research communications
2SeO3
of potassium orthoselenate(IV), KaFaculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany, and bMax Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden, Germany
*Correspondence e-mail: thomas.doert@tu-dresden.de
2SeO3, are reported for the first time. Colorless, block-shaped crystals were grown in a potassium hydroflux, i.e. under ultra-alkaline conditions, within 10 h. K2SeO3 crystallizes isostructural with Na2SO3 and K2TeO3 in the trigonal P with lattice parameters a = 6.1063 (4) Å and c = 6.9242 (4) Å at 100 (1) K. In the trigonal–pyramidal, C3v-symmetric [SeO3]2– anion, the bond length is 1.687 (1) Å, and the bond angle is 103.0 (1)°. Two of the three unique potassium cations exhibit a of six, and the third a of nine.
data for potassium orthoselenate(IV), KKeywords: crystal structure; hydroflux; selenate(IV).
CCDC reference: 2172487
1. Chemical context
Ternary alkali metal selenates(IV) are a long-known but poorly studied class of compounds. After the discovery of the first salts of selenic acid by Berzelius, comprehensive studies on these salts were not carried out until the beginning of the 1930s, when Janitzki reported the syntheses of sodium and potassium salts of selenic acid (Janitzki, 1932). Moreover, the composition and solubility of hydrates and anhydrates of these selenates(IV) were determined. However, only two crystal structures of ternary alkali metal selenates(IV) are known to date, viz. K2Se2O5 (Rider et al., 1985) and Na2SeO3 (Helmholdt et al., 1999; Wickleder, 2002). The latter compound was synthesized by annealing a mixture of Na2O and SeO2 at 773 K.
In this communication, we report on the synthesis and 2SeO3. The title compound was synthesized using the hydroflux approach, an ultra-alkaline reaction medium consisting of an approximately equimolar mixture of water and alkali metal hydroxide (Bugaris et al., 2013; Chance et al., 2013). Advantages of the hydroflux method are the good solubility of oxides and hydroxides, the fast and simple reaction at moderate temperatures, and the formation of single-crystals suitable for X-ray diffraction. Moreover, the high hydroxide concentration within the hydroflux reduces the activity of water, leading to the unexpected fact that water-sensitive products can be isolated, e.g. K2[Fe2O3(OH)2] (Albrecht et al., 2019), Tl3IO (Albrecht et al., 2020), or K2Te3 (Albrecht & Ruck, 2021).
of potassium orthoselenate(IV), K2. Structural commentary
Five atoms represent the 2SeO3, one selenium atom (site symmetry 3.., 2d), three potassium atoms (K1: .., 1a; K2: .., 1b; K3: 3.., 2d) and one oxygen atom (1, 6g). The of K2SeO3 is depicted in Fig. 1. The selenium atom is bound to three oxygen atoms with a Se—O bond length of 1.687 (1) Å and a bond angle O—Se—O of 103.0 (1)°. The pyramidal shape of the C3v-symmetric [SeO3]2– anion can be attributed to the electron lone pair of the selenium(IV) atom. This is supported by the bond-valence sum calculation (Brese & O'Keeffe, 1991) for selenium ν(Se) = ∑exp [(RSeO – dSeO)/b)] = 3 · exp [(1.811 Å – 1.687 (1) Å) / 0.37 Å)] = 4.2 valence units. The potassium cations K1 and K2 are octahedrally coordinated by oxygen atoms with K—O distances of 2.631 (1) and 2.771 (1) Å, respectively. K3 has nine oxygen neighbors at distances of 2.792 (1), 3.020 (1) Å, and 3.474 (1) Å (Fig. 2).
of KIt is noted that the X-ray powder diffraction pattern of ground K2SeO3 crystals (Fig. 3) differs significantly from previously published data (Hanawalt et al., 1938; Klushina et al., 1968).
3. Database survey
K2SeO3 crystallizes isostructural with Na2SO3 (Zachariasen & Buckley, 1931; Larsson & Kierkegaard, 1969) and K2TeO3 (Andersen et al., 1989). On a more general level, the structure of K2SeO3 can be related to the Ni2In type in P63/mmc (Laves & Wallbaum, 1942), with the K+ ions on the Ni positions and [SeO3]2– anions occupying the positions of the In atoms. The orientation of the selenate(IV) groups is responsible for the symmetry reduction to P; the higher pseudo-symmetry is mirrored in the respective twin laws.
4. Synthesis and crystallization
Potassium orthoselenate(IV), K2SeO3, was synthesized in a potassium hydroxide hydroflux with a molar water-base ratio of 1.7. The reaction was carried out in a PTFE-lined 50 mL Berghof-type DAB-2 stainless steel autoclave to prevent evaporation of water. The starting material SeO2 (4 mmol, abcr, 99.8%) was dissolved in 3 ml of water before adding 6.3 g of KOH (Fischer Scientific, 86%). After closing the autoclave, the reaction mixture was heated to 473 K at a rate of 2 K min−1 and, after 8 h, cooled to room temperature at a rate of −1 K min−1. The solid reaction product was washed twice with 2 ml of methanol on a Schlenk frit under inert conditions to remove adherent hydroflux. The colorless, block-shaped crystals of K2SeO3 (Fig. 4) dissolve readily in water, but dissolve in methanol a little slower than the hydroflux. showed that the surface of the crystals was etched by the washing process (Fig. 5). Due to its hygroscopicity, the product was dried in dynamic vacuum and stored under argon. Pure K2SeO3 was obtained with a yield of about 50%. Energy-dispersive on selected crystals confirmed the chemical composition within the limits of the method.
For the JANA2006 was used (Petříček et al., 2014). was performed using a SU8020 (Hitachi) with a triple detector system for secondary and low-energy backscattered electrons (Ua = 5 kV). The composition of selected single crystals was determined by semi-quantitative energy dispersive X-ray analysis (Ua = 15 kV) using a Silicon Drift Detector X–MaxN (Oxford Instruments). The data were processed applying the AZtec software package (Oxford Instruments, 2013).
the program5. Refinement
Crystal data, data collection and structure . The investigated crystal was found to be a fourfold twin: plus twofold rotation along [001]. The crystal, thus, partially conserves the hexagonal (pseudo-)symmetry of the Ni2In type.
details are summarized in Table 1Supporting information
CCDC reference: 2172487
https://doi.org/10.1107/S2056989022005175/wm5645sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022005175/wm5645Isup2.hkl
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: DIAMOND (Brandenburg, 2021); software used to prepare material for publication: publCIF (Westrip 2010).K2SeO3 | Dx = 3.047 Mg m−3 |
Mr = 205.2 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3 | Cell parameters from 7032 reflections |
Hall symbol: -P 3 | θ = 2.9–37.6° |
a = 6.1063 (2) Å | µ = 10.11 mm−1 |
c = 6.9242 (4) Å | T = 100 K |
V = 223.59 (2) Å3 | Block, colourless |
Z = 2 | 0.05 × 0.05 × 0.02 mm |
F(000) = 192 |
Bruker APEXII CCD diffractometer | 790 independent reflections |
Radiation source: X-ray tube | 785 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.021 |
ω– and φ–scans | θmax = 37.6°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −10→10 |
Tmin = 0.539, Tmax = 0.747 | k = −10→10 |
12526 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: chargeflipping |
R[F > 3σ(F)] = 0.009 | Secondary atom site location: difference Fourier map |
wR(F) = 0.033 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.000576I2) |
S = 1.05 | (Δ/σ)max = 0.001 |
790 reflections | Δρmax = 0.77 e Å−3 |
24 parameters | Δρmin = −1.51 e Å−3 |
0 restraints | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
0 constraints | Extinction coefficient: 570 (40) |
x | y | z | Uiso*/Ueq | ||
Se | 0.666667 | 0.333333 | 0.338432 (15) | 0.00495 (4) | |
K1 | 0 | 0 | 0 | 0.00741 (8) | |
K2 | 0 | 0 | 0.5 | 0.00764 (8) | |
K3 | 0.333333 | 0.666667 | 0.14233 (5) | 0.01091 (6) | |
O | 0.38608 (13) | 0.25027 (14) | 0.23422 (10) | 0.0135 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se | 0.00527 (5) | 0.00527 (5) | 0.00432 (6) | 0.00263 (3) | 0 | 0 |
K1 | 0.00743 (9) | 0.00743 (9) | 0.00735 (14) | 0.00372 (5) | 0 | 0 |
K2 | 0.00816 (9) | 0.00816 (9) | 0.00658 (13) | 0.00408 (5) | 0 | 0 |
K3 | 0.01248 (8) | 0.01248 (8) | 0.00778 (10) | 0.00624 (4) | 0 | 0 |
O | 0.0064 (3) | 0.0208 (4) | 0.0126 (3) | 0.0062 (2) | −0.0022 (2) | 0.0004 (2) |
Se—O | 1.6865 (8) | K2—K3 | 4.3084 (4) |
Se—Oi | 1.6865 (12) | K2—K3xiii | 4.3084 (4) |
Se—Oii | 1.6865 (7) | K2—K3xiv | 4.3084 (3) |
K1—K2iii | 3.4621 (4) | K2—K3xv | 4.3084 (4) |
K1—K2 | 3.4621 (4) | K2—O | 2.7708 (7) |
K1—K3iv | 3.6606 (3) | K2—Oix | 2.7708 (10) |
K1—K3v | 3.6606 (1) | K2—Ox | 2.7708 (8) |
K1—K3 | 3.6606 (3) | K2—Oxiii | 2.7708 (7) |
K1—K3vi | 3.6606 (3) | K2—Oxvi | 2.7708 (10) |
K1—K3vii | 3.6606 (1) | K2—Oxvii | 2.7708 (8) |
K1—K3viii | 3.6606 (3) | K3—K3vii | 4.0391 (4) |
K1—O | 2.6307 (7) | K3—K3viii | 4.0391 (3) |
K1—Oix | 2.6307 (10) | K3—K3xviii | 4.0391 (4) |
K1—Ox | 2.6307 (8) | K3—O | 2.7915 (10) |
K1—Ovi | 2.6307 (7) | K3—Oxix | 2.7915 (8) |
K1—Oxi | 2.6307 (10) | K3—Oxx | 2.7915 (12) |
K1—Oxii | 2.6307 (8) | K3—Oviii | 3.0203 (8) |
K2—K3iv | 4.3084 (4) | K3—Oxxi | 3.0203 (10) |
K2—K3v | 4.3084 (3) | K3—Oxii | 3.0203 (8) |
O—Se—Oi | 103.03 (4) | O—K2—Ox | 80.69 (2) |
O—Se—Oii | 103.03 (4) | O—K2—Oxiii | 180 |
Oi—Se—Oii | 103.03 (5) | O—K2—Oxvi | 99.31 (2) |
O—K1—Oix | 85.98 (3) | O—K2—Oxvii | 99.31 (2) |
O—K1—Ox | 85.98 (2) | Oix—K2—Ox | 80.69 (3) |
O—K1—Ovi | 180 | Oix—K2—Oxiii | 99.31 (2) |
O—K1—Oxi | 94.02 (3) | Oix—K2—Oxvi | 180 |
O—K1—Oxii | 94.02 (2) | Oix—K2—Oxvii | 99.31 (3) |
Oix—K1—Ox | 85.98 (3) | Ox—K2—Oxiii | 99.31 (2) |
Oix—K1—Ovi | 94.02 (3) | Ox—K2—Oxvi | 99.31 (3) |
Oix—K1—Oxi | 180 | Ox—K2—Oxvii | 180 |
Oix—K1—Oxii | 94.02 (3) | Oxiii—K2—Oxvi | 80.69 (2) |
Ox—K1—Ovi | 94.02 (2) | Oxiii—K2—Oxvii | 80.69 (2) |
Ox—K1—Oxi | 94.02 (3) | Oxvi—K2—Oxvii | 80.69 (3) |
Ox—K1—Oxii | 180 | O—K3—Oxix | 114.97 (3) |
Ovi—K1—Oxi | 85.98 (3) | O—K3—Oxx | 114.97 (2) |
Ovi—K1—Oxii | 85.98 (2) | O—K3—Oviii | 92.04 (2) |
Oxi—K1—Oxii | 85.98 (3) | O—K3—Oxxi | 132.80 (3) |
O—K2—Oix | 80.69 (2) | O—K3—Oxii | 82.84 (2) |
Symmetry codes: (i) −y+1, x−y, z; (ii) −x+y+1, −x+1, z; (iii) x, y, z−1; (iv) x−1, y−1, z; (v) x, y−1, z; (vi) −x, −y, −z; (vii) −x, −y+1, −z; (viii) −x+1, −y+1, −z; (ix) −y, x−y, z; (x) −x+y, −x, z; (xi) y, −x+y, −z; (xii) x−y, x, −z; (xiii) −x, −y, −z+1; (xiv) −x, −y+1, −z+1; (xv) −x+1, −y+1, −z+1; (xvi) y, −x+y, −z+1; (xvii) x−y, x, −z+1; (xviii) −x+1, −y+2, −z; (xix) −y+1, x−y+1, z; (xx) −x+y, −x+1, z; (xxi) y, −x+y+1, −z. |
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. 438795198).
References
Albrecht, R., Hunger, J., Hölzel, M., Block, T., Pöttgen, R., Doert, T. & Ruck, M. (2019). ChemistryOpen 8, 1399–1406 Web of Science CrossRef ICSD CAS PubMed Google Scholar
Albrecht, R., Menning, H., Doert, T. & Ruck, M. (2020). Acta Cryst. E76, 1638–1640. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Albrecht, R. & Ruck, M. (2021). Angew. Chem. Int. Ed. 60, 22570–22577. Web of Science CrossRef ICSD CAS Google Scholar
Andersen, L., Langer, V., Strömberg, A. & Strömberg, D. (1989). Acta Cryst. B45, 344–348. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2021). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bugaris, D. E., Smith, M. D. & zur Loye, H.-C. (2013). Inorg. Chem. 52, 3836–3844. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Chance, W. M., Bugaris, D. E., Sefat, A. S. & zur Loye, H.-C. (2013). Inorg. Chem. 52, 11723–11733. Web of Science CrossRef CAS PubMed Google Scholar
Hanawalt, J. D., Rinn, H. W. & Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457–512. CrossRef CAS Google Scholar
Helmholdt, R. B., Sonneveld, E. J. & Schenk, H. (1999). Z. Kristallogr. 214, 151–153. Web of Science CrossRef ICSD CAS Google Scholar
Janitzki, J. (1932). Z. Anorg. Allg. Chem. 205, 49–76. CrossRef CAS Google Scholar
Klushina, T. V., Selivanova, N. M., Lapin, V. V. & Novikova, A. A. (1968). Russ. J. Inorg. Chem. 13, 1502–1505. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Larsson, L.-O. & Kierkegaard, P. (1969). Acta Chem. Scand. 23, 2253–2260. CrossRef ICSD CAS Web of Science Google Scholar
Laves, F. & Wallbaum, H. J. (1942). Z. Angew. Miner. 4, 17–46. CAS Google Scholar
Oxford Instruments (2013). AZtec. Oxford Instruments Technology Tools Ltd, Abingdon, UK. Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352. Google Scholar
Rider, E. E., Sarin, V. A., Bydanov, N. N. & Vinogradova, I. S. (1985). Kristallografiya, 30, 1007–1009. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wickleder, M. S. (2002). Acta Cryst. E58, i103–i104. Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
Zachariasen, W. H. & Buckley, H. E. (1931). Phys. Rev. 37, 1295–1305. CrossRef ICSD CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.