research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of potassium orthoselenate(IV), K2SeO3

crossmark logo

aFaculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany, and bMax Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden, Germany
*Correspondence e-mail: thomas.doert@tu-dresden.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 April 2022; accepted 13 May 2022; online 17 May 2022)

Crystal structure data for potassium orthoselenate(IV), K2SeO3, are reported for the first time. Colorless, block-shaped crystals were grown in a potassium hydro­flux, i.e. under ultra-alkaline conditions, within 10 h. K2SeO3 crystallizes isostructural with Na2SO3 and K2TeO3 in the trigonal space group P[\overline{3}] with lattice parameters a = 6.1063 (4) Å and c = 6.9242 (4) Å at 100 (1) K. In the trigonal–pyramidal, C3v-symmetric [SeO3]2– anion, the bond length is 1.687 (1) Å, and the bond angle is 103.0 (1)°. Two of the three unique potassium cations exhibit a coordination number of six, and the third a coordination number of nine.

1. Chemical context

Ternary alkali metal selenates(IV) are a long-known but poorly studied class of compounds. After the discovery of the first salts of selenic acid by Berzelius, comprehensive studies on these salts were not carried out until the beginning of the 1930s, when Janitzki reported the syntheses of sodium and potassium salts of selenic acid (Janitzki, 1932[Janitzki, J. (1932). Z. Anorg. Allg. Chem. 205, 49-76.]). Moreover, the composition and solubility of hydrates and anhydrates of these selenates(IV) were determined. However, only two crystal structures of ternary alkali metal selenates(IV) are known to date, viz. K2Se2O5 (Rider et al., 1985[Rider, E. E., Sarin, V. A., Bydanov, N. N. & Vinogradova, I. S. (1985). Kristallografiya, 30, 1007-1009.]) and Na2SeO3 (Helmholdt et al., 1999[Helmholdt, R. B., Sonneveld, E. J. & Schenk, H. (1999). Z. Kristallogr. 214, 151-153.]; Wickleder, 2002[Wickleder, M. S. (2002). Acta Cryst. E58, i103-i104.]). The latter compound was synthesized by annealing a mixture of Na2O and SeO2 at 773 K.

In this communication, we report on the synthesis and crystal structure of potassium orthoselenate(IV), K2SeO3. The title compound was synthesized using the hydro­flux approach, an ultra-alkaline reaction medium consisting of an approximately equimolar mixture of water and alkali metal hydroxide (Bugaris et al., 2013[Bugaris, D. E., Smith, M. D. & zur Loye, H.-C. (2013). Inorg. Chem. 52, 3836-3844.]; Chance et al., 2013[Chance, W. M., Bugaris, D. E., Sefat, A. S. & zur Loye, H.-C. (2013). Inorg. Chem. 52, 11723-11733.]). Advantages of the hydro­flux method are the good solubility of oxides and hydroxides, the fast and simple reaction at moderate temperatures, and the formation of single-crystals suitable for X-ray diffraction. Moreover, the high hydroxide concentration within the hydro­flux reduces the activity of water, leading to the unexpected fact that water-sensitive products can be isolated, e.g. K2[Fe2O3(OH)2] (Albrecht et al., 2019[Albrecht, R., Hunger, J., Hölzel, M., Block, T., Pöttgen, R., Doert, T. & Ruck, M. (2019). ChemistryOpen 8, 1399-1406]), Tl3IO (Albrecht et al., 2020[Albrecht, R., Menning, H., Doert, T. & Ruck, M. (2020). Acta Cryst. E76, 1638-1640.]), or K2Te3 (Albrecht & Ruck, 2021[Albrecht, R. & Ruck, M. (2021). Angew. Chem. Int. Ed. 60, 22570-22577.]).

2. Structural commentary

Five atoms represent the asymmetric unit of K2SeO3, one selenium atom (site symmetry 3.., Wyckoff position 2d), three potassium atoms (K1: [\overline{3}].., 1a; K2: [\overline{3}].., 1b; K3: 3.., 2d) and one oxygen atom (1, 6g). The unit cell of K2SeO3 is depicted in Fig. 1[link]. The selenium atom is bound to three oxygen atoms with a Se—O bond length of 1.687 (1) Å and a bond angle O—Se—O of 103.0 (1)°. The pyramidal shape of the C3v-symmetric [SeO3]2– anion can be attributed to the electron lone pair of the selenium(IV) atom. This oxidation state is supported by the bond-valence sum calculation (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) for selenium ν(Se) = ∑exp [(RSeOdSeO)/b)] = 3 · exp [(1.811 Å – 1.687 (1) Å) / 0.37 Å)] = 4.2 valence units. The potassium cations K1 and K2 are octa­hedrally coordinated by oxygen atoms with K—O distances of 2.631 (1) and 2.771 (1) Å, respectively. K3 has nine oxygen neighbors at distances of 2.792 (1), 3.020 (1) Å, and 3.474 (1) Å (Fig. 2[link]).

[Figure 1]
Figure 1
Crystal structure of K2SeO3 at 100 K, with displacement ellipsoids drawn at the 99% probability level; the unit cell is outlined.
[Figure 2]
Figure 2
Coordination polyhedra of the potassium atoms, with displacement ellipsoids drawn at the 99% probability level.

It is noted that the X-ray powder diffraction pattern of ground K2SeO3 crystals (Fig. 3[link]) differs significantly from previously published data (Hanawalt et al., 1938[Hanawalt, J. D., Rinn, H. W. & Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457-512.]; Klushina et al., 1968[Klushina, T. V., Selivanova, N. M., Lapin, V. V. & Novikova, A. A. (1968). Russ. J. Inorg. Chem. 13, 1502-1505.]).

[Figure 3]
Figure 3
Powder X-ray diffractogram and Rietveld refinement of ground K2SeO3 crystals measured in a capillary at room temperature [a = 6.1114 (1) Å, c = 6.9938 (1) Å; Rp = 0.056, wRp = 0.057, gof = 1.21].

3. Database survey

K2SeO3 crystallizes isostructural with Na2SO3 (Zachariasen & Buckley, 1931[Zachariasen, W. H. & Buckley, H. E. (1931). Phys. Rev. 37, 1295-1305.]; Larsson & Kierkegaard, 1969[Larsson, L.-O. & Kierkegaard, P. (1969). Acta Chem. Scand. 23, 2253-2260.]) and K2TeO3 (Andersen et al., 1989[Andersen, L., Langer, V., Strömberg, A. & Strömberg, D. (1989). Acta Cryst. B45, 344-348.]). On a more general level, the structure of K2SeO3 can be related to the Ni2In type in space group P63/mmc (Laves & Wallbaum, 1942[Laves, F. & Wallbaum, H. J. (1942). Z. Angew. Miner. 4, 17-46.]), with the K+ ions on the Ni positions and [SeO3]2– anions occupying the positions of the In atoms. The orientation of the selenate(IV) groups is responsible for the symmetry reduction to P[\overline{3}]; the higher pseudo-symmetry is mirrored in the respective twin laws.

4. Synthesis and crystallization

Potassium orthoselenate(IV), K2SeO3, was synthesized in a potassium hydroxide hydro­flux with a molar water-base ratio of 1.7. The reaction was carried out in a PTFE-lined 50 mL Berghof-type DAB-2 stainless steel autoclave to prevent evaporation of water. The starting material SeO2 (4 mmol, abcr, 99.8%) was dissolved in 3 ml of water before adding 6.3 g of KOH (Fischer Scientific, 86%). After closing the autoclave, the reaction mixture was heated to 473 K at a rate of 2 K min−1 and, after 8 h, cooled to room temperature at a rate of −1 K min−1. The solid reaction product was washed twice with 2 ml of methanol on a Schlenk frit under inert conditions to remove adherent hydro­flux. The colorless, block-shaped crystals of K2SeO3 (Fig. 4[link]) dissolve readily in water, but dissolve in methanol a little slower than the hydro­flux. Scanning electron microscopy showed that the surface of the crystals was etched by the washing process (Fig. 5[link]). Due to its hygroscopicity, the product was dried in dynamic vacuum and stored under argon. Pure K2SeO3 was obtained with a yield of about 50%. Energy-dispersive X-ray spectroscopy on selected crystals confirmed the chemical composition within the limits of the method.

[Figure 4]
Figure 4
Photograph of K2SeO3 crystals.
[Figure 5]
Figure 5
Scanning electron microscopy image after the washing process.

For the Rietveld refinement, the program JANA2006 was used (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]). Scanning electron microscopy was performed using a SU8020 (Hitachi) with a triple detector system for secondary and low-energy backscattered electrons (Ua = 5 kV). The composition of selected single crystals was determined by semi-qu­anti­tative energy dispersive X-ray analysis (Ua = 15 kV) using a Silicon Drift Detector X–MaxN (Oxford Instruments). The data were processed applying the AZtec software package (Oxford Instruments, 2013[Oxford Instruments (2013). AZtec. Oxford Instruments Technology Tools Ltd, Abingdon, UK.]).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The investigated crystal was found to be a fourfold twin: twinning by merohedry plus twofold rotation along [001]. The crystal, thus, partially conserves the hexa­gonal (pseudo-)symmetry of the Ni2In type.

Table 1
Experimental details

Crystal data
Chemical formula K2SeO3
Mr 205.2
Crystal system, space group Trigonal, P[\overline{3}]
Temperature (K) 100
a, c (Å) 6.1063 (2), 6.9242 (4)
V3) 223.59 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 10.11
Crystal size (mm) 0.05 × 0.05 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.539, 0.747
No. of measured, independent and observed [I > 3σ(I)] reflections 12526, 790, 785
Rint 0.021
(sin θ/λ)max−1) 0.858
 
Refinement
R[F > 3σ(F)], wR(F), S 0.009, 0.033, 1.05
No. of reflections 790
No. of parameters 24
Δρmax, Δρmin (e Å−3) 0.77, −1.51
Computer programs: APEX2 (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), DIAMOND (Brandenburg, 2021[Brandenburg, K. (2021). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: DIAMOND (Brandenburg, 2021); software used to prepare material for publication: publCIF (Westrip 2010).

Dipotassium orthoselenate(IV) top
Crystal data top
K2SeO3Dx = 3.047 Mg m3
Mr = 205.2Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3Cell parameters from 7032 reflections
Hall symbol: -P 3θ = 2.9–37.6°
a = 6.1063 (2) ŵ = 10.11 mm1
c = 6.9242 (4) ÅT = 100 K
V = 223.59 (2) Å3Block, colourless
Z = 20.05 × 0.05 × 0.02 mm
F(000) = 192
Data collection top
Bruker APEXII CCD
diffractometer
790 independent reflections
Radiation source: X-ray tube785 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.021
ω– and φ–scansθmax = 37.6°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.539, Tmax = 0.747k = 1010
12526 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: chargeflipping
R[F > 3σ(F)] = 0.009Secondary atom site location: difference Fourier map
wR(F) = 0.033Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.000576I2)
S = 1.05(Δ/σ)max = 0.001
790 reflectionsΔρmax = 0.77 e Å3
24 parametersΔρmin = 1.51 e Å3
0 restraintsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 constraintsExtinction coefficient: 570 (40)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se0.6666670.3333330.338432 (15)0.00495 (4)
K10000.00741 (8)
K2000.50.00764 (8)
K30.3333330.6666670.14233 (5)0.01091 (6)
O0.38608 (13)0.25027 (14)0.23422 (10)0.0135 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se0.00527 (5)0.00527 (5)0.00432 (6)0.00263 (3)00
K10.00743 (9)0.00743 (9)0.00735 (14)0.00372 (5)00
K20.00816 (9)0.00816 (9)0.00658 (13)0.00408 (5)00
K30.01248 (8)0.01248 (8)0.00778 (10)0.00624 (4)00
O0.0064 (3)0.0208 (4)0.0126 (3)0.0062 (2)0.0022 (2)0.0004 (2)
Geometric parameters (Å, º) top
Se—O1.6865 (8)K2—K34.3084 (4)
Se—Oi1.6865 (12)K2—K3xiii4.3084 (4)
Se—Oii1.6865 (7)K2—K3xiv4.3084 (3)
K1—K2iii3.4621 (4)K2—K3xv4.3084 (4)
K1—K23.4621 (4)K2—O2.7708 (7)
K1—K3iv3.6606 (3)K2—Oix2.7708 (10)
K1—K3v3.6606 (1)K2—Ox2.7708 (8)
K1—K33.6606 (3)K2—Oxiii2.7708 (7)
K1—K3vi3.6606 (3)K2—Oxvi2.7708 (10)
K1—K3vii3.6606 (1)K2—Oxvii2.7708 (8)
K1—K3viii3.6606 (3)K3—K3vii4.0391 (4)
K1—O2.6307 (7)K3—K3viii4.0391 (3)
K1—Oix2.6307 (10)K3—K3xviii4.0391 (4)
K1—Ox2.6307 (8)K3—O2.7915 (10)
K1—Ovi2.6307 (7)K3—Oxix2.7915 (8)
K1—Oxi2.6307 (10)K3—Oxx2.7915 (12)
K1—Oxii2.6307 (8)K3—Oviii3.0203 (8)
K2—K3iv4.3084 (4)K3—Oxxi3.0203 (10)
K2—K3v4.3084 (3)K3—Oxii3.0203 (8)
O—Se—Oi103.03 (4)O—K2—Ox80.69 (2)
O—Se—Oii103.03 (4)O—K2—Oxiii180
Oi—Se—Oii103.03 (5)O—K2—Oxvi99.31 (2)
O—K1—Oix85.98 (3)O—K2—Oxvii99.31 (2)
O—K1—Ox85.98 (2)Oix—K2—Ox80.69 (3)
O—K1—Ovi180Oix—K2—Oxiii99.31 (2)
O—K1—Oxi94.02 (3)Oix—K2—Oxvi180
O—K1—Oxii94.02 (2)Oix—K2—Oxvii99.31 (3)
Oix—K1—Ox85.98 (3)Ox—K2—Oxiii99.31 (2)
Oix—K1—Ovi94.02 (3)Ox—K2—Oxvi99.31 (3)
Oix—K1—Oxi180Ox—K2—Oxvii180
Oix—K1—Oxii94.02 (3)Oxiii—K2—Oxvi80.69 (2)
Ox—K1—Ovi94.02 (2)Oxiii—K2—Oxvii80.69 (2)
Ox—K1—Oxi94.02 (3)Oxvi—K2—Oxvii80.69 (3)
Ox—K1—Oxii180O—K3—Oxix114.97 (3)
Ovi—K1—Oxi85.98 (3)O—K3—Oxx114.97 (2)
Ovi—K1—Oxii85.98 (2)O—K3—Oviii92.04 (2)
Oxi—K1—Oxii85.98 (3)O—K3—Oxxi132.80 (3)
O—K2—Oix80.69 (2)O—K3—Oxii82.84 (2)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) x, y, z1; (iv) x1, y1, z; (v) x, y1, z; (vi) x, y, z; (vii) x, y+1, z; (viii) x+1, y+1, z; (ix) y, xy, z; (x) x+y, x, z; (xi) y, x+y, z; (xii) xy, x, z; (xiii) x, y, z+1; (xiv) x, y+1, z+1; (xv) x+1, y+1, z+1; (xvi) y, x+y, z+1; (xvii) xy, x, z+1; (xviii) x+1, y+2, z; (xix) y+1, xy+1, z; (xx) x+y, x+1, z; (xxi) y, x+y+1, z.
 

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. 438795198).

References

First citationAlbrecht, R., Hunger, J., Hölzel, M., Block, T., Pöttgen, R., Doert, T. & Ruck, M. (2019). ChemistryOpen 8, 1399–1406  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationAlbrecht, R., Menning, H., Doert, T. & Ruck, M. (2020). Acta Cryst. E76, 1638–1640.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationAlbrecht, R. & Ruck, M. (2021). Angew. Chem. Int. Ed. 60, 22570–22577.  Web of Science CrossRef ICSD CAS Google Scholar
First citationAndersen, L., Langer, V., Strömberg, A. & Strömberg, D. (1989). Acta Cryst. B45, 344–348.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2021). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBugaris, D. E., Smith, M. D. & zur Loye, H.-C. (2013). Inorg. Chem. 52, 3836–3844.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationChance, W. M., Bugaris, D. E., Sefat, A. S. & zur Loye, H.-C. (2013). Inorg. Chem. 52, 11723–11733.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHanawalt, J. D., Rinn, H. W. & Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457–512.  CrossRef CAS Google Scholar
First citationHelmholdt, R. B., Sonneveld, E. J. & Schenk, H. (1999). Z. Kristallogr. 214, 151–153.  Web of Science CrossRef ICSD CAS Google Scholar
First citationJanitzki, J. (1932). Z. Anorg. Allg. Chem. 205, 49–76.  CrossRef CAS Google Scholar
First citationKlushina, T. V., Selivanova, N. M., Lapin, V. V. & Novikova, A. A. (1968). Russ. J. Inorg. Chem. 13, 1502–1505.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLarsson, L.-O. & Kierkegaard, P. (1969). Acta Chem. Scand. 23, 2253–2260.  CrossRef ICSD CAS Web of Science Google Scholar
First citationLaves, F. & Wallbaum, H. J. (1942). Z. Angew. Miner. 4, 17–46.  CAS Google Scholar
First citationOxford Instruments (2013). AZtec. Oxford Instruments Technology Tools Ltd, Abingdon, UK.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationRider, E. E., Sarin, V. A., Bydanov, N. N. & Vinogradova, I. S. (1985). Kristallografiya, 30, 1007–1009.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWickleder, M. S. (2002). Acta Cryst. E58, i103–i104.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationZachariasen, W. H. & Buckley, H. E. (1931). Phys. Rev. 37, 1295–1305.  CrossRef ICSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds