research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-tert-butyl­tin(IV)–hydroxide–iodide, tBu2Sn(OH)I, the last missing member in the series of pure di-tert-butyl­tin(IV)–hydroxide–halides

crossmark logo

aChemistry, Osnabrück University, Barbarastr. 7, 49069 Osnabrück, Germany
*Correspondence e-mail: hreuter@uos.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 May 2022; accepted 12 May 2022; online 20 May 2022)

The crystal structure of di-tert-butyl­hydroxido­iodido­tin(IV), [Sn(C4H9)2I(OH)] or tBu2Sn(OH)I, consists of dimeric, centrosymmetric mol­ecules exhibiting the typical structural features of diorganotin(IV)-hydroxide-halides, R2Sn(OH)Hal. Two trigonal–bipyramidally coordinated tin(IV) atoms are bridged via two hydroxyl groups, resulting in a planar, four-membered {Sn—O}2 ring of rhombic shape, with acute angles at tin, obtuse angles at oxygen and two different Sn—O distances depending whether the oxygen atom adopts an axial or equatorial position at the tin(IV) atom. In contrast to its fluorine, chlorine and bromine homologues, no hydrogen bonds between the OH group and the halide atom exist, confining the inter­molecular inter­actions to van der Waals forces.

1. Chemical context

During the hydrolysis of diorganotin(IV)-dihalides, R2SnHal2, to diorganotin(IV) oxides, R2SnO, various inter­mediates are formed. The most prominent ones are the diorganotin-hydroxide-halides, R2Sn(OH)Hal, the tetra­organo-dihalogenide-distannoxanes, (R2SnHal)2O, the tetra­organo-hydroxide-halide-distannoxanes, (R2SnHal)O(R2SnOH), and the tetra­organo-di­hydroxide-distannoxanes, (R2SnOH)2O. In solution as well as in the crystalline state, all these compounds are comprised of dimeric mol­ecules, and their compositions and structures result from a sequence of different hydrolysis, aggregation and condensation reactions.

In all three different classes of tetra­organo-distannoxanes, numerous compounds have been structurally characterized. All of therm exhibit a ladder-type arrangement of the Sn—O—Hal/OH framework [e.g. dihalogenides: R = Ph, Hal = Cl (Vollano et al., 1984[Vollano, J. F., Day, R. O. & Holmes, R. R. (1984). Organometallics, 3, 745-750.]), R = iPr, Hal = Br (Beckmann et al., 2002a[Beckmann, J., Dakternieks, D., Kuan, F. S. & Tiekink, E. R. T. (2002a). J. Organomet. Chem. 659, 73-83.]); hydroxide-halides: R = Et, Hal = Cl (Momeni et al., 2019[Momeni, B. Z., Fathi, N., Moghadasi, M., Biglari, A. & Janczak, J. (2019). J. Organomet. Chem. 880, 368-377.]), R = Ph, Hal = Br (Yap et al., 2010[Yap, Q. L., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m8.]); di­hydroxides: R = neophyl (Reuter & Pawlak, 2000[Reuter, H. & Pawlak, R. (2000). Acta Cryst. C56, 804-805.]), R = tri­methyl­silylmethyl (Beckmann et al., 2002b[Beckmann, J., Henn, M., Jurkschat, K., Schürmann, M., Dakternieks, D. & Duthie, A. (2002b). Organometallics, 21, 192-202.])].

Pure hydroxide halides have been prepared and structurally characterized for tBu2Sn(OH)Hal with Hal = F, Br (Puff et al., 1985[Puff, H., Hevendehl, H., Höfer, K., Reuter, H. & Schuh, W. (1985). J. Organomet. Chem. 287, 163-178.]), Hal = Cl (α-modification: Puff et al., 1985[Puff, H., Hevendehl, H., Höfer, K., Reuter, H. & Schuh, W. (1985). J. Organomet. Chem. 287, 163-178.]; β-modification: Di Nicola et al., 2011[Di Nicola, C., Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2011). Inorg. Chem. Commun. 14, 133-136.]) and for R = p-tolyl and Hal = Br (Lo & Ng, 2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m716.]). Their structures are dominated by various –OH⋯Hal bridges between neighbouring mol­ecules, resulting in their chain-like arrangements. Hydroxide halides can be isolated when their hydroxyl groups are involved in hydrogen bonds to Brønstedt bases (BB). Such adducts of formula [R2Sn(OH)Hal]·2BB have been described for R = Ph, Hal = Cl with BB = EtOH (Barba et al., 2007[Barba, V., Vega, E., Luna, R., Höpfl, H., Beltrán, H. I. & Zamudio-Rivera, L. S. (2007). J. Organomet. Chem. 692, 731-739.]), and BB = quinoline (Anacona et al., 2003[Anacona, J. R., Rivas, C. & de Delgado, G. D. (2003). J. Coord. Chem. 56, 245-252.]).

[Scheme 1]

Here we present the mol­ecular and crystal structure of the last missing member in the series of pure di-tert-butyl­tin hydroxide halides where Hal = I. The analogous mol­ecule with DMSO as a hydrogen-bonded Brønsted base was formerly found as part of co-crystals with [(tBu2Sn)3O(OH)2I]I (Reuter & Wilberts, 2014[Reuter, H. & Wilberts, H. (2014). Can. J. Chem. 92, 496-507.]).

2. Structural commentary

The asymmetric unit of the title compound comprises one tBu2Sn(OH)I moiety that dimerizes to form a centrosymmetric mol­ecule (Fig. 1[link]). As in all other hydroxide halides, dimerization occurs via the two hydroxyl groups that act as bridges between two trigonal–bipyramidally (tbpy) coordin­ated SnIV atoms.

[Figure 1]
Figure 1
Ball-and-stick model of the dimeric, centrosymmetric mol­ecule found in the crystal of tBu2Sn(OH)I, with atom numbering of the asymmetric unit. With the exception of the hydrogen atoms that are shown as spheres of arbitrary radius, all other atoms are drawn as displacement ellipsoids at the 40% probability level. The black dot labelled i indicates the position of the centre of symmetry.

The anisotropic displacement parameters as well as the small isotropic displacement parameters of the hydrogen atoms (see Refinement) indicate a negligibly small rotation of the tert-butyl groups as a whole and a small rotation of the methyl groups in particular, giving rise to very precise information on bond lengths and angles. The structural features of the tert-butyl groups are characterized by C—C bond lengths in the range 1.524 (3) to 1.533 (3) Å [mean value: 1.529 (3) Å], C—C—C angles in the range 109.5 (2) to 111.3 (2)° [mean value: 110.2 (7)°], Sn—C bond lengths between 2.187 (2) and 2.193 (2) Å [mean value: 2.190 (3) Å], and Sn—C—C angles of 107.8 (1)° to 109.6 (1)° [mean value: 108.8 (9)°]. All these values are more precise in comparison with those of the formerly determined di-tert-butyl­tin hydroxide halides (Puff et al., 1985[Puff, H., Hevendehl, H., Höfer, K., Reuter, H. & Schuh, W. (1985). J. Organomet. Chem. 287, 163-178.]; Di Nicola et al., 2011[Di Nicola, C., Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2011). Inorg. Chem. Commun. 14, 133-136.]), especially as a result of low-temperature measurement and high data redundancy combined with multi-scan absorption correction, but are of the same accuracy and absolute value as those of the DMSO adduct [(tBu2Sn)3O(OH)2I]I [d(C—C) = 1.529 (4) Å, 〈(C—C—C) = 109.9 (4)°, d(Sn—C) = 2.193 (10), 〈(Sn—C—C) = 109.4 (7)°; Reuter & Wilberts, 2014[Reuter, H. & Wilberts, H. (2014). Can. J. Chem. 92, 496-507.]]. These data are confirmed by a redetermination of the crystal structure of the α-modification of [tBu2Sn(OH)Cl)]2 (Reuter, 2022[Reuter, H. (2022). Unpublished results.]) performed with similar experimental conditions as for the title compound and its co-crystallizate. In this context, Sn—C distances are of special inter­est as they belong to the longest ones observed in case of Sn in a trigonal–bipyramidal coordination. In the other hydroxide halides mentioned above, the following bond lengths have been found: d(Sn—C)mean = 2.120 (8) Å for R = p-tolyl, Hal = Br; d(Sn—C)mean = 2.121 (10)/2.117 (4) Å for R = Ph, Hal = Cl, BB = quinoline/EtOH.

Within the trigonal–bipyramidal coordination of the SnIV atom (Fig. 2[link]), both tert-butyl groups are in equatorial (eq) positions in correspondence with the predictions of the VSEPR concept. The bond angle enclosed by the two tert-butyl groups of 126.81 (8)° is identical with the value [126.89 (9)°] in the co-crystal and lies in the range 122.0 (2) to 129.3 (1)° of C—Sn—C angles found in the other hydroxide-halides. The iodine atom adopts an axial (ax) position and one of the bridging hydroxyl groups is in an equatorial, the other in an axial position. As a result of dimerization via the hydroxyl groups, the axis of the trigonal bipyramid strongly deviates from linearity [Iax—Sn—(OH)ax = 151.94 (4)°]. In addition, the Sn—I distance of 2.8734 (2) Å is only marginally shorter than in the co-crystal [Sn—I = 2.8852 (2) Å], both being significantly longer than the sum (2.78 Å) of the covalent radii (Cordero et al., 2008[Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, V. & Alvarez, S. (2008). Dalton Trans. pp. 2832-2838.]) of tin (1.39 Å) and iodine (1.39 Å) and much longer than the mean Sn—I distance of 2.661 (2) (Reuter & Pawlak, 2001[Reuter, H. & Pawlak, R. (2001). Z. Kristallogr. 216, 34-38.]) in tin(IV) iodide, SnI4, with tetra­hedrally coordinated tin.

[Figure 2]
Figure 2
Ball-and-stick model of the trigonal–bipyramidal coordination environment of the tin atom in the dimeric mol­ecule of tBu2Sn(OH)I with bond lengths (Å) and angles (°) characterizing the polyhedron axes. For clarity, methyl groups of the tBu ligands are stripped down to the carbon–carbon bonds drawn as shortened sticks. Atom O1′ is generated by symmetry code −x, −y + 1, −z + 1.

Because of the centrosymmetric nature of the dimer, the central four-membered {Sn—O}2 ring is exactly planar. Its rhombic shape (Fig. 3[link]) is characterized by acute angles [67.02 (6)°] at tin and obtuse ones [112.98 (6)°] at oxygen. Moreover, these rings exhibit two different Sn—O distances depending on the position (ax/eq) of the oxygen atom in the trigonal–bipyramidal coordination environment of tin(IV): Sn—(OH)ax = 2.256 (1) Å versus Sn—(OH)eq = 2.063 (1) Å. All these structural features are typical. For example, for the other four-membered {Sn—O}2 rings of hydroxide halides with R = tBu, Hal = F, Cl, Br, the Sn—O—Sn angles range from 109.9 (2) to 112.5 (3)°, the O—Sn—O angles from 67.9 (3) to 70.1 (2)°, the Sn—(OH)eq distances from 2.012 (5) to 2.048 (10) Å, and the Sn—(OH)ax distances from 2.199 (5) to 2.25.7 (16) Å (Puff et al., 1985[Puff, H., Hevendehl, H., Höfer, K., Reuter, H. & Schuh, W. (1985). J. Organomet. Chem. 287, 163-178.]) .

[Figure 3]
Figure 3
Ball-and-stick model of the four-membered, centrosymmetric {Sn—O}2 ring in the dimeric mol­ecule of tBu2Sn(OH)I with bond lengths (Å) and angles (°) underlining its rhombic shape as the result of axially (ax) and equatorially (eq) bonded O atoms.

3. Supra­molecular features

While the hydroxyl groups of the [tBu2Sn(OH)I]2 mol­ecules of the co-crystallizate (Reuter & Wilberts, 2014[Reuter, H. & Wilberts, H. (2014). Can. J. Chem. 92, 496-507.]) are involved in OH⋯O hydrogen-bonding to DMSO mol­ecules, those of all other [tBu2Sn(OH)Hal]2 mol­ecules develop inter­molecular O—H⋯Hal bonds resulting in a chain-like arrangement of the corresponding mol­ecules in the crystal. In contrast, there are no hydrogen bonds in the crystal structure of the title compound as the voluminous iodine atoms (Fig. 4[link]) prevent significant inter­molecular OH⋯I inter­actions (Table 1[link]). Hence, only van der Waals forces exist between the individual mol­ecules, resulting in a layer-like arrangement (Fig. 5[link]) with the Sn—I bonds perpendicular to the layer plane. These layers expand perpendicular to the [101] direction (Fig. 6[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯I1 0.96 2.93 3.3862 (14) 111
[Figure 4]
Figure 4
Space-filling model of the dimeric mol­ecule of tBu2Sn(OH)I showing the OH group wedged in between the iodine atom and the tert-butyl groups. Colour code: I = violet, H = white, C = grey, O = red, Sn = brass-coloured.
[Figure 5]
Figure 5
Space-filling model showing the layer-like arrangement of the dimeric [tBuSn(OH)I]2 mol­ecules in the crystal structure. Top: top view; bottom: side view; colour code as in Fig. 4[link].
[Figure 6]
Figure 6
Stick-model showing the arrangement of layers with respect to the unit cell; colour code as in Fig. 4[link].

4. Synthesis and crystallization

Yellow block-like single crystals of the title compound were obtained after several years of storage in a sample of (tBu2Sn)2I2 originally prepared by the reaction of the cyclo­tetra­stannane (tBu2Sn)4 with I2 in toluene at elevated temperature in a molar ratio of 1:2. As other molar ratios and temperatures result in the formation of (tBu2Sn)4I2 or tBu2SnI2 (Farrar & Skinner, 1964[Farrar, W. V. & Skinner, H. A. (1964). J. Organomet. Chem. 1, 434-436.]; Adams & Dräger, 1985[Adams, S. & Dräger, M. (1985). J. Organomet. Chem. 288, 295-304.]; Puff et al., 1989[Puff, H., Breuer, B., Gehrke-Brinkmann, G., Kind, P., Reuter, H., Schuh, W., Wald, W. & Weidenbrück, G. (1989). J. Organomet. Chem. 363, 265-280.]), it seems possible that the sample was contaminated with the latter one, which reacts over the long time of storage with atmospheric moisture to give the title compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were clearly identified in difference-Fourier syntheses. Those of the tert-butyl groups were refined with calculated positions (C—H = 0.98 Å) and a common Uiso(H) parameter for each of the methyl groups. The position of the H atom of the OH group was refined with a fixed O—H distance of 0.96 Å and the Uiso(H) parameter refined freely.

Table 2
Experimental details

Crystal data
Chemical formula [Sn(C4H9)2I(OH)]
Mr 376.82
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.4903 (4), 10.8848 (5), 13.5107 (6)
β (°) 101.881 (2)
V3) 1221.85 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.58
Crystal size (mm) 0.24 × 0.12 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.457, 0.715
No. of measured, independent and observed [I > 2σ(I)] reflections 48755, 2950, 2761
Rint 0.064
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.037, 1.08
No. of reflections 2950
No. of parameters 114
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.85, −0.49
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker ASS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Di-tert-butylhydroxidoiodidotin(IV) top
Crystal data top
[Sn(C4H9)2I(OH)]F(000) = 712
Mr = 376.82Dx = 2.048 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4903 (4) ÅCell parameters from 9771 reflections
b = 10.8848 (5) Åθ = 2.4–29.2°
c = 13.5107 (6) ŵ = 4.58 mm1
β = 101.881 (2)°T = 100 K
V = 1221.85 (10) Å3Block, yellow
Z = 40.24 × 0.12 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
2761 reflections with I > 2σ(I)
φ and ω scansRint = 0.064
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.0°, θmin = 2.6°
Tmin = 0.457, Tmax = 0.715h = 1111
48755 measured reflectionsk = 1413
2950 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0075P)2 + 1.3137P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max = 0.003
S = 1.08Δρmax = 0.85 e Å3
2950 reflectionsΔρmin = 0.49 e Å3
114 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2015, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00139 (11)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.31459 (2)0.21150 (2)0.53430 (2)0.01973 (5)
Sn10.06240 (2)0.37120 (2)0.43364 (2)0.01006 (5)
C210.1879 (2)0.44568 (19)0.32082 (15)0.0137 (4)
C220.2375 (3)0.3375 (2)0.26155 (17)0.0193 (5)
H22A0.14090.29560.22470.032 (4)*
H22B0.30270.27980.30860.032 (4)*
H22C0.30040.36790.21350.032 (4)*
C230.3377 (3)0.5141 (2)0.37485 (17)0.0190 (4)
H23A0.39720.54450.32490.023 (4)*
H23B0.40640.45820.42180.023 (4)*
H23C0.30590.58350.41260.023 (4)*
C240.0749 (3)0.5304 (2)0.24902 (16)0.0190 (4)
H24A0.12730.55690.19440.027 (4)*
H24B0.04950.60250.28630.027 (4)*
H24C0.02460.48630.22030.027 (4)*
C110.1328 (3)0.23567 (19)0.40781 (16)0.0153 (4)
C120.2895 (3)0.2973 (2)0.35517 (19)0.0233 (5)
H12A0.27540.33310.29100.029 (4)*
H12B0.31750.36230.39870.029 (4)*
H12C0.37590.23620.34210.029 (4)*
C130.0867 (3)0.1346 (2)0.34001 (18)0.0214 (5)
H13A0.07980.16970.27420.028 (4)*
H13B0.16870.06990.33040.028 (4)*
H13C0.01780.09970.37210.028 (4)*
C140.1500 (3)0.1809 (2)0.50925 (18)0.0236 (5)
H14A0.23510.11850.49790.029 (4)*
H14B0.17810.24610.55260.029 (4)*
H14C0.04800.14310.54230.029 (4)*
O10.09927 (17)0.46366 (13)0.56977 (10)0.0150 (3)
H10.18410.42720.61900.070 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02092 (9)0.01756 (8)0.01844 (8)0.00750 (5)0.00125 (6)0.00161 (5)
Sn10.01100 (8)0.00881 (8)0.01046 (7)0.00010 (5)0.00239 (5)0.00050 (5)
C210.0164 (10)0.0130 (10)0.0128 (9)0.0014 (8)0.0051 (8)0.0012 (8)
C220.0235 (12)0.0175 (11)0.0188 (11)0.0001 (9)0.0085 (9)0.0039 (9)
C230.0180 (11)0.0196 (11)0.0206 (11)0.0048 (9)0.0067 (9)0.0020 (9)
C240.0236 (11)0.0176 (11)0.0158 (10)0.0020 (9)0.0040 (9)0.0041 (8)
C110.0170 (10)0.0131 (10)0.0171 (10)0.0037 (8)0.0064 (8)0.0040 (8)
C120.0153 (11)0.0226 (12)0.0308 (13)0.0029 (9)0.0018 (9)0.0057 (10)
C130.0223 (12)0.0173 (11)0.0255 (12)0.0036 (9)0.0070 (9)0.0083 (9)
C140.0295 (13)0.0198 (12)0.0250 (12)0.0054 (10)0.0135 (10)0.0012 (9)
O10.0166 (7)0.0147 (7)0.0126 (7)0.0047 (6)0.0004 (6)0.0021 (6)
Geometric parameters (Å, º) top
I1—Sn12.8734 (2)C24—H24C0.9800
Sn1—O12.0631 (1)C11—C121.528 (3)
Sn1—C212.187 (2)C11—C141.529 (3)
Sn1—C112.193 (2)C11—C131.533 (3)
Sn1—O1i2.2564 (1)C12—H12A0.9800
C21—C231.524 (3)C12—H12B0.9800
C21—C241.526 (3)C12—H12C0.9800
C21—C221.531 (3)C13—H13A0.9800
C22—H22A0.9800C13—H13B0.9800
C22—H22B0.9800C13—H13C0.9800
C22—H22C0.9800C14—H14A0.9800
C23—H23A0.9800C14—H14B0.9800
C23—H23B0.9800C14—H14C0.9800
C23—H23C0.9800O1—Sn1i2.2563 (14)
C24—H24A0.9800O1—H10.9600
C24—H24B0.9800
O1—Sn1—C21115.73 (7)C21—C24—H24C109.5
O1—Sn1—C11116.17 (7)H24A—C24—H24C109.5
C21—Sn1—C11126.81 (8)H24B—C24—H24C109.5
O1—Sn1—O1i67.02 (6)C12—C11—C14110.71 (19)
C21—Sn1—O1i94.13 (7)C12—C11—C13109.99 (18)
C11—Sn1—O1i95.51 (7)C14—C11—C13109.84 (19)
O1—Sn1—I184.93 (4)C12—C11—Sn1109.60 (14)
C21—Sn1—I197.57 (5)C14—C11—Sn1109.16 (14)
C11—Sn1—I197.67 (6)C13—C11—Sn1107.47 (14)
O1i—Sn1—I1151.94 (4)C11—C12—H12A109.5
C23—C21—C24111.25 (18)C11—C12—H12B109.5
C23—C21—C22109.50 (17)H12A—C12—H12B109.5
C24—C21—C22109.69 (17)C11—C12—H12C109.5
C23—C21—Sn1109.00 (13)H12A—C12—H12C109.5
C24—C21—Sn1109.55 (13)H12B—C12—H12C109.5
C22—C21—Sn1107.78 (14)C11—C13—H13A109.5
C21—C22—H22A109.5C11—C13—H13B109.5
C21—C22—H22B109.5H13A—C13—H13B109.5
H22A—C22—H22B109.5C11—C13—H13C109.5
C21—C22—H22C109.5H13A—C13—H13C109.5
H22A—C22—H22C109.5H13B—C13—H13C109.5
H22B—C22—H22C109.5C11—C14—H14A109.5
C21—C23—H23A109.5C11—C14—H14B109.5
C21—C23—H23B109.5H14A—C14—H14B109.5
H23A—C23—H23B109.5C11—C14—H14C109.5
C21—C23—H23C109.5H14A—C14—H14C109.5
H23A—C23—H23C109.5H14B—C14—H14C109.5
H23B—C23—H23C109.5Sn1—O1—Sn1i112.98 (6)
C21—C24—H24A109.5Sn1—O1—H1111.7
C21—C24—H24B109.5Sn1i—O1—H1135.3
H24A—C24—H24B109.5
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···I10.962.933.3862 (14)111
 

Acknowledgements

The author thanks the Deutsche Forschungsgemeinschaft and the Government of Lower-Saxony for funding the diffractometer and acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) and the Open Access Publishing Fund of Osnabrück University.

References

First citationAdams, S. & Dräger, M. (1985). J. Organomet. Chem. 288, 295–304.  CSD CrossRef CAS Google Scholar
First citationAnacona, J. R., Rivas, C. & de Delgado, G. D. (2003). J. Coord. Chem. 56, 245–252.  CSD CrossRef CAS Google Scholar
First citationBarba, V., Vega, E., Luna, R., Höpfl, H., Beltrán, H. I. & Zamudio-Rivera, L. S. (2007). J. Organomet. Chem. 692, 731–739.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeckmann, J., Dakternieks, D., Kuan, F. S. & Tiekink, E. R. T. (2002a). J. Organomet. Chem. 659, 73–83.  CSD CrossRef CAS Google Scholar
First citationBeckmann, J., Henn, M., Jurkschat, K., Schürmann, M., Dakternieks, D. & Duthie, A. (2002b). Organometallics, 21, 192–202.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker ASS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, V. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838.  CrossRef Google Scholar
First citationDi Nicola, C., Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (2011). Inorg. Chem. Commun. 14, 133–136.  CSD CrossRef CAS Google Scholar
First citationFarrar, W. V. & Skinner, H. A. (1964). J. Organomet. Chem. 1, 434–436.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m716.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMomeni, B. Z., Fathi, N., Moghadasi, M., Biglari, A. & Janczak, J. (2019). J. Organomet. Chem. 880, 368–377.  CSD CrossRef CAS Google Scholar
First citationPuff, H., Breuer, B., Gehrke-Brinkmann, G., Kind, P., Reuter, H., Schuh, W., Wald, W. & Weidenbrück, G. (1989). J. Organomet. Chem. 363, 265–280.  CSD CrossRef CAS Web of Science Google Scholar
First citationPuff, H., Hevendehl, H., Höfer, K., Reuter, H. & Schuh, W. (1985). J. Organomet. Chem. 287, 163–178.  CSD CrossRef CAS Google Scholar
First citationReuter, H. (2022). Unpublished results.  Google Scholar
First citationReuter, H. & Pawlak, R. (2000). Acta Cryst. C56, 804–805.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationReuter, H. & Pawlak, R. (2001). Z. Kristallogr. 216, 34–38.  Web of Science CrossRef ICSD CAS Google Scholar
First citationReuter, H. & Wilberts, H. (2014). Can. J. Chem. 92, 496–507.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVollano, J. F., Day, R. O. & Holmes, R. R. (1984). Organometallics, 3, 745–750.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYap, Q. L., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m8.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds