research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The co-crystal 4,6-di­acetyl­resorcinol–1-amino­pyrene (2/1)

crossmark logo

aChemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 23622, Saudi Arabia
*Correspondence e-mail: eazam@kau.edu.sa

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 26 April 2022; accepted 22 May 2022; online 31 May 2022)

The structure of the title mol­ecular complex, C16H11N·2C10H10O4, at 150 K has been determined. The mol­ecules form stacks consisting of aggregates with disordered 1-amino­pyrene mol­ecule surrounded by two 4,6-di­acetyl­resorcinol mol­ecules. Neighbouring stacks are linked by hydrogen bonds between the amine H atoms of the 1-amino­pyrene mol­ecule with the adjacent carbonyl oxygen atom of the 4,6-di­acetyl­resorcinol mol­ecule.

1. Chemical context

Co-crystals are crystalline single phase materials made up of mol­ecules of two or more compounds. They are used in a variety of fields, including paper, textiles and the chemical, photographic, and electronic industries (Golbedaghi & Fausto, 2018[Golbedaghi, R. & Fausto, R. (2018). Polyhedron, 155, 1-12.]). However, their main uses are centered in the pharmaceutical industry, where they have been gaining importance in recent years.

[Scheme 1]

Schiff bases are the products of the condensation reaction of aldehydes or ketones with amines. They have multiple uses, for example as pigments and dyes, inter­mediates in organic synthesis, and as catalysts and polymer stabilizers. They also exhibit a broad range of biological activities. They play an important role in coordination chemistry as they readily form stable complexes with most transition metals (Aazam et al., 2006[Aazam, E. S., Fawazy, A. & Hitchcock, P. B. (2006). Acta Cryst. E62, o4285-o4287.], 2008[Aazam, E. S., El Husseiny, A. F., Hitchcock, P. B. & Al Shehary, J. (2008). Centr. Eur. J. Chem. 6, 319-323.], 2010[Aazam, E. S., El Husseiny, A. F., Al-Amri, H. M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1796.]; El-Attar & Aazam, 2021[El-Attar, M. & Aazam, E. (2021). J. Coord. Chem. 74, 779-803.]). In the process of the synthesis of such compounds with 4,6-di­acetyl­resorcinol and 1-amino­pyrene as the precursors, a new co-crystal, C16H11N·2C10H10O4, has been obtained.

2. Structural commentary

The formula unit of the title compound consists of two 4,6-di­acetyl­resorcinol mol­ecules and one 1-amino­pyrene mol­ecule, which lies on an inversion center. Besides this, this mol­ecule is further disordered so that the amino N atom is distributed over four chemically equivalent positions, at the C11 and C13 atoms, with the occupancies of 0.428 (2) and 0.072 (2) for N1 and N1B, respectively (Fig. 1[link]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the 4,6-di­acetyl­resorcinol mol­ecule, the hy­droxy groups form intra­molecular hydrogen bonds with the oxygen atoms of neighbouring acetyl groups, generating S(6) rings (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.85 (3) 1.80 (3) 2.545 (2) 146 (2)
O3—H3⋯O4 0.84 (2) 1.80 (2) 2.542 (2) 147 (2)
N1—H1A⋯O3i 0.88 (1) 2.30 (2) 3.131 (3) 156 (4)
N1—H1B⋯O1 0.88 (1) 2.16 (2) 2.966 (3) 154 (3)
N1B—H1C⋯O2ii 0.88 (1) 2.05 (6) 2.902 (18) 162 (17)
N1B—H1D⋯O4iii 0.88 (1) 1.89 (6) 2.731 (18) 159 (14)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) x, y, z+1.

3. Supra­molecular features

In the crystal, the mol­ecules form centrosymmetric aggregates with two mol­ecules of 4,6-di­acetyl­resorcinol positioned on both sides of the 1-amino­pyrene mol­ecule (Fig. 2[link]). The mean planes of the aromatic rings of the 4,6-di­acetyl­resorcinol mol­ecules are inclined at 2.91 (10)° to the mean plane of the tetra­cyclic core of the 1-amino­pyrene mol­ecule. A short inter­centroid separation Cg1⋯Cg2 of 3.492 (1) Å is observed in this aggregate, with Cg1 being the centroid of C3–C8 ring of di­acetyl­resorcinol and Cg2 the centroid of one of the amino­pyrene rings, C11–C18. These aggregates are packed into stacks by ππ stacking inter­actions between 4,6-di­acetyl­resorcinol mol­ecules. Neighbouring stacks are linked by hydrogen bonds between the amino H atom of the 1-amino­pyrene mol­ecule with the adjacent carbonyl oxygen atom of the 4,6-di­acetyl­resorcinol mol­ecule, thus forming a three-dimensional network (Fig. 3[link]).

[Figure 2]
Figure 2
A view of the crystal packing showing the ππ stacking inter­actions.
[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the b axis, showing the N—H⋯O hydrogen bonds.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42; May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave the structures of the individual components. In the structure of 4,6-di­acetyl­resorcinol (Kokila et al., 1992[Kokila, M. K., Nirmala, K. A., Puttaraja & Shamala, N. (1992). Acta Cryst. C48, 1133-1134.], refcode VOXPED) the mol­ecule is almost planar, with the oxygen atoms of the acetyl groups deviating by 0.074 (1) and 0.072 (2) Å from the mean plane of the benzene ring. There are intra­molecular hydrogen bonds between the oxygen atoms of the acetyl groups and the hy­droxy hydrogen atoms. A search for 1-amino­pyrene gave two hits for co-crystals composed of 1-amino­pyrene mol­ecules with either 7,7′,8,8′-tetra­cyano­quinodi­methane or 3,5-di­nitro­benzoic acid and showed that the NH2 groups can act as H-donors in the inter­molecular hydrogen-bonding inter­actions, as in the title compound. (Mandal et al., 2020[Mandal, A., Choudhury, A., Kumar, R., Iyer, P. K. & Mal, P. (2020). CrystEngComm, 22, 720-727.], refcode BOYQOY; Mandal et al., 2019[Mandal, A., Rissanen, K. & Mal, P. (2019). CrystEngComm, 21, 4401-4408.], refcode LORBOM).

5. Synthesis and crystallization

A solution of 1-amino­pyrene (1 mmol, 0.233 g) dissolved in 10 ml of ethanol was added dropwise to 4,6-di­acetyl­resorcinol (DAR) (0.5 mmol, 0.097 g) dissolved in 10 ml of ethanol, 3 drops of acetic acid were added, and the mixture was stirred for 15 min at room temperature and then for about 3 h under reflux. Yellow fiber-like crystals of the Schiff base ligand were separated. They were filtered off and washed with 4 ml of ethanol, weight = 0.021 g, yield = 7.12%, m.p. = 523 K, m/z = 592.7 (C42H28N2O2). The filtrate was left overnight upon which dark-brown rectangular co-crystals were formed, weight = 0.04 g, yield = 19.5%, m.p. = 418 K, m/z = 605.62 (C16H11N·2C10H10O4). 1H NMR (800 MHz, DMSO-d6) δ 12.75 (s, br, –OH), 8.406 (s, 2H, DAR), 8.251 (d, 1H), 7.992 (d, 2H), 7.992 (d, 1H), 7.958 (d, 1H), 87.915 (d, 2H), 7.880 (m, 1H), 7.367 (d, 1H), 6.392 (s, 2H, DAR), 6.314 (s, br, NH2, 2H), 2.661 (s, Me, 12H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C—N bond distances for the disordered N atom were restrained to be similar. The minor occupancy N1B atom was constrained to have the same ADPs as the C atom to which it is bonded. N—H bond distances were restrained to a target value of 0.88 (2) Å, and the H—N—H and C—N—H bond angles were restrained to be similar to each other. Subject to these conditions the occupancy rates refined to 0.428 (2) and 0.072 (2). O-bound H atoms were refined with Uiso(H) = 1.5Ueq(O). C-bound H atoms were positioned geometrically (C—H = 0.9–0.98 Å) and refined as riding on their parent atoms with Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C16H11N·2C10H10O4
Mr 605.62
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 18.7222 (14), 9.7870 (6), 16.9398 (15)
β (°) 113.758 (4)
V3) 2840.9 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.45 × 0.26 × 0.22
 
Data collection
Diffractometer Bruker AXS D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.673, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 33773, 4316, 3741
Rint 0.046
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.153, 1.15
No. of reflections 4316
No. of parameters 231
No. of restraints 13
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.26
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker Nano Inc., Madison,Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

4,6-Diacetylresorcinol–1-aminopyrene (2/1) top
Crystal data top
C16H11N·2C10H10O4F(000) = 1272
Mr = 605.62Dx = 1.416 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.7222 (14) ÅCell parameters from 9850 reflections
b = 9.7870 (6) Åθ = 2.4–33.2°
c = 16.9398 (15) ŵ = 0.10 mm1
β = 113.758 (4)°T = 150 K
V = 2840.9 (4) Å3Block, yellow
Z = 40.45 × 0.26 × 0.22 mm
Data collection top
Bruker AXS D8 Quest
diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
4316 independent reflections
Radiation source: fine focus sealed tube X-ray source3741 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.046
Detector resolution: 7.4074 pixels mm-1θmax = 30.5°, θmin = 2.5°
ω and phi scansh = 2626
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.673, Tmax = 0.747l = 2424
33773 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: mixed
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0356P)2 + 4.9256P]
where P = (Fo2 + 2Fc2)/3
4316 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.35 e Å3
13 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The single nitrogen atom is disordered over four chemically equivalent positions (each two are also crystallographically equivalent, by inversion). The C-N bond distances were restrained to be similar. The minor N atom was constrained to have the same ADP as the C atom it is bonded to. The N-H bond distances were restrained to a target value of 0.88 (2) Angstrom, and the H-N-H and C-N-H bond angles were each restrained to be similar to each other. Subject to these conditions the occupancy rates refined to two times 0.428 (2) and two times 0.072 (2).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.65970 (9)0.27504 (17)0.27887 (8)0.0435 (4)
O20.73863 (8)0.46240 (16)0.24707 (9)0.0406 (3)
H20.7158 (15)0.422 (3)0.2746 (11)0.061*
O30.73548 (7)0.49314 (13)0.02964 (9)0.0318 (3)
H30.7141 (13)0.459 (2)0.0788 (16)0.048*
O40.65513 (7)0.32200 (14)0.14377 (8)0.0333 (3)
N10.63242 (19)0.2052 (3)0.43483 (19)0.0232 (6)0.428 (2)
H1A0.6785 (13)0.167 (4)0.462 (2)0.028*0.428 (2)
H1B0.636 (3)0.252 (3)0.3924 (19)0.028*0.428 (2)
N1B0.6296 (10)0.2240 (18)0.6962 (10)0.0255 (3)0.072 (2)
H1C0.676 (5)0.184 (17)0.716 (6)0.031*0.072 (2)
H1D0.625 (10)0.261 (10)0.741 (4)0.031*0.072 (2)
C10.63682 (10)0.23098 (19)0.20409 (11)0.0303 (4)
C20.58258 (12)0.1108 (2)0.17814 (13)0.0392 (4)
H2A0.5359600.1341040.1266970.059*
H2B0.5673150.0869260.2253700.059*
H2C0.6090060.0327790.1653980.059*
C30.66261 (9)0.29590 (16)0.14205 (9)0.0232 (3)
C40.71264 (9)0.41203 (17)0.16646 (10)0.0264 (3)
C50.73613 (9)0.47613 (17)0.10833 (11)0.0265 (3)
H50.7697100.5532320.1258270.032*
C60.71078 (8)0.42813 (15)0.02447 (10)0.0228 (3)
C70.66054 (8)0.31225 (15)0.00255 (9)0.0194 (3)
C80.63794 (8)0.24981 (15)0.05741 (9)0.0206 (3)
H80.6043560.1726910.0399920.025*
C90.63396 (9)0.26350 (17)0.09192 (10)0.0242 (3)
C100.58093 (10)0.1419 (2)0.12108 (12)0.0339 (4)
H10A0.5688380.1236250.1820060.051*
H10B0.5325090.1606740.1138240.051*
H10C0.6068090.0620980.0864480.051*
C110.60624 (9)0.27031 (15)0.48402 (10)0.0237 (3)
H110.6248790.2273600.4456990.028*0.572 (2)
C120.63162 (9)0.22506 (16)0.56916 (11)0.0283 (3)
H120.6664480.1497230.5877000.034*
C130.60710 (9)0.28760 (16)0.62685 (10)0.0255 (3)
H130.6259840.2561680.6847610.031*0.928 (2)
C140.55427 (8)0.39772 (15)0.60056 (9)0.0207 (3)
C150.52761 (9)0.46518 (16)0.65871 (9)0.0240 (3)
H150.5464350.4357940.7170360.029*
C160.47590 (9)0.57043 (16)0.63217 (9)0.0232 (3)
H160.4584830.6118750.6719660.028*
C170.44718 (8)0.61998 (15)0.54519 (9)0.0196 (3)
C180.47321 (8)0.55597 (14)0.48616 (9)0.0174 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0494 (8)0.0610 (10)0.0232 (6)0.0200 (7)0.0178 (6)0.0096 (6)
O20.0380 (7)0.0502 (9)0.0258 (6)0.0040 (6)0.0048 (5)0.0143 (6)
O30.0326 (6)0.0283 (6)0.0415 (7)0.0002 (5)0.0223 (6)0.0058 (5)
O40.0363 (6)0.0425 (7)0.0241 (6)0.0130 (6)0.0153 (5)0.0058 (5)
N10.0294 (15)0.0217 (14)0.0224 (14)0.0077 (11)0.0147 (12)0.0002 (11)
N1B0.0237 (7)0.0230 (7)0.0254 (7)0.0008 (5)0.0052 (6)0.0077 (6)
C10.0299 (8)0.0382 (9)0.0254 (7)0.0158 (7)0.0137 (6)0.0107 (7)
C20.0421 (10)0.0399 (10)0.0448 (10)0.0109 (8)0.0270 (9)0.0204 (8)
C30.0221 (6)0.0265 (7)0.0211 (6)0.0074 (5)0.0087 (5)0.0025 (5)
C40.0207 (7)0.0296 (8)0.0242 (7)0.0067 (6)0.0039 (5)0.0056 (6)
C50.0188 (6)0.0233 (7)0.0346 (8)0.0001 (5)0.0078 (6)0.0063 (6)
C60.0176 (6)0.0205 (6)0.0314 (7)0.0043 (5)0.0111 (5)0.0021 (6)
C70.0170 (6)0.0205 (6)0.0202 (6)0.0038 (5)0.0071 (5)0.0006 (5)
C80.0189 (6)0.0194 (6)0.0236 (7)0.0027 (5)0.0086 (5)0.0001 (5)
C90.0211 (6)0.0274 (7)0.0221 (7)0.0090 (5)0.0067 (5)0.0008 (6)
C100.0278 (8)0.0369 (9)0.0321 (8)0.0013 (7)0.0067 (6)0.0151 (7)
C110.0222 (6)0.0194 (6)0.0305 (7)0.0009 (5)0.0117 (6)0.0020 (6)
C120.0236 (7)0.0205 (7)0.0372 (9)0.0021 (5)0.0084 (6)0.0054 (6)
C130.0237 (7)0.0230 (7)0.0254 (7)0.0008 (5)0.0052 (6)0.0077 (6)
C140.0184 (6)0.0217 (7)0.0205 (6)0.0035 (5)0.0065 (5)0.0032 (5)
C150.0240 (7)0.0291 (8)0.0178 (6)0.0041 (6)0.0074 (5)0.0021 (5)
C160.0241 (7)0.0275 (7)0.0190 (6)0.0045 (6)0.0100 (5)0.0016 (5)
C170.0188 (6)0.0187 (6)0.0213 (6)0.0036 (5)0.0081 (5)0.0010 (5)
C180.0157 (6)0.0171 (6)0.0186 (6)0.0036 (5)0.0060 (5)0.0002 (5)
Geometric parameters (Å, º) top
O1—C11.240 (2)C7—C81.389 (2)
O2—C41.3450 (19)C7—C91.470 (2)
O2—H20.84 (3)C8—H80.9500
O3—C61.3418 (19)C9—C101.500 (2)
O3—H30.83 (3)C10—H10A0.9800
O4—C91.240 (2)C10—H10B0.9800
N1—C111.292 (3)C10—H10C0.9800
N1—H1A0.882 (10)C11—C121.396 (2)
N1—H1B0.875 (10)C11—C17i1.414 (2)
N1B—C131.243 (14)C11—H110.9500
N1B—H1C0.882 (10)C12—C131.379 (2)
N1B—H1D0.880 (10)C12—H120.9500
C1—C31.467 (2)C13—C141.408 (2)
C1—C21.500 (3)C13—H130.9500
C2—H2A0.9800C14—C18i1.4210 (19)
C2—H2B0.9800C14—C151.432 (2)
C2—H2C0.9800C15—C161.360 (2)
C3—C81.392 (2)C15—H150.9500
C3—C41.424 (2)C16—C171.434 (2)
C4—C51.380 (2)C16—H160.9500
C5—C61.386 (2)C17—C181.4220 (19)
C5—H50.9500C18—C18i1.431 (3)
C6—C71.426 (2)
C4—O2—H2109.5O4—C9—C10119.42 (15)
C6—O3—H3109.5C7—C9—C10120.08 (14)
C11—N1—H1A114 (2)C9—C10—H10A109.5
C11—N1—H1B116 (2)C9—C10—H10B109.5
H1A—N1—H1B106 (4)H10A—C10—H10B109.5
C13—N1B—H1C120 (3)C9—C10—H10C109.5
C13—N1B—H1D120 (3)H10A—C10—H10C109.5
H1C—N1B—H1D106 (5)H10B—C10—H10C109.5
O1—C1—C3120.23 (18)N1—C11—C12116.75 (19)
O1—C1—C2119.14 (16)N1—C11—C17i123.18 (19)
C3—C1—C2120.63 (15)C12—C11—C17i120.05 (14)
C1—C2—H2A109.5C12—C11—H11120.0
C1—C2—H2B109.5C17i—C11—H11120.0
H2A—C2—H2B109.5C13—C12—C11121.28 (14)
C1—C2—H2C109.5C13—C12—H12119.4
H2A—C2—H2C109.5C11—C12—H12119.4
H2B—C2—H2C109.5N1B—C13—C12111.3 (10)
C8—C3—C4117.66 (14)N1B—C13—C14127.6 (10)
C8—C3—C1121.95 (15)C12—C13—C14120.49 (14)
C4—C3—C1120.37 (15)C12—C13—H13119.8
O2—C4—C5117.95 (16)C14—C13—H13119.8
O2—C4—C3120.93 (16)C13—C14—C18i119.12 (14)
C5—C4—C3121.12 (14)C13—C14—C15122.02 (14)
C4—C5—C6120.08 (15)C18i—C14—C15118.86 (13)
C4—C5—H5120.0C16—C15—C14121.37 (14)
C6—C5—H5120.0C16—C15—H15119.3
O3—C6—C5118.00 (15)C14—C15—H15119.3
O3—C6—C7121.48 (14)C15—C16—C17121.20 (14)
C5—C6—C7120.52 (14)C15—C16—H16119.4
C8—C7—C6118.10 (13)C17—C16—H16119.4
C8—C7—C9122.26 (14)C11i—C17—C18118.88 (13)
C6—C7—C9119.65 (14)C11i—C17—C16122.40 (14)
C7—C8—C3122.53 (14)C18—C17—C16118.72 (13)
C7—C8—H8118.7C14i—C18—C17120.17 (13)
C3—C8—H8118.7C14i—C18—C18i119.80 (16)
O4—C9—C7120.50 (15)C17—C18—C18i120.04 (16)
O1—C1—C3—C8179.71 (15)C6—C7—C9—O40.3 (2)
C2—C1—C3—C80.3 (2)C8—C7—C9—C100.3 (2)
O1—C1—C3—C41.5 (2)C6—C7—C9—C10179.83 (13)
C2—C1—C3—C4178.49 (14)N1—C11—C12—C13180.0 (2)
C8—C3—C4—O2179.86 (14)C17i—C11—C12—C131.6 (2)
C1—C3—C4—O21.6 (2)C11—C12—C13—N1B173.1 (9)
C8—C3—C4—C50.3 (2)C11—C12—C13—C141.3 (2)
C1—C3—C4—C5178.61 (14)N1B—C13—C14—C18i170.7 (11)
O2—C4—C5—C6179.90 (14)C12—C13—C14—C18i0.3 (2)
C3—C4—C5—C60.3 (2)N1B—C13—C14—C159.6 (11)
C4—C5—C6—O3179.61 (14)C12—C13—C14—C15179.94 (14)
C4—C5—C6—C70.2 (2)C13—C14—C15—C16179.26 (14)
O3—C6—C7—C8179.53 (13)C18i—C14—C15—C161.1 (2)
C5—C6—C7—C80.1 (2)C14—C15—C16—C171.3 (2)
O3—C6—C7—C91.0 (2)C15—C16—C17—C11i179.63 (14)
C5—C6—C7—C9179.64 (13)C15—C16—C17—C180.6 (2)
C6—C7—C8—C30.2 (2)C11i—C17—C18—C14i0.1 (2)
C9—C7—C8—C3179.68 (13)C16—C17—C18—C14i179.82 (13)
C4—C3—C8—C70.3 (2)C11i—C17—C18—C18i179.52 (15)
C1—C3—C8—C7178.53 (13)C16—C17—C18—C18i0.2 (2)
C8—C7—C9—O4179.78 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.85 (3)1.80 (3)2.545 (2)146 (2)
O3—H3···O40.84 (2)1.80 (2)2.542 (2)147 (2)
N1—H1A···O3ii0.88 (1)2.30 (2)3.131 (3)156 (4)
N1—H1B···O10.88 (1)2.16 (2)2.966 (3)154 (3)
N1B—H1C···O2iii0.88 (1)2.05 (6)2.902 (18)162 (17)
N1B—H1D···O4iv0.88 (1)1.89 (6)2.731 (18)159 (14)
Symmetry codes: (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1; (iv) x, y, z+1.
 

Acknowledgements

This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer). The authors greatly acknowledge Dr Matthias Zeller for his help and support.

References

First citationAazam, E. S., El Husseiny, A. F., Al-Amri, H. M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1796.  CrossRef IUCr Journals Google Scholar
First citationAazam, E. S., El Husseiny, A. F., Hitchcock, P. B. & Al Shehary, J. (2008). Centr. Eur. J. Chem. 6, 319–323.  Web of Science CSD CrossRef CAS Google Scholar
First citationAazam, E. S., Fawazy, A. & Hitchcock, P. B. (2006). Acta Cryst. E62, o4285–o4287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker Nano Inc., Madison,Wisconsin, USA.  Google Scholar
First citationEl-Attar, M. & Aazam, E. (2021). J. Coord. Chem. 74, 779–803.  CAS Google Scholar
First citationGolbedaghi, R. & Fausto, R. (2018). Polyhedron, 155, 1–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKokila, M. K., Nirmala, K. A., Puttaraja & Shamala, N. (1992). Acta Cryst. C48, 1133–1134.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMandal, A., Choudhury, A., Kumar, R., Iyer, P. K. & Mal, P. (2020). CrystEngComm, 22, 720–727.  CrossRef CAS Google Scholar
First citationMandal, A., Rissanen, K. & Mal, P. (2019). CrystEngComm, 21, 4401–4408.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds