research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-benzoyl-6-(1,3-dioxo-1-phenyl­butan-2-yl)-2-hy­dr­oxy-2-methyl-4-phenyl­cyclo­hexane-1,1-dicarbo­nitrile

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e`Composite Materials' Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 April 2022; accepted 4 May 2022; online 13 May 2022)

The central cyclo­hexane ring of the title compound, C32H28N2O4, adopts a chair conformation, with puckering parameters QT = 0.618 (2) Å, θ = 176.72 (19)° and φ = 290 (3)°. In the crystal, mol­ecules are linked by O—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (100). These layers are linked by weak C—H⋯π inter­actions and van der Waals forces. A Hirshfeld surface analysis indicates that the contributions from the most prevalent inter­actions are H⋯H (41.2% contribution), C⋯H/H⋯C (20.3%), O⋯H/H⋯O (17.8%) and N⋯H/H⋯N (10.6%).

1. Chemical context

Functionalized derivatives of carbo- and heterocyclic compounds are of great inter­est in the fields of organic synthesis, catalysis, materials science and medicinal chemistry (Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]; Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628-633.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]). In particular, β-dicarbonyl compounds are important chemical substrates for the construction of various classes of organic compounds (Kaur et al., 2021[Kaur, N., Bhardwaj, P. & Gupta, M. (2021). Curr. Org. Chem. 25, 2765-2790.]).

[Scheme 1]

To the best of our knowledge, the inter­action of β-dicarbonyl compounds with phen­yl–allyl­idene–malono­nitriles leads to the formation of xanthene, benzo[b]pyran and pyridine derivatives (Bardasov et al., 2014[Bardasov, I. N., Alekseeva, A. U., Mihailov, D. L., Ershov, O. V., Nasakin, O. E. & Tafeenko, V. A. (2014). Tetrahedron Lett. 55, 2730-2733.]; Amoozadeh et al., 2018[Amoozadeh, A., Hosseininya, S. F. & Rahmani, S. (2018). Res. Chem. Intermed. 44, 991-1011.]). Inter­estingly, we discovered that in case of the reaction of one equivalent of phen­yl–allyl­idene–malono­nitrile with two equivalents of benzoyl­acetone at room temperature, a substituted cyclo­hexane derivative was the product. In the context of ongoing structural studies (Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]; Aliyeva et al., 2011[Aliyeva, K. N., Maharramov, A. M., Allahverdiyev, M. A., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o2293.]; Mamedov et al., 2022[Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291-296.]), we report here the crystal structure and Hirshfeld surface analysis of the title compound, 3-benzoyl-6-(1,3-dioxo-1-phenyl­butan-2-yl)-2-hy­droxy-2-methyl-4-phenyl­cyclo­hexane-1,1-dicarbo­nitrile.

2. Structural commentary

In the title compound (Fig. 1[link]), the central cyclo­hexane ring (A: atoms C1–C6) adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) QT = 0.618 (2) Å, θ = 176.72 (19)° and φ = 290 (3)°. The phenyl (B: C11–C16; C: C21–C26; D: C27–C32) rings make dihedral angles of 78.23 (10), 83.20 (11) and 82.09 (10)°, respectively, with the mean plane of the central cyclo­hexane ring. The dihedral angles between the phenyl rings are B/C = 21.88 (10)°, B/D = 21.88 (19)° and C/D = 73.64 (10)°. The C1—C7—C10—C11, C1—C7—C10—O2, C1—C7—C8—C9 and C1—C7—C8—O1 torsion angles are −157.13 (16), 27.9 (2), −73.6 (2) and 106.7 (2)°. The phenyl, benzoyl, hy­droxy, cyano C2—C17≡N1 and 1,3-dioxo-1-phenyl­butan-2-yl substituents all occupy equatorial sites, so that the cyano C2—C18≡N2 substituent necessarily occupies an axial site. There are five stereogenic centres and the chirality about the C1, C3, C4, C5 and C7 atoms are S, R, R, S and R, respectively. The values of the geometric parameters of the title compound are normal and compatible with those of related compounds compiled in the Database survey section (§5[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the labelling scheme and displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, O—H⋯O hydrogen bonds of medium strength, and weaker C—H⋯O and C—H⋯N inter­actions link adjacent mol­ecules, forming layers extending parallel to (100) (Table 1[link] and Figs. 2[link]–4[link][link]). These layers are connected by weak C—H⋯π inter­actions and van der Waals inter­actions (Table 1[link] and Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C27–C32 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.94 (3) 1.89 (3) 2.787 (2) 159 (3)
C1—H1⋯N1i 1.00 2.50 3.466 (3) 163
C12—H12⋯O4ii 0.95 2.58 3.242 (3) 127
C28—H28⋯O2ii 0.95 2.40 3.319 (2) 164
C14—H14⋯Cg4iii 0.95 2.80 3.475 (2) 129
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z.
[Figure 2]
Figure 2
A view of the mol­ecular packing down [100], showing O—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds as dashed lines.
[Figure 3]
Figure 3
A view of the mol­ecular packing down [010]. Inter­molecular inter­actions are depicted as in Fig. 2[link].
[Figure 4]
Figure 4
A view of the mol­ecular packing down [001]. Inter­molecular inter­actions are depicted as in Fig. 2[link].
[Figure 5]
Figure 5
The crystal packing viewed down [010], showing O—H⋯O, C—H⋯O, C—H⋯N hydrogen bonds and C—H⋯π inter­actions.

4. Hirshfeld surface analysis

A Hirshfeld surface for the title compound and its associated two-dimensional fingerprint plots were analyzed and calculated using CrystalExplorer (Version 17.5; Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Australia. https://hirshfeldsurface.net.]). Hirshfeld surfaces allow for the display of inter­molecular inter­actions by using distinct colours and intensities to indicate short and long contacts, as well as the relative strengths of the inter­actions. The three-dimensional (3D) Hirshfeld surface of the title compound plotted over dnorm in the range from −0.5877 to +1.7202 a.u. is shown in Fig. 6[link]. As discussed above, the O3—H3⋯O1 inter­actions play a key role in the mol­ecular packing of the title compound.

[Figure 6]
Figure 6
(a) Front and (b) back sides of the 3D Hirshfeld surface of the title compound plotted over dnorm in the range from −0.5877 to +1.7202 a.u.

The overall two-dimensional (2D) fingerprint plot [Fig. 7[link](a)] and those delineated into H⋯H (41.2% contribution), C⋯H/H⋯C (20.3%), O⋯H/H⋯O (17.8%) and N⋯H/H⋯N (10.6%) contacts are illustrated in Figs. 7[link](b)–(e), respectively. The other minor contributions to the Hirshfeld surface are from N⋯C/C⋯N (1.0%), C⋯C (0.9%), O⋯N/N⋯O (0.8%) and O⋯C/C⋯O (0.8%) contacts. The large number of H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N inter­actions suggest that van der Waals inter­actions and hydrogen bonding play major roles in the crystal packing. Various inter­atomic contacts are compiled in Table 2[link].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
O1⋯H3 1.89 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
H9A⋯H6A 2.39 1 − x, 1 − y, − z
O4⋯H15 2.73 −1 + x, y, z
H19B⋯N1 2.77 1 − x, 1 − y, 1 − z
H26⋯H31 2.37 x, [{1\over 2}] − y, [{1\over 2}] + z
C25⋯C24 3.367 x, 1 − y, 1 − z
H29⋯H23 2.41 x, [{3\over 2}] − y, − [{1\over 2}] + z
H13⋯H15 2.36 2 − x, [{1\over 2}] + y, [{1\over 2}] − z
[Figure 7]
Figure 7
A view of the 2D fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) N⋯H/H⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2-hydroxy-2-methylcyclohexane-1,1-dicarbonitrile moiety revealed five structures closely related to the title compound: 3-cyano-4-hy­droxy-2-(4-methyl­phen­yl)-6-oxo-N-phenyl-4-(thio­phen-2-yl)cyclo­hexane-1-car­boxamide hydrate (CSD refcode UPOMOE; Naghiyev et al., 2021[Naghiyev, F. N., Khrustalev, V. N., Akkurt, M., Huseynov, E. Z., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 366-371.]), (2RS,3SR,4RS,6SR)-3-benzoyl-4-hy­droxy-2,4,6-tri­phenyl­cyclo­hexane-1,1-dicarbo­nitrile (MEHMOC01; Rodríguez et al., 2008[Rodríguez, R., Nogueras, M., Low, J. N., Cobo, J. & Glidewell, C. (2008). Acta Cryst. C64, o578-o582.]), 3-(4-fluoro­benzo­yl)-4-(4-fluoro­phen­yl)-4-hy­droxy-2,6-di­phenyl­cyclo­hexane-1,1-dicarbo­nitrile (SODHAW; Narayana et al., 2014[Narayana, B., Sapnakumari, M., Sarojini, B. K. & Jasinski, J. P. (2014). Acta Cryst. E70, o736-o737.]), 5-cyano-2-hy­droxy-2-methyl-N-phenyl-4-(pyridin-4-yl)-6-(thio­phen-2-yl)-3,4-di­hydro-2H-pyran-3-carboxamide (JUPHUA; Naghiyev et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235.]) and 5-cyano-2-hy­droxy-2-methyl-6-oxo-N-phenyl-4-(thio­phen-2-yl)piperi­dine-3-car­box­amide methanol solvate (JUPJOW; Naghiyev et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235.]).

In the crystal of UPOMOE, the central cyclo­hexane ring adopts a chair conformation. Mol­ecules are linked by N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (100), which inter­act via the van der Waals forces between them.

In the crystal of MEHMOC01, the mol­ecules are linked into complex sheets by two C—H⋯O hydrogen bonds and three C—H⋯N hydrogen bonds.

In the crystal of SODHAW, mol­ecules are linked via pairs of O—H⋯N hydrogen bonds, forming inversion dimers. The dimers are linked via C—H⋯N and C—H⋯O hydrogen bonds, forming chains parallel to [001]. C—H⋯F hydrogen bonds link the chains into sheets lying parallel to (100).

In JUPHUA, the crystal structure is stabilized by an extensive hydrogen-bonding network defined by N—H⋯N, O—H⋯N and C—H⋯O inter­actions with graph-set motifs C(9), C(8), C44(32) and R66(48), with base vectors [100], [011] and [110] for the 3D network.

In JUPJOW, the crystal structure is also stabilized by an extensive hydrogen-bonding network of N—H⋯O, O—H⋯O and O—H⋯N inter­actions, where the methanol mol­ecule participate with neighbouring mol­ecules with graph-set motifs C(4), C22(10), C44(28), R22(8) and R66(36), with base vectors [010], [100] and [001] for the 3D network. For JUPHUA and JUPJOW, another non-covalent weak inter­action is also observed, specifically a chalcogen⋯π interaction (ca 3.6 Å) in JUPHUA between the thiophenyl sulfur fragment and the phenyl ring and a hydrogen⋯π interaction (ca 3.2 Å) in JUPJOW between the methyl group on the piperidone ring and the phenyl ring.

6. Synthesis and crystallization

To a solution of 2-(3-phenyl­allyl­idene)malono­nitrile (0.92 g, 5 mmol) and benzoyl­acetone (1.68 g, 10 mmol) in benzene (25 ml), 3–4 drops of 1-methyl­piperazine were added and the mixture was stirred for 10 min and kept at room temperature for 72 h. Benzene (15 ml) was then removed from the reaction mixture by distillation, which was left overnight. The crystals which formed were separated by filtration and recrystallized from an ethanol–water (1:1 v/v) solution (yield 41%; m.p. 514–515 K).

1H NMR (300 MHz, DMSO-d6, ppm): δ 1.74 (s, 3H, CH3), 2.01 (t, 2H, CH2), 2.12 (s, 3H, COCH3), 3.47 (dd, 1H, CH), 3.52 (s, 1H, OH), 4.08 (m, 1H, CH), 4.62 (d, 1H, CH), 4.86 (d, 1H, CH), 7.12–7.78 (m, 15H, 15Ar-H). 13C NMR (75 MHz, DMSO-d6, ppm): δ 24.28 (CH3), 30.36 (COCH3), 34.42 (CH2), 39.41 (CH), 45.49 (CH), 56.46 (Ctert), 57.01 (CH), 60.85 (CH), 81.92 (O—Ctert), 111.37 (CN), 111.81 (CN), 125.94 (CHarom), 127.22 (2CHarom), 127.86 (2CHarom), 128.90 (2CHarom), 128.98 (2CHarom), 129.31 (2CHarom), 130.35 (2CHarom), 132.52 (CHarom), 133.85 (CHarom), 135.44 (Carom), 138.49 (Carom), 141.22 (Carom), 194.97 (C=O), 195.93 (C=O), 200.21 (C=O).

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Due to large differences between calculated and observed intensities, about 40 reflections were omitted from the refinement. The H atom of the OH group was located in a difference map and its positional parameters were allowed to refine freely [O3—H3 = 0.93 (3) Å], with Uiso(H) = 1.5Ueq(O). All H atoms bound to C atoms were positioned geometrically and refined as riding, with C—H = 0.95 (aromatic), 0.99 (methyl­ene), 1.00 (methine) and 0.98 Å (meth­yl), with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Table 3
Experimental details

Crystal data
Chemical formula C32H28N2O4
Mr 504.56
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.9798 (3), 11.8411 (2), 15.7406 (3)
β (°) 91.901 (2)
V3) 2604.21 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.69
Crystal size (mm) 0.09 × 0.06 × 0.06
 
Data collection
Diffractometer Rigaku XtaLAB Synergy Dualflex HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.])
Tmin, Tmax 0.933, 0.949
No. of measured, independent and observed [I > 2σ(I)] reflections 77914, 5618, 5497
Rint 0.110
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.187, 1.11
No. of reflections 5618
No. of parameters 348
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.33
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

3-Benzoyl-6-(1,3-dioxo-1-phenylbutan-2-yl)-2-hydroxy-2-methyl-4-phenylcyclohexane-1,1-dicarbonitrile top
Crystal data top
C32H28N2O4F(000) = 1064
Mr = 504.56Dx = 1.287 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 13.9798 (3) ÅCell parameters from 52541 reflections
b = 11.8411 (2) Åθ = 3.1–79.4°
c = 15.7406 (3) ŵ = 0.69 mm1
β = 91.901 (2)°T = 100 K
V = 2604.21 (9) Å3Prism, colourless
Z = 40.09 × 0.06 × 0.06 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex HyPix
diffractometer
5497 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.110
φ and ω scansθmax = 80.3°, θmin = 4.7°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2021)
h = 1717
Tmin = 0.933, Tmax = 0.949k = 1412
77914 measured reflectionsl = 2020
5618 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: mixed
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0869P)2 + 2.2708P]
where P = (Fo2 + 2Fc2)/3
5618 reflections(Δ/σ)max < 0.001
348 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60930 (11)0.56945 (13)0.06669 (10)0.0327 (3)
O20.68557 (10)0.25976 (12)0.19898 (9)0.0290 (3)
O30.42148 (11)0.24428 (13)0.31883 (10)0.0324 (3)
H30.415 (2)0.199 (3)0.367 (2)0.049*
O40.20303 (11)0.28810 (13)0.28805 (10)0.0351 (4)
N10.52004 (13)0.62769 (17)0.35886 (12)0.0344 (4)
N20.65726 (13)0.31942 (18)0.39833 (12)0.0368 (4)
C10.52388 (13)0.39859 (16)0.21623 (12)0.0231 (4)
H10.52250.31580.20380.028*
C20.51310 (13)0.41460 (17)0.31391 (12)0.0240 (4)
C30.41622 (13)0.35964 (18)0.34400 (12)0.0266 (4)
C40.33213 (13)0.42000 (17)0.29384 (12)0.0237 (4)
H40.33420.50250.30740.028*
C50.34164 (13)0.40464 (16)0.19736 (12)0.0236 (4)
H50.34080.32190.18460.028*
C60.43762 (13)0.45324 (17)0.16959 (12)0.0244 (4)
H6A0.44320.44170.10770.029*
H6B0.43860.53560.18050.029*
C70.62107 (13)0.44637 (16)0.18714 (12)0.0237 (4)
H70.63680.51720.21930.028*
C80.61386 (13)0.47219 (17)0.09111 (12)0.0261 (4)
C90.61333 (15)0.3741 (2)0.03178 (13)0.0320 (4)
H9A0.57780.39410.02080.048*
H9B0.58250.30950.05850.048*
H9C0.67930.35430.01870.048*
C100.70293 (13)0.36013 (16)0.20056 (12)0.0235 (4)
C110.80373 (13)0.40261 (17)0.20804 (12)0.0255 (4)
C120.82669 (14)0.51657 (19)0.20982 (14)0.0308 (4)
H120.77730.57170.20780.037*
C130.92204 (15)0.5500 (2)0.21452 (15)0.0352 (5)
H130.93760.62810.21520.042*
C140.99465 (15)0.4702 (2)0.21823 (15)0.0364 (5)
H141.05970.49350.22200.044*
C150.97192 (15)0.3563 (2)0.21636 (17)0.0403 (6)
H151.02150.30150.21880.048*
C160.87744 (15)0.32241 (19)0.21094 (15)0.0346 (5)
H160.86230.24420.20920.041*
C170.51666 (13)0.53547 (18)0.33812 (12)0.0257 (4)
C180.59353 (14)0.35950 (18)0.36132 (12)0.0269 (4)
C190.40934 (15)0.3705 (2)0.43962 (13)0.0343 (5)
H19A0.40540.45050.45500.051*
H19B0.46620.33680.46750.051*
H19C0.35200.33110.45810.051*
C200.23709 (13)0.37142 (17)0.32275 (12)0.0254 (4)
C210.19117 (14)0.42334 (19)0.39784 (13)0.0301 (4)
C220.20292 (16)0.5357 (2)0.41997 (16)0.0403 (5)
H220.23850.58440.38490.048*
C230.16292 (19)0.5777 (3)0.4932 (2)0.0582 (8)
H230.16970.65530.50740.070*
C240.1136 (2)0.5067 (4)0.54509 (18)0.0669 (10)
H240.08780.53510.59590.080*
C250.1012 (2)0.3952 (4)0.5241 (2)0.0663 (10)
H250.06750.34650.56060.080*
C260.13807 (17)0.3531 (3)0.44923 (17)0.0457 (6)
H260.12700.27670.43330.055*
C270.26091 (13)0.46041 (17)0.14557 (12)0.0243 (4)
C280.23681 (13)0.57302 (17)0.15741 (13)0.0261 (4)
H280.26810.61500.20160.031*
C290.16717 (14)0.62547 (19)0.10523 (13)0.0297 (4)
H290.15070.70220.11470.036*
C300.12222 (14)0.5654 (2)0.03973 (14)0.0330 (5)
H300.07560.60110.00350.040*
C310.14567 (15)0.4533 (2)0.02747 (14)0.0346 (5)
H310.11490.41190.01730.042*
C320.21395 (15)0.40056 (19)0.08018 (13)0.0301 (4)
H320.22870.32320.07160.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0331 (8)0.0336 (8)0.0315 (8)0.0030 (6)0.0039 (6)0.0075 (6)
O20.0234 (7)0.0273 (7)0.0364 (8)0.0000 (5)0.0006 (5)0.0033 (6)
O30.0323 (8)0.0267 (7)0.0385 (8)0.0003 (6)0.0031 (6)0.0060 (6)
O40.0280 (7)0.0334 (8)0.0444 (9)0.0061 (6)0.0048 (6)0.0021 (7)
N10.0320 (9)0.0354 (10)0.0355 (9)0.0023 (7)0.0010 (7)0.0007 (8)
N20.0290 (9)0.0458 (11)0.0353 (10)0.0044 (8)0.0025 (7)0.0073 (8)
C10.0188 (8)0.0272 (9)0.0234 (9)0.0002 (7)0.0000 (6)0.0028 (7)
C20.0198 (8)0.0288 (10)0.0233 (9)0.0014 (7)0.0017 (7)0.0021 (7)
C30.0215 (9)0.0329 (10)0.0255 (9)0.0000 (7)0.0005 (7)0.0063 (8)
C40.0197 (8)0.0279 (9)0.0236 (9)0.0002 (7)0.0009 (7)0.0011 (7)
C50.0195 (8)0.0276 (9)0.0236 (9)0.0009 (7)0.0003 (6)0.0014 (7)
C60.0207 (8)0.0319 (10)0.0204 (8)0.0006 (7)0.0006 (6)0.0034 (7)
C70.0193 (8)0.0270 (9)0.0248 (9)0.0007 (7)0.0002 (6)0.0028 (7)
C80.0166 (8)0.0338 (10)0.0280 (9)0.0010 (7)0.0026 (6)0.0046 (8)
C90.0304 (10)0.0407 (12)0.0250 (9)0.0034 (8)0.0017 (8)0.0022 (8)
C100.0209 (8)0.0272 (9)0.0225 (8)0.0020 (7)0.0011 (6)0.0030 (7)
C110.0199 (8)0.0318 (10)0.0248 (9)0.0022 (7)0.0009 (7)0.0029 (7)
C120.0230 (9)0.0331 (11)0.0361 (11)0.0012 (8)0.0006 (7)0.0009 (8)
C130.0245 (10)0.0347 (11)0.0462 (12)0.0045 (8)0.0024 (8)0.0007 (9)
C140.0193 (9)0.0457 (13)0.0441 (12)0.0019 (8)0.0011 (8)0.0112 (10)
C150.0216 (10)0.0410 (13)0.0585 (15)0.0064 (8)0.0042 (9)0.0166 (11)
C160.0228 (9)0.0328 (11)0.0482 (13)0.0028 (8)0.0027 (8)0.0112 (9)
C170.0196 (8)0.0335 (11)0.0238 (9)0.0016 (7)0.0016 (6)0.0025 (7)
C180.0235 (9)0.0335 (10)0.0235 (9)0.0007 (7)0.0006 (7)0.0045 (8)
C190.0251 (10)0.0536 (13)0.0242 (10)0.0017 (9)0.0007 (7)0.0010 (9)
C200.0226 (9)0.0269 (9)0.0266 (9)0.0015 (7)0.0002 (7)0.0047 (7)
C210.0187 (8)0.0427 (12)0.0289 (10)0.0045 (8)0.0020 (7)0.0038 (8)
C220.0237 (10)0.0520 (14)0.0453 (13)0.0038 (9)0.0017 (9)0.0153 (11)
C230.0311 (12)0.088 (2)0.0552 (17)0.0090 (13)0.0003 (11)0.0338 (16)
C240.0444 (15)0.121 (3)0.0360 (13)0.0343 (18)0.0033 (11)0.0123 (16)
C250.0412 (15)0.112 (3)0.0469 (16)0.0273 (16)0.0208 (12)0.0340 (18)
C260.0336 (12)0.0575 (16)0.0470 (14)0.0113 (10)0.0145 (10)0.0213 (12)
C270.0181 (8)0.0312 (10)0.0236 (9)0.0027 (7)0.0015 (6)0.0025 (7)
C280.0222 (9)0.0288 (10)0.0271 (9)0.0025 (7)0.0007 (7)0.0017 (7)
C290.0236 (9)0.0322 (10)0.0333 (10)0.0007 (8)0.0002 (7)0.0045 (8)
C300.0225 (9)0.0446 (12)0.0315 (10)0.0006 (8)0.0037 (7)0.0076 (9)
C310.0267 (10)0.0446 (12)0.0321 (10)0.0014 (9)0.0076 (8)0.0044 (9)
C320.0261 (9)0.0340 (11)0.0300 (10)0.0012 (8)0.0023 (8)0.0039 (8)
Geometric parameters (Å, º) top
O1—C81.215 (3)C12—H120.9500
O2—C101.213 (2)C13—C141.387 (3)
O3—C31.425 (3)C13—H130.9500
O3—H30.93 (3)C14—C151.386 (4)
O4—C201.217 (3)C14—H140.9500
N1—C171.140 (3)C15—C161.380 (3)
N2—C181.151 (3)C15—H150.9500
C1—C61.534 (2)C16—H160.9500
C1—C71.555 (2)C19—H19A0.9800
C1—C21.561 (3)C19—H19B0.9800
C1—H11.0000C19—H19C0.9800
C2—C181.480 (3)C20—C211.496 (3)
C2—C171.481 (3)C21—C221.384 (3)
C2—C31.589 (3)C21—C261.392 (3)
C3—C191.517 (3)C22—C231.390 (4)
C3—C41.567 (3)C22—H220.9500
C4—C201.531 (3)C23—C241.374 (6)
C4—C51.540 (3)C23—H230.9500
C4—H41.0000C24—C251.370 (6)
C5—C271.521 (3)C24—H240.9500
C5—C61.537 (3)C25—C261.393 (4)
C5—H51.0000C25—H250.9500
C6—H6A0.9900C26—H260.9500
C6—H6B0.9900C27—C281.389 (3)
C7—C81.542 (3)C27—C321.396 (3)
C7—C101.543 (3)C28—C291.398 (3)
C7—H71.0000C28—H280.9500
C8—C91.490 (3)C29—C301.386 (3)
C9—H9A0.9800C29—H290.9500
C9—H9B0.9800C30—C311.383 (3)
C9—H9C0.9800C30—H300.9500
C10—C111.497 (3)C31—C321.392 (3)
C11—C121.387 (3)C31—H310.9500
C11—C161.401 (3)C32—H320.9500
C12—C131.390 (3)
C3—O3—H3108 (2)C13—C12—H12120.0
C6—C1—C7112.72 (15)C14—C13—C12120.5 (2)
C6—C1—C2108.66 (15)C14—C13—H13119.8
C7—C1—C2111.08 (15)C12—C13—H13119.8
C6—C1—H1108.1C15—C14—C13119.7 (2)
C7—C1—H1108.1C15—C14—H14120.2
C2—C1—H1108.1C13—C14—H14120.2
C18—C2—C17106.12 (16)C16—C15—C14120.2 (2)
C18—C2—C1110.26 (16)C16—C15—H15119.9
C17—C2—C1111.54 (16)C14—C15—H15119.9
C18—C2—C3108.05 (15)C15—C16—C11120.4 (2)
C17—C2—C3109.92 (16)C15—C16—H16119.8
C1—C2—C3110.78 (15)C11—C16—H16119.8
O3—C3—C19111.25 (17)N1—C17—C2178.2 (2)
O3—C3—C4110.00 (16)N2—C18—C2178.2 (2)
C19—C3—C4112.97 (17)C3—C19—H19A109.5
O3—C3—C2104.92 (15)C3—C19—H19B109.5
C19—C3—C2110.11 (16)H19A—C19—H19B109.5
C4—C3—C2107.20 (15)C3—C19—H19C109.5
C20—C4—C5110.67 (15)H19A—C19—H19C109.5
C20—C4—C3108.84 (15)H19B—C19—H19C109.5
C5—C4—C3110.81 (15)O4—C20—C21121.07 (18)
C20—C4—H4108.8O4—C20—C4120.11 (18)
C5—C4—H4108.8C21—C20—C4118.68 (17)
C3—C4—H4108.8C22—C21—C26119.3 (2)
C27—C5—C6108.92 (15)C22—C21—C20122.9 (2)
C27—C5—C4112.99 (15)C26—C21—C20117.7 (2)
C6—C5—C4109.95 (15)C21—C22—C23120.4 (3)
C27—C5—H5108.3C21—C22—H22119.8
C6—C5—H5108.3C23—C22—H22119.8
C4—C5—H5108.3C24—C23—C22119.8 (3)
C1—C6—C5112.69 (15)C24—C23—H23120.1
C1—C6—H6A109.1C22—C23—H23120.1
C5—C6—H6A109.1C25—C24—C23120.5 (3)
C1—C6—H6B109.1C25—C24—H24119.7
C5—C6—H6B109.1C23—C24—H24119.7
H6A—C6—H6B107.8C24—C25—C26120.1 (3)
C8—C7—C10106.82 (15)C24—C25—H25119.9
C8—C7—C1109.36 (15)C26—C25—H25119.9
C10—C7—C1111.73 (15)C21—C26—C25119.8 (3)
C8—C7—H7109.6C21—C26—H26120.1
C10—C7—H7109.6C25—C26—H26120.1
C1—C7—H7109.6C28—C27—C32118.43 (18)
O1—C8—C9122.77 (18)C28—C27—C5121.58 (17)
O1—C8—C7119.93 (18)C32—C27—C5119.82 (18)
C9—C8—C7117.30 (17)C27—C28—C29120.97 (18)
C8—C9—H9A109.5C27—C28—H28119.5
C8—C9—H9B109.5C29—C28—H28119.5
H9A—C9—H9B109.5C30—C29—C28119.9 (2)
C8—C9—H9C109.5C30—C29—H29120.0
H9A—C9—H9C109.5C28—C29—H29120.0
H9B—C9—H9C109.5C31—C30—C29119.51 (19)
O2—C10—C11121.19 (17)C31—C30—H30120.2
O2—C10—C7119.91 (17)C29—C30—H30120.2
C11—C10—C7118.70 (16)C30—C31—C32120.6 (2)
C12—C11—C16119.29 (18)C30—C31—H31119.7
C12—C11—C10123.02 (17)C32—C31—H31119.7
C16—C11—C10117.66 (18)C31—C32—C27120.5 (2)
C11—C12—C13119.9 (2)C31—C32—H32119.7
C11—C12—H12120.0C27—C32—H32119.7
C6—C1—C2—C18178.10 (16)O2—C10—C11—C12179.81 (19)
C7—C1—C2—C1857.3 (2)C7—C10—C11—C124.9 (3)
C6—C1—C2—C1764.26 (19)O2—C10—C11—C161.6 (3)
C7—C1—C2—C1760.3 (2)C7—C10—C11—C16173.24 (18)
C6—C1—C2—C358.5 (2)C16—C11—C12—C130.1 (3)
C7—C1—C2—C3176.92 (15)C10—C11—C12—C13178.23 (19)
C18—C2—C3—O363.67 (19)C11—C12—C13—C140.6 (4)
C17—C2—C3—O3179.06 (15)C12—C13—C14—C150.6 (4)
C1—C2—C3—O357.22 (19)C13—C14—C15—C160.1 (4)
C18—C2—C3—C1956.1 (2)C14—C15—C16—C110.6 (4)
C17—C2—C3—C1959.3 (2)C12—C11—C16—C150.6 (3)
C1—C2—C3—C19177.02 (17)C10—C11—C16—C15178.9 (2)
C18—C2—C3—C4179.40 (16)C5—C4—C20—O434.1 (2)
C17—C2—C3—C464.01 (19)C3—C4—C20—O487.9 (2)
C1—C2—C3—C459.7 (2)C5—C4—C20—C21150.15 (17)
O3—C3—C4—C2067.89 (19)C3—C4—C20—C2187.8 (2)
C19—C3—C4—C2057.1 (2)O4—C20—C21—C22155.3 (2)
C2—C3—C4—C20178.56 (15)C4—C20—C21—C2229.0 (3)
O3—C3—C4—C554.0 (2)O4—C20—C21—C2627.6 (3)
C19—C3—C4—C5179.00 (17)C4—C20—C21—C26148.07 (19)
C2—C3—C4—C559.5 (2)C26—C21—C22—C230.7 (3)
C20—C4—C5—C2758.4 (2)C20—C21—C22—C23176.3 (2)
C3—C4—C5—C27179.24 (15)C21—C22—C23—C241.7 (4)
C20—C4—C5—C6179.68 (15)C22—C23—C24—C251.7 (4)
C3—C4—C5—C658.8 (2)C23—C24—C25—C260.6 (4)
C7—C1—C6—C5179.09 (16)C22—C21—C26—C252.9 (3)
C2—C1—C6—C557.3 (2)C20—C21—C26—C25174.2 (2)
C27—C5—C6—C1177.85 (16)C24—C25—C26—C212.9 (4)
C4—C5—C6—C157.8 (2)C6—C5—C27—C2870.2 (2)
C6—C1—C7—C835.8 (2)C4—C5—C27—C2852.3 (2)
C2—C1—C7—C8158.06 (16)C6—C5—C27—C32105.0 (2)
C6—C1—C7—C10153.88 (16)C4—C5—C27—C32132.47 (19)
C2—C1—C7—C1083.90 (19)C32—C27—C28—C290.0 (3)
C10—C7—C8—O1132.18 (18)C5—C27—C28—C29175.32 (18)
C1—C7—C8—O1106.7 (2)C27—C28—C29—C301.0 (3)
C10—C7—C8—C947.5 (2)C28—C29—C30—C311.1 (3)
C1—C7—C8—C973.6 (2)C29—C30—C31—C320.1 (3)
C8—C7—C10—O291.6 (2)C30—C31—C32—C270.9 (3)
C1—C7—C10—O227.9 (2)C28—C27—C32—C310.9 (3)
C8—C7—C10—C1183.3 (2)C5—C27—C32—C31174.44 (19)
C1—C7—C10—C11157.13 (16)
Hydrogen-bond geometry (Å, º) top
Cg4 is a centroid of the C27–C32 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.94 (3)1.89 (3)2.787 (2)159 (3)
C1—H1···O21.002.382.815 (2)106
C1—H1···O31.002.482.855 (2)102
C1—H1···N1i1.002.503.466 (3)163
C5—H5···O31.002.532.892 (2)101
C12—H12···O4ii0.952.583.242 (3)127
C28—H28···O2ii0.952.403.319 (2)164
C14—H14···Cg4iii0.952.803.475 (2)129
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
O1···H31.891 - x, 1/2 + y, 1/2 - z
H9A···H6A2.391 - x, 1 - y, - z
O4···H152.73- 1 + x, y, z
H19B···N12.771 - x, 1 - y, 1 - z
H26···H312.37x, 1/2 - y, 1/2 + z
C25···C243.367- x, 1 - y, 1 - z
H29···H232.41x, 3/2 - y, - 1/2 + z
H13···H152.362 - x, 1/2 + y, 1/2 - z
 

Acknowledgements

This paper has been supported by the Baku State University and the Ministry of Science and Higher Education of the Russian Federation. Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, ANK, MA and EVD; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, FNN and ANK; resources, AAA, VNK and FNN; supervision, ANK and MA.

Funding information

Funding for this research was provided by: Ministry of Science and Higher Education of the Russian Federation (award No. 075-03-2020-223 (FSSF-2020-0017).

References

First citationAliyeva, K. N., Maharramov, A. M., Allahverdiyev, M. A., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o2293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmoozadeh, A., Hosseininya, S. F. & Rahmani, S. (2018). Res. Chem. Intermed. 44, 991–1011.  Web of Science CrossRef CAS Google Scholar
First citationBardasov, I. N., Alekseeva, A. U., Mihailov, D. L., Ershov, O. V., Nasakin, O. E. & Tafeenko, V. A. (2014). Tetrahedron Lett. 55, 2730–2733.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaur, N., Bhardwaj, P. & Gupta, M. (2021). Curr. Org. Chem. 25, 2765–2790.  Web of Science CrossRef Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationMamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291–296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235.  Web of Science CSD CrossRef Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Akkurt, M., Huseynov, E. Z., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 366–371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarayana, B., Sapnakumari, M., Sarojini, B. K. & Jasinski, J. P. (2014). Acta Cryst. E70, o736–o737.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.  Google Scholar
First citationRodríguez, R., Nogueras, M., Low, J. N., Cobo, J. & Glidewell, C. (2008). Acta Cryst. C64, o578–o582.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds