
3. Supramolecular features
In the crystal, O—H⋯O hydrogen bonds of medium strength, and weaker C—H⋯O and C—H⋯N interactions link adjacent molecules, forming layers extending parallel to (100) (Table 1 and Figs. 2–4). These layers are connected by weak C—H⋯π interactions and van der Waals interactions (Table 1 and Fig. 5).
4. Hirshfeld surface analysis
A Hirshfeld surface for the title compound and its associated two-dimensional fingerprint plots were analyzed and calculated using CrystalExplorer (Version 17.5; Turner et al., 2017). Hirshfeld surfaces allow for the display of intermolecular interactions by using distinct colours and intensities to indicate short and long contacts, as well as the relative strengths of the interactions. The three-dimensional (3D) Hirshfeld surface of the title compound plotted over dnorm in the range from −0.5877 to +1.7202 a.u. is shown in Fig. 6. As discussed above, the O3—H3⋯O1 interactions play a key role in the molecular packing of the title compound.
The overall two-dimensional (2D) fingerprint plot [Fig. 7(a)] and those delineated into H⋯H (41.2% contribution), C⋯H/H⋯C (20.3%), O⋯H/H⋯O (17.8%) and N⋯H/H⋯N (10.6%) contacts are illustrated in Figs. 7(b)–(e), respectively. The other minor contributions to the Hirshfeld surface are from N⋯C/C⋯N (1.0%), C⋯C (0.9%), O⋯N/N⋯O (0.8%) and O⋯C/C⋯O (0.8%) contacts. The large number of H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N interactions suggest that van der Waals interactions and hydrogen bonding play major roles in the crystal packing. Various interatomic contacts are compiled in Table 2.
|
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for the 2-hydroxy-2-methylcyclohexane-1,1-dicarbonitrile moiety revealed five structures closely related to the title compound: 3-cyano-4-hydroxy-2-(4-methylphenyl)-6-oxo-N-phenyl-4-(thiophen-2-yl)cyclohexane-1-carboxamide hydrate (CSD refcode UPOMOE; Naghiyev et al., 2021), (2RS,3SR,4RS,6SR)-3-benzoyl-4-hydroxy-2,4,6-triphenylcyclohexane-1,1-dicarbonitrile (MEHMOC01; Rodríguez et al., 2008), 3-(4-fluorobenzoyl)-4-(4-fluorophenyl)-4-hydroxy-2,6-diphenylcyclohexane-1,1-dicarbonitrile (SODHAW; Narayana et al., 2014), 5-cyano-2-hydroxy-2-methyl-N-phenyl-4-(pyridin-4-yl)-6-(thiophen-2-yl)-3,4-dihydro-2H-pyran-3-carboxamide (JUPHUA; Naghiyev et al., 2020) and 5-cyano-2-hydroxy-2-methyl-6-oxo-N-phenyl-4-(thiophen-2-yl)piperidine-3-carboxamide methanol solvate (JUPJOW; Naghiyev et al., 2020).
In the crystal of UPOMOE, the central cyclohexane ring adopts a chair conformation. Molecules are linked by N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (100), which interact via the between them.
In the crystal of MEHMOC01, the molecules are linked into complex sheets by two C—H⋯O hydrogen bonds and three C—H⋯N hydrogen bonds.
In the crystal of SODHAW, molecules are linked via pairs of O—H⋯N hydrogen bonds, forming inversion dimers. The dimers are linked via C—H⋯N and C—H⋯O hydrogen bonds, forming chains parallel to [001]. C—H⋯F hydrogen bonds link the chains into sheets lying parallel to (100).
In JUPHUA, the C(9), C(8), C44(32) and R66(48), with base vectors [100], [011] and [110] for the 3D network.
is stabilized by an extensive hydrogen-bonding network defined by N—H⋯N, O—H⋯N and C—H⋯O interactions with graph-set motifsIn JUPJOW, the C(4), C22(10), C44(28), R22(8) and R66(36), with base vectors [010], [100] and [001] for the 3D network. For JUPHUA and JUPJOW, another non-covalent weak interaction is also observed, specifically a chalcogen⋯π interaction (ca 3.6 Å) in JUPHUA between the thiophenyl sulfur fragment and the phenyl ring and a hydrogen⋯π interaction (ca 3.2 Å) in JUPJOW between the methyl group on the piperidone ring and the phenyl ring.
is also stabilized by an extensive hydrogen-bonding network of N—H⋯O, O—H⋯O and O—H⋯N interactions, where the methanol molecule participate with neighbouring molecules with graph-set motifs6. Synthesis and crystallization
To a solution of 2-(3-phenylallylidene)malononitrile (0.92 g, 5 mmol) and benzoylacetone (1.68 g, 10 mmol) in benzene (25 ml), 3–4 drops of 1-methylpiperazine were added and the mixture was stirred for 10 min and kept at room temperature for 72 h. Benzene (15 ml) was then removed from the reaction mixture by distillation, which was left overnight. The crystals which formed were separated by filtration and recrystallized from an ethanol–water (1:1 v/v) solution (yield 41%; m.p. 514–515 K).
1H NMR (300 MHz, DMSO-d6, ppm): δ 1.74 (s, 3H, CH3), 2.01 (t, 2H, CH2), 2.12 (s, 3H, COCH3), 3.47 (d–d, 1H, CH), 3.52 (s, 1H, OH), 4.08 (m, 1H, CH), 4.62 (d, 1H, CH), 4.86 (d, 1H, CH), 7.12–7.78 (m, 15H, 15Ar-H). 13C NMR (75 MHz, DMSO-d6, ppm): δ 24.28 (CH3), 30.36 (COCH3), 34.42 (CH2), 39.41 (CH), 45.49 (CH), 56.46 (Ctert), 57.01 (CH), 60.85 (CH), 81.92 (O—Ctert), 111.37 (CN), 111.81 (CN), 125.94 (CHarom), 127.22 (2CHarom), 127.86 (2CHarom), 128.90 (2CHarom), 128.98 (2CHarom), 129.31 (2CHarom), 130.35 (2CHarom), 132.52 (CHarom), 133.85 (CHarom), 135.44 (Carom), 138.49 (Carom), 141.22 (Carom), 194.97 (C=O), 195.93 (C=O), 200.21 (C=O).
7. details
Crystal data, data collection and structure . Due to large differences between calculated and observed intensities, about 40 reflections were omitted from the The H atom of the OH group was located in a difference map and its positional parameters were allowed to refine freely [O3—H3 = 0.93 (3) Å], with Uiso(H) = 1.5Ueq(O). All H atoms bound to C atoms were positioned geometrically and refined as riding, with C—H = 0.95 (aromatic), 0.99 (methylene), 1.00 (methine) and 0.98 Å (methyl), with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2170547
https://doi.org/10.1107/S2056989022004777/wm5643sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022004777/wm5643Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022004777/wm5643Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C32H28N2O4 | F(000) = 1064 |
Mr = 504.56 | Dx = 1.287 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 13.9798 (3) Å | Cell parameters from 52541 reflections |
b = 11.8411 (2) Å | θ = 3.1–79.4° |
c = 15.7406 (3) Å | µ = 0.69 mm−1 |
β = 91.901 (2)° | T = 100 K |
V = 2604.21 (9) Å3 | Prism, colourless |
Z = 4 | 0.09 × 0.06 × 0.06 mm |
Rigaku XtaLAB Synergy Dualflex HyPix diffractometer | 5497 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.110 |
φ and ω scans | θmax = 80.3°, θmin = 4.7° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2021) | h = −17→17 |
Tmin = 0.933, Tmax = 0.949 | k = −14→12 |
77914 measured reflections | l = −20→20 |
5618 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.074 | Hydrogen site location: mixed |
wR(F2) = 0.187 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0869P)2 + 2.2708P] where P = (Fo2 + 2Fc2)/3 |
5618 reflections | (Δ/σ)max < 0.001 |
348 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.60930 (11) | 0.56945 (13) | 0.06669 (10) | 0.0327 (3) | |
O2 | 0.68557 (10) | 0.25976 (12) | 0.19898 (9) | 0.0290 (3) | |
O3 | 0.42148 (11) | 0.24428 (13) | 0.31883 (10) | 0.0324 (3) | |
H3 | 0.415 (2) | 0.199 (3) | 0.367 (2) | 0.049* | |
O4 | 0.20303 (11) | 0.28810 (13) | 0.28805 (10) | 0.0351 (4) | |
N1 | 0.52004 (13) | 0.62769 (17) | 0.35886 (12) | 0.0344 (4) | |
N2 | 0.65726 (13) | 0.31942 (18) | 0.39833 (12) | 0.0368 (4) | |
C1 | 0.52388 (13) | 0.39859 (16) | 0.21623 (12) | 0.0231 (4) | |
H1 | 0.5225 | 0.3158 | 0.2038 | 0.028* | |
C2 | 0.51310 (13) | 0.41460 (17) | 0.31391 (12) | 0.0240 (4) | |
C3 | 0.41622 (13) | 0.35964 (18) | 0.34400 (12) | 0.0266 (4) | |
C4 | 0.33213 (13) | 0.42000 (17) | 0.29384 (12) | 0.0237 (4) | |
H4 | 0.3342 | 0.5025 | 0.3074 | 0.028* | |
C5 | 0.34164 (13) | 0.40464 (16) | 0.19736 (12) | 0.0236 (4) | |
H5 | 0.3408 | 0.3219 | 0.1846 | 0.028* | |
C6 | 0.43762 (13) | 0.45324 (17) | 0.16959 (12) | 0.0244 (4) | |
H6A | 0.4432 | 0.4417 | 0.1077 | 0.029* | |
H6B | 0.4386 | 0.5356 | 0.1805 | 0.029* | |
C7 | 0.62107 (13) | 0.44637 (16) | 0.18714 (12) | 0.0237 (4) | |
H7 | 0.6368 | 0.5172 | 0.2193 | 0.028* | |
C8 | 0.61386 (13) | 0.47219 (17) | 0.09111 (12) | 0.0261 (4) | |
C9 | 0.61333 (15) | 0.3741 (2) | 0.03178 (13) | 0.0320 (4) | |
H9A | 0.5778 | 0.3941 | −0.0208 | 0.048* | |
H9B | 0.5825 | 0.3095 | 0.0585 | 0.048* | |
H9C | 0.6793 | 0.3543 | 0.0187 | 0.048* | |
C10 | 0.70293 (13) | 0.36013 (16) | 0.20056 (12) | 0.0235 (4) | |
C11 | 0.80373 (13) | 0.40261 (17) | 0.20804 (12) | 0.0255 (4) | |
C12 | 0.82669 (14) | 0.51657 (19) | 0.20982 (14) | 0.0308 (4) | |
H12 | 0.7773 | 0.5717 | 0.2078 | 0.037* | |
C13 | 0.92204 (15) | 0.5500 (2) | 0.21452 (15) | 0.0352 (5) | |
H13 | 0.9376 | 0.6281 | 0.2152 | 0.042* | |
C14 | 0.99465 (15) | 0.4702 (2) | 0.21823 (15) | 0.0364 (5) | |
H14 | 1.0597 | 0.4935 | 0.2220 | 0.044* | |
C15 | 0.97192 (15) | 0.3563 (2) | 0.21636 (17) | 0.0403 (6) | |
H15 | 1.0215 | 0.3015 | 0.2188 | 0.048* | |
C16 | 0.87744 (15) | 0.32241 (19) | 0.21094 (15) | 0.0346 (5) | |
H16 | 0.8623 | 0.2442 | 0.2092 | 0.041* | |
C17 | 0.51666 (13) | 0.53547 (18) | 0.33812 (12) | 0.0257 (4) | |
C18 | 0.59353 (14) | 0.35950 (18) | 0.36132 (12) | 0.0269 (4) | |
C19 | 0.40934 (15) | 0.3705 (2) | 0.43962 (13) | 0.0343 (5) | |
H19A | 0.4054 | 0.4505 | 0.4550 | 0.051* | |
H19B | 0.4662 | 0.3368 | 0.4675 | 0.051* | |
H19C | 0.3520 | 0.3311 | 0.4581 | 0.051* | |
C20 | 0.23709 (13) | 0.37142 (17) | 0.32275 (12) | 0.0254 (4) | |
C21 | 0.19117 (14) | 0.42334 (19) | 0.39784 (13) | 0.0301 (4) | |
C22 | 0.20292 (16) | 0.5357 (2) | 0.41997 (16) | 0.0403 (5) | |
H22 | 0.2385 | 0.5844 | 0.3849 | 0.048* | |
C23 | 0.16292 (19) | 0.5777 (3) | 0.4932 (2) | 0.0582 (8) | |
H23 | 0.1697 | 0.6553 | 0.5074 | 0.070* | |
C24 | 0.1136 (2) | 0.5067 (4) | 0.54509 (18) | 0.0669 (10) | |
H24 | 0.0878 | 0.5351 | 0.5959 | 0.080* | |
C25 | 0.1012 (2) | 0.3952 (4) | 0.5241 (2) | 0.0663 (10) | |
H25 | 0.0675 | 0.3465 | 0.5606 | 0.080* | |
C26 | 0.13807 (17) | 0.3531 (3) | 0.44923 (17) | 0.0457 (6) | |
H26 | 0.1270 | 0.2767 | 0.4333 | 0.055* | |
C27 | 0.26091 (13) | 0.46041 (17) | 0.14557 (12) | 0.0243 (4) | |
C28 | 0.23681 (13) | 0.57302 (17) | 0.15741 (13) | 0.0261 (4) | |
H28 | 0.2681 | 0.6150 | 0.2016 | 0.031* | |
C29 | 0.16717 (14) | 0.62547 (19) | 0.10523 (13) | 0.0297 (4) | |
H29 | 0.1507 | 0.7022 | 0.1147 | 0.036* | |
C30 | 0.12222 (14) | 0.5654 (2) | 0.03973 (14) | 0.0330 (5) | |
H30 | 0.0756 | 0.6011 | 0.0035 | 0.040* | |
C31 | 0.14567 (15) | 0.4533 (2) | 0.02747 (14) | 0.0346 (5) | |
H31 | 0.1149 | 0.4119 | −0.0173 | 0.042* | |
C32 | 0.21395 (15) | 0.40056 (19) | 0.08018 (13) | 0.0301 (4) | |
H32 | 0.2287 | 0.3232 | 0.0716 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0331 (8) | 0.0336 (8) | 0.0315 (8) | 0.0030 (6) | 0.0039 (6) | 0.0075 (6) |
O2 | 0.0234 (7) | 0.0273 (7) | 0.0364 (8) | 0.0000 (5) | 0.0006 (5) | 0.0033 (6) |
O3 | 0.0323 (8) | 0.0267 (7) | 0.0385 (8) | −0.0003 (6) | 0.0031 (6) | 0.0060 (6) |
O4 | 0.0280 (7) | 0.0334 (8) | 0.0444 (9) | −0.0061 (6) | 0.0048 (6) | −0.0021 (7) |
N1 | 0.0320 (9) | 0.0354 (10) | 0.0355 (9) | 0.0023 (7) | −0.0010 (7) | −0.0007 (8) |
N2 | 0.0290 (9) | 0.0458 (11) | 0.0353 (10) | 0.0044 (8) | −0.0025 (7) | 0.0073 (8) |
C1 | 0.0188 (8) | 0.0272 (9) | 0.0234 (9) | −0.0002 (7) | 0.0000 (6) | 0.0028 (7) |
C2 | 0.0198 (8) | 0.0288 (10) | 0.0233 (9) | 0.0014 (7) | −0.0017 (7) | 0.0021 (7) |
C3 | 0.0215 (9) | 0.0329 (10) | 0.0255 (9) | 0.0000 (7) | 0.0005 (7) | 0.0063 (8) |
C4 | 0.0197 (8) | 0.0279 (9) | 0.0236 (9) | 0.0002 (7) | 0.0009 (7) | 0.0011 (7) |
C5 | 0.0195 (8) | 0.0276 (9) | 0.0236 (9) | −0.0009 (7) | −0.0003 (6) | 0.0014 (7) |
C6 | 0.0207 (8) | 0.0319 (10) | 0.0204 (8) | 0.0006 (7) | 0.0006 (6) | 0.0034 (7) |
C7 | 0.0193 (8) | 0.0270 (9) | 0.0248 (9) | 0.0007 (7) | 0.0002 (6) | 0.0028 (7) |
C8 | 0.0166 (8) | 0.0338 (10) | 0.0280 (9) | 0.0010 (7) | 0.0026 (6) | 0.0046 (8) |
C9 | 0.0304 (10) | 0.0407 (12) | 0.0250 (9) | 0.0034 (8) | 0.0017 (8) | 0.0022 (8) |
C10 | 0.0209 (8) | 0.0272 (9) | 0.0225 (8) | 0.0020 (7) | 0.0011 (6) | 0.0030 (7) |
C11 | 0.0199 (8) | 0.0318 (10) | 0.0248 (9) | 0.0022 (7) | 0.0009 (7) | 0.0029 (7) |
C12 | 0.0230 (9) | 0.0331 (11) | 0.0361 (11) | 0.0012 (8) | −0.0006 (7) | 0.0009 (8) |
C13 | 0.0245 (10) | 0.0347 (11) | 0.0462 (12) | −0.0045 (8) | −0.0024 (8) | −0.0007 (9) |
C14 | 0.0193 (9) | 0.0457 (13) | 0.0441 (12) | −0.0019 (8) | −0.0011 (8) | 0.0112 (10) |
C15 | 0.0216 (10) | 0.0410 (13) | 0.0585 (15) | 0.0064 (8) | 0.0042 (9) | 0.0166 (11) |
C16 | 0.0228 (9) | 0.0328 (11) | 0.0482 (13) | 0.0028 (8) | 0.0027 (8) | 0.0112 (9) |
C17 | 0.0196 (8) | 0.0335 (11) | 0.0238 (9) | 0.0016 (7) | −0.0016 (6) | 0.0025 (7) |
C18 | 0.0235 (9) | 0.0335 (10) | 0.0235 (9) | 0.0007 (7) | 0.0006 (7) | 0.0045 (8) |
C19 | 0.0251 (10) | 0.0536 (13) | 0.0242 (10) | 0.0017 (9) | 0.0007 (7) | 0.0010 (9) |
C20 | 0.0226 (9) | 0.0269 (9) | 0.0266 (9) | 0.0015 (7) | 0.0002 (7) | 0.0047 (7) |
C21 | 0.0187 (8) | 0.0427 (12) | 0.0289 (10) | 0.0045 (8) | 0.0020 (7) | 0.0038 (8) |
C22 | 0.0237 (10) | 0.0520 (14) | 0.0453 (13) | 0.0038 (9) | 0.0017 (9) | −0.0153 (11) |
C23 | 0.0311 (12) | 0.088 (2) | 0.0552 (17) | 0.0090 (13) | 0.0003 (11) | −0.0338 (16) |
C24 | 0.0444 (15) | 0.121 (3) | 0.0360 (13) | 0.0343 (18) | 0.0033 (11) | −0.0123 (16) |
C25 | 0.0412 (15) | 0.112 (3) | 0.0469 (16) | 0.0273 (16) | 0.0208 (12) | 0.0340 (18) |
C26 | 0.0336 (12) | 0.0575 (16) | 0.0470 (14) | 0.0113 (10) | 0.0145 (10) | 0.0213 (12) |
C27 | 0.0181 (8) | 0.0312 (10) | 0.0236 (9) | −0.0027 (7) | 0.0015 (6) | 0.0025 (7) |
C28 | 0.0222 (9) | 0.0288 (10) | 0.0271 (9) | −0.0025 (7) | −0.0007 (7) | 0.0017 (7) |
C29 | 0.0236 (9) | 0.0322 (10) | 0.0333 (10) | 0.0007 (8) | 0.0002 (7) | 0.0045 (8) |
C30 | 0.0225 (9) | 0.0446 (12) | 0.0315 (10) | 0.0006 (8) | −0.0037 (7) | 0.0076 (9) |
C31 | 0.0267 (10) | 0.0446 (12) | 0.0321 (10) | −0.0014 (9) | −0.0076 (8) | −0.0044 (9) |
C32 | 0.0261 (9) | 0.0340 (11) | 0.0300 (10) | 0.0012 (8) | −0.0023 (8) | −0.0039 (8) |
O1—C8 | 1.215 (3) | C12—H12 | 0.9500 |
O2—C10 | 1.213 (2) | C13—C14 | 1.387 (3) |
O3—C3 | 1.425 (3) | C13—H13 | 0.9500 |
O3—H3 | 0.93 (3) | C14—C15 | 1.386 (4) |
O4—C20 | 1.217 (3) | C14—H14 | 0.9500 |
N1—C17 | 1.140 (3) | C15—C16 | 1.380 (3) |
N2—C18 | 1.151 (3) | C15—H15 | 0.9500 |
C1—C6 | 1.534 (2) | C16—H16 | 0.9500 |
C1—C7 | 1.555 (2) | C19—H19A | 0.9800 |
C1—C2 | 1.561 (3) | C19—H19B | 0.9800 |
C1—H1 | 1.0000 | C19—H19C | 0.9800 |
C2—C18 | 1.480 (3) | C20—C21 | 1.496 (3) |
C2—C17 | 1.481 (3) | C21—C22 | 1.384 (3) |
C2—C3 | 1.589 (3) | C21—C26 | 1.392 (3) |
C3—C19 | 1.517 (3) | C22—C23 | 1.390 (4) |
C3—C4 | 1.567 (3) | C22—H22 | 0.9500 |
C4—C20 | 1.531 (3) | C23—C24 | 1.374 (6) |
C4—C5 | 1.540 (3) | C23—H23 | 0.9500 |
C4—H4 | 1.0000 | C24—C25 | 1.370 (6) |
C5—C27 | 1.521 (3) | C24—H24 | 0.9500 |
C5—C6 | 1.537 (3) | C25—C26 | 1.393 (4) |
C5—H5 | 1.0000 | C25—H25 | 0.9500 |
C6—H6A | 0.9900 | C26—H26 | 0.9500 |
C6—H6B | 0.9900 | C27—C28 | 1.389 (3) |
C7—C8 | 1.542 (3) | C27—C32 | 1.396 (3) |
C7—C10 | 1.543 (3) | C28—C29 | 1.398 (3) |
C7—H7 | 1.0000 | C28—H28 | 0.9500 |
C8—C9 | 1.490 (3) | C29—C30 | 1.386 (3) |
C9—H9A | 0.9800 | C29—H29 | 0.9500 |
C9—H9B | 0.9800 | C30—C31 | 1.383 (3) |
C9—H9C | 0.9800 | C30—H30 | 0.9500 |
C10—C11 | 1.497 (3) | C31—C32 | 1.392 (3) |
C11—C12 | 1.387 (3) | C31—H31 | 0.9500 |
C11—C16 | 1.401 (3) | C32—H32 | 0.9500 |
C12—C13 | 1.390 (3) | ||
C3—O3—H3 | 108 (2) | C13—C12—H12 | 120.0 |
C6—C1—C7 | 112.72 (15) | C14—C13—C12 | 120.5 (2) |
C6—C1—C2 | 108.66 (15) | C14—C13—H13 | 119.8 |
C7—C1—C2 | 111.08 (15) | C12—C13—H13 | 119.8 |
C6—C1—H1 | 108.1 | C15—C14—C13 | 119.7 (2) |
C7—C1—H1 | 108.1 | C15—C14—H14 | 120.2 |
C2—C1—H1 | 108.1 | C13—C14—H14 | 120.2 |
C18—C2—C17 | 106.12 (16) | C16—C15—C14 | 120.2 (2) |
C18—C2—C1 | 110.26 (16) | C16—C15—H15 | 119.9 |
C17—C2—C1 | 111.54 (16) | C14—C15—H15 | 119.9 |
C18—C2—C3 | 108.05 (15) | C15—C16—C11 | 120.4 (2) |
C17—C2—C3 | 109.92 (16) | C15—C16—H16 | 119.8 |
C1—C2—C3 | 110.78 (15) | C11—C16—H16 | 119.8 |
O3—C3—C19 | 111.25 (17) | N1—C17—C2 | 178.2 (2) |
O3—C3—C4 | 110.00 (16) | N2—C18—C2 | 178.2 (2) |
C19—C3—C4 | 112.97 (17) | C3—C19—H19A | 109.5 |
O3—C3—C2 | 104.92 (15) | C3—C19—H19B | 109.5 |
C19—C3—C2 | 110.11 (16) | H19A—C19—H19B | 109.5 |
C4—C3—C2 | 107.20 (15) | C3—C19—H19C | 109.5 |
C20—C4—C5 | 110.67 (15) | H19A—C19—H19C | 109.5 |
C20—C4—C3 | 108.84 (15) | H19B—C19—H19C | 109.5 |
C5—C4—C3 | 110.81 (15) | O4—C20—C21 | 121.07 (18) |
C20—C4—H4 | 108.8 | O4—C20—C4 | 120.11 (18) |
C5—C4—H4 | 108.8 | C21—C20—C4 | 118.68 (17) |
C3—C4—H4 | 108.8 | C22—C21—C26 | 119.3 (2) |
C27—C5—C6 | 108.92 (15) | C22—C21—C20 | 122.9 (2) |
C27—C5—C4 | 112.99 (15) | C26—C21—C20 | 117.7 (2) |
C6—C5—C4 | 109.95 (15) | C21—C22—C23 | 120.4 (3) |
C27—C5—H5 | 108.3 | C21—C22—H22 | 119.8 |
C6—C5—H5 | 108.3 | C23—C22—H22 | 119.8 |
C4—C5—H5 | 108.3 | C24—C23—C22 | 119.8 (3) |
C1—C6—C5 | 112.69 (15) | C24—C23—H23 | 120.1 |
C1—C6—H6A | 109.1 | C22—C23—H23 | 120.1 |
C5—C6—H6A | 109.1 | C25—C24—C23 | 120.5 (3) |
C1—C6—H6B | 109.1 | C25—C24—H24 | 119.7 |
C5—C6—H6B | 109.1 | C23—C24—H24 | 119.7 |
H6A—C6—H6B | 107.8 | C24—C25—C26 | 120.1 (3) |
C8—C7—C10 | 106.82 (15) | C24—C25—H25 | 119.9 |
C8—C7—C1 | 109.36 (15) | C26—C25—H25 | 119.9 |
C10—C7—C1 | 111.73 (15) | C21—C26—C25 | 119.8 (3) |
C8—C7—H7 | 109.6 | C21—C26—H26 | 120.1 |
C10—C7—H7 | 109.6 | C25—C26—H26 | 120.1 |
C1—C7—H7 | 109.6 | C28—C27—C32 | 118.43 (18) |
O1—C8—C9 | 122.77 (18) | C28—C27—C5 | 121.58 (17) |
O1—C8—C7 | 119.93 (18) | C32—C27—C5 | 119.82 (18) |
C9—C8—C7 | 117.30 (17) | C27—C28—C29 | 120.97 (18) |
C8—C9—H9A | 109.5 | C27—C28—H28 | 119.5 |
C8—C9—H9B | 109.5 | C29—C28—H28 | 119.5 |
H9A—C9—H9B | 109.5 | C30—C29—C28 | 119.9 (2) |
C8—C9—H9C | 109.5 | C30—C29—H29 | 120.0 |
H9A—C9—H9C | 109.5 | C28—C29—H29 | 120.0 |
H9B—C9—H9C | 109.5 | C31—C30—C29 | 119.51 (19) |
O2—C10—C11 | 121.19 (17) | C31—C30—H30 | 120.2 |
O2—C10—C7 | 119.91 (17) | C29—C30—H30 | 120.2 |
C11—C10—C7 | 118.70 (16) | C30—C31—C32 | 120.6 (2) |
C12—C11—C16 | 119.29 (18) | C30—C31—H31 | 119.7 |
C12—C11—C10 | 123.02 (17) | C32—C31—H31 | 119.7 |
C16—C11—C10 | 117.66 (18) | C31—C32—C27 | 120.5 (2) |
C11—C12—C13 | 119.9 (2) | C31—C32—H32 | 119.7 |
C11—C12—H12 | 120.0 | C27—C32—H32 | 119.7 |
C6—C1—C2—C18 | 178.10 (16) | O2—C10—C11—C12 | 179.81 (19) |
C7—C1—C2—C18 | −57.3 (2) | C7—C10—C11—C12 | 4.9 (3) |
C6—C1—C2—C17 | −64.26 (19) | O2—C10—C11—C16 | 1.6 (3) |
C7—C1—C2—C17 | 60.3 (2) | C7—C10—C11—C16 | −173.24 (18) |
C6—C1—C2—C3 | 58.5 (2) | C16—C11—C12—C13 | −0.1 (3) |
C7—C1—C2—C3 | −176.92 (15) | C10—C11—C12—C13 | −178.23 (19) |
C18—C2—C3—O3 | −63.67 (19) | C11—C12—C13—C14 | −0.6 (4) |
C17—C2—C3—O3 | −179.06 (15) | C12—C13—C14—C15 | 0.6 (4) |
C1—C2—C3—O3 | 57.22 (19) | C13—C14—C15—C16 | −0.1 (4) |
C18—C2—C3—C19 | 56.1 (2) | C14—C15—C16—C11 | −0.6 (4) |
C17—C2—C3—C19 | −59.3 (2) | C12—C11—C16—C15 | 0.6 (3) |
C1—C2—C3—C19 | 177.02 (17) | C10—C11—C16—C15 | 178.9 (2) |
C18—C2—C3—C4 | 179.40 (16) | C5—C4—C20—O4 | 34.1 (2) |
C17—C2—C3—C4 | 64.01 (19) | C3—C4—C20—O4 | −87.9 (2) |
C1—C2—C3—C4 | −59.7 (2) | C5—C4—C20—C21 | −150.15 (17) |
O3—C3—C4—C20 | 67.89 (19) | C3—C4—C20—C21 | 87.8 (2) |
C19—C3—C4—C20 | −57.1 (2) | O4—C20—C21—C22 | −155.3 (2) |
C2—C3—C4—C20 | −178.56 (15) | C4—C20—C21—C22 | 29.0 (3) |
O3—C3—C4—C5 | −54.0 (2) | O4—C20—C21—C26 | 27.6 (3) |
C19—C3—C4—C5 | −179.00 (17) | C4—C20—C21—C26 | −148.07 (19) |
C2—C3—C4—C5 | 59.5 (2) | C26—C21—C22—C23 | 0.7 (3) |
C20—C4—C5—C27 | 58.4 (2) | C20—C21—C22—C23 | −176.3 (2) |
C3—C4—C5—C27 | 179.24 (15) | C21—C22—C23—C24 | 1.7 (4) |
C20—C4—C5—C6 | −179.68 (15) | C22—C23—C24—C25 | −1.7 (4) |
C3—C4—C5—C6 | −58.8 (2) | C23—C24—C25—C26 | −0.6 (4) |
C7—C1—C6—C5 | 179.09 (16) | C22—C21—C26—C25 | −2.9 (3) |
C2—C1—C6—C5 | −57.3 (2) | C20—C21—C26—C25 | 174.2 (2) |
C27—C5—C6—C1 | −177.85 (16) | C24—C25—C26—C21 | 2.9 (4) |
C4—C5—C6—C1 | 57.8 (2) | C6—C5—C27—C28 | −70.2 (2) |
C6—C1—C7—C8 | −35.8 (2) | C4—C5—C27—C28 | 52.3 (2) |
C2—C1—C7—C8 | −158.06 (16) | C6—C5—C27—C32 | 105.0 (2) |
C6—C1—C7—C10 | −153.88 (16) | C4—C5—C27—C32 | −132.47 (19) |
C2—C1—C7—C10 | 83.90 (19) | C32—C27—C28—C29 | 0.0 (3) |
C10—C7—C8—O1 | −132.18 (18) | C5—C27—C28—C29 | 175.32 (18) |
C1—C7—C8—O1 | 106.7 (2) | C27—C28—C29—C30 | −1.0 (3) |
C10—C7—C8—C9 | 47.5 (2) | C28—C29—C30—C31 | 1.1 (3) |
C1—C7—C8—C9 | −73.6 (2) | C29—C30—C31—C32 | −0.1 (3) |
C8—C7—C10—O2 | −91.6 (2) | C30—C31—C32—C27 | −0.9 (3) |
C1—C7—C10—O2 | 27.9 (2) | C28—C27—C32—C31 | 0.9 (3) |
C8—C7—C10—C11 | 83.3 (2) | C5—C27—C32—C31 | −174.44 (19) |
C1—C7—C10—C11 | −157.13 (16) |
Cg4 is a centroid of the C27–C32 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1i | 0.94 (3) | 1.89 (3) | 2.787 (2) | 159 (3) |
C1—H1···O2 | 1.00 | 2.38 | 2.815 (2) | 106 |
C1—H1···O3 | 1.00 | 2.48 | 2.855 (2) | 102 |
C1—H1···N1i | 1.00 | 2.50 | 3.466 (3) | 163 |
C5—H5···O3 | 1.00 | 2.53 | 2.892 (2) | 101 |
C12—H12···O4ii | 0.95 | 2.58 | 3.242 (3) | 127 |
C28—H28···O2ii | 0.95 | 2.40 | 3.319 (2) | 164 |
C14—H14···Cg4iii | 0.95 | 2.80 | 3.475 (2) | 129 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x+1, y, z. |
Contact | Distance | Symmetry operation |
O1···H3 | 1.89 | 1 - x, 1/2 + y, 1/2 - z |
H9A···H6A | 2.39 | 1 - x, 1 - y, - z |
O4···H15 | 2.73 | - 1 + x, y, z |
H19B···N1 | 2.77 | 1 - x, 1 - y, 1 - z |
H26···H31 | 2.37 | x, 1/2 - y, 1/2 + z |
C25···C24 | 3.367 | - x, 1 - y, 1 - z |
H29···H23 | 2.41 | x, 3/2 - y, - 1/2 + z |
H13···H15 | 2.36 | 2 - x, 1/2 + y, 1/2 - z |
Acknowledgements
This paper has been supported by the Baku State University and the Ministry of Science and Higher Education of the Russian Federation. Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, ANK, MA and EVD; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, FNN and ANK; resources, AAA, VNK and FNN; supervision, ANK and MA.
Funding information
Funding for this research was provided by: Ministry of Science and Higher Education of the Russian Federation (award No. 075-03-2020-223 (FSSF-2020-0017).
References
Aliyeva, K. N., Maharramov, A. M., Allahverdiyev, M. A., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o2293. Web of Science CSD CrossRef IUCr Journals Google Scholar
Amoozadeh, A., Hosseininya, S. F. & Rahmani, S. (2018). Res. Chem. Intermed. 44, 991–1011. Web of Science CrossRef CAS Google Scholar
Bardasov, I. N., Alekseeva, A. U., Mihailov, D. L., Ershov, O. V., Nasakin, O. E. & Tafeenko, V. A. (2014). Tetrahedron Lett. 55, 2730–2733. Web of Science CSD CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Kaur, N., Bhardwaj, P. & Gupta, M. (2021). Curr. Org. Chem. 25, 2765–2790. Web of Science CrossRef Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291–296. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235. Web of Science CSD CrossRef Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Huseynov, E. Z., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 366–371. Web of Science CSD CrossRef IUCr Journals Google Scholar
Narayana, B., Sapnakumari, M., Sarojini, B. K. & Jasinski, J. P. (2014). Acta Cryst. E70, o736–o737. CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan. Google Scholar
Rodríguez, R., Nogueras, M., Low, J. N., Cobo, J. & Glidewell, C. (2008). Acta Cryst. C64, o578–o582. Web of Science CSD CrossRef IUCr Journals Google Scholar
Safavora, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. Web of Science CrossRef CAS PubMed Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.