research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

First hydrogen-bonded adduct of sterically hindered 2-tert-butyl-4-methyl­phenol (TBMP) with 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]do­decane (TATD) via coupling of classical hydrogen bonds and C—H⋯π non-covalent inter­actions

crossmark logo

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by C. Schulzke, Universität Greifswald, Germany (Received 10 March 2022; accepted 9 May 2022; online 17 May 2022)

The title compound, C8H16N4·2C11H16O, was synthesized from the corres­ponding sterically crowded phenol by treatment with the aminal cage polyamine. Single-crystal X-ray diffraction structural analysis revealed the three-mol­ecule aggregate to crystallize in the monoclinic space group P2/c with one half of a 1,3,6,8-tetra­aztri­cyclo­[4.4.1.13,8]dodecane (TATD) mol­ecule and one 2-tert-butyl-4-methyl­phenol mol­ecule per asymmetric unit. The crystal structure features inter­molecular O—H⋯N and C—H⋯O hydrogen bonds, as well as inter­molecular C—H⋯π inter­actions.

1. Chemical context

Co-crystals of phenols with various nitro­gen bases are model systems often used for studying the nature of the hydrogen bond (Majerz et al., 2007[Majerz, I., Kwiatkowska, E. & Koll, A. (2007). J. Mol. Struct. 831, 106-113.]). In this context, not only the initial formation of a hydrogen-bonded adduct was investigated between a Mannich preformed reagent and the phenolic substrate (Burckhalter & Leib, 1961[Burckhalter, J. H. & Leib, R. I. J. (1961). J. Org. Chem. 26, 4078-4083.]), but also the great inter­est in and chemical importance of the amino­alkyl­ation of aromatic substrates via the Mannich reaction was addressed (Tramontini et al., 1988[Tramontini, M., Angiolini, L. & Ghedini, N. (1988). Polymer, 29, 771-788.]). For a long time we have directed continuing efforts to the systematic study of hydrogen bonding and other non-covalent inter­actions of phenols with aminal cages (preformed Mannich bases) (Rivera et al., 2007[Rivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180-186.], 2015a[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015a). Acta Cryst. E71, 737-740.],b[Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015b). Acta Cryst. E71, 463-465.], 2017a[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2017a). Acta Cryst. E73, 1692-1695.],b[Rivera, A., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2017b). J. Struct. Chem. 58, 789-796.], 2019[Rivera, A., Rojas, J. J., Sadat-Bernal, J., Ríos-Motta, J. & Bolte, M. (2019). Acta Cryst. C75, 1635-1643.]). Herein we report the mechanochemical preparation and crystal structure of the title adduct prepared by mixing in an agate mortar the sterically hindered 2-tert-butyl-4-methyl­phenol (TBMP) with 1,3,6,8-tetra­azatri­cyclo­[4.4.1.13,8]dodecane (TATD) in a 2:1 ratio. The crystallographic information available for pure 2-tert-butyl-4-methyl­phenol (Beckmann et al., 2004[Beckmann, P. A., Paty, C., Allocco, E., Herd, M., Kuranz, C. & Rheingold, A. L. (2004). J. Chem. Phys. 120, 5309-5314.]) does not report O—H⋯O hydrogen bonds, which are commonly found in the crystal structures of alcohols, suggesting that the alcohol is sterically protected. The reaction of TBMP with TATD, in notable contrast to this, proceeds cleanly to give the title O—H⋯N hydrogen-bonded adduct exclusively. A search of the Cambridge Structural Database (version 5.42; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for crystal structures containing hydrogen-bonded TBMP co-crystals with a hydrogen-bond acceptor resulted in zero hits, emphasizing the general rarity of this observation. The resultant crystal structure reported here also exhibits C—H⋯O hydrogen-bonding inter­actions, which constitute a fundamental force in maintaining crystal and three-dimensional chemical structures in chemistry and biology (Wang et al., 2019[Wang, J., Liu, C., Liu, X., Shao, L. & Zhang, X.-M. (2019). J. Phys. Org. Chem. 32, e3927.]).

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic space group P2/c. The asymmetric unit comprises one half of a 1,3,6,8-tetra­azatri­cyclo­[4.4.1.13,8]dodecane (TATD) mol­ecule and one 2-tert-butyl-4-methyl­phenol (TBMP) mol­ecule held together by one inter­molecular O—H⋯N hydrogen bond [O⋯N = 2.8534 (15) Å; O—H⋯N = 161.6 (17)°; Table 1[link]]. The complete adduct is generated by symmetry by a crystallographic twofold rotation axis, resulting in C2 symmetry for the three-mol­ecule aggregate (Fig. 1[link]). Apart from the two neutral inter­molecular O—H⋯N bonds in the three-mol­ecule arrangement, as indicated by a PLATON analysis (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), there are four non-classical intra­molecular C—H⋯O hydrogen bonds between the TBMP phenol oxygen atoms and the ortho tert–butyl C—H bonds (two for each phenol oxygen atom O1; methyl group atoms C18—H18B and C20—H20A; geometric details are given in Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.88 (2) 2.01 (2) 2.8534 (15) 161.6 (17)
C18—H18B⋯O1 0.98 2.30 2.966 (2) 124
C20—H20A⋯O1 0.98 2.41 3.058 (3) 124
C1—H1ACg1i 0.98 2.90 3.851 (2) 163
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability. H atoms bonded to C atoms are omitted for clarity. Hydrogen bonds are drawn as dashed lines. Atoms labelled with the suffix A are generated using the symmetry operator (−x, y, −z + [{1\over 2}]).

The –OH group is not perfectly co-planar with the benzene ring with a C16—C11—O1—H1 torsion angle of 18.0°. This angle differs from the corresponding more acute torsion angles in free 2-tert-butyl-4-methyl­phenol (0.73 and −0.36°; Beckmann et al., 2004[Beckmann, P. A., Paty, C., Allocco, E., Herd, M., Kuranz, C. & Rheingold, A. L. (2004). J. Chem. Phys. 120, 5309-5314.]) and other related sterically very congested phenols (Lutz & Spek, 2005[Lutz, M. & Spek, A. L. (2005). Acta Cryst. C61, o639-o641.]). The observed C11—O1 bond length [1.376 (2) Å] is in a good agreement with the mean value of 1.377 Å reported for 2-tert-butyl-4-methyl­phenol (Beckmann et al., 2004[Beckmann, P. A., Paty, C., Allocco, E., Herd, M., Kuranz, C. & Rheingold, A. L. (2004). J. Chem. Phys. 120, 5309-5314.]).

The C—N1 bond lengths of the nitro­gen atom, which is engaged in the inter­molecular hydrogen bond to TBMP, are slightly elongated at 1.476 (2) Å (N1—C1), 1.469 (2) Å (N1—C3) and 1.468 (2) Å (N1—C5) compared to the mean value of 1.458 Å reported for the free aminal cage structure (Rivera et al., 2014[Rivera, A., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o266.]) and compared to the C—N2 bond lengths here [1.452 (2) Å (N2—C1), 1.456 (2) Å (N2—C2), and 1.462 (2) Å (N2—C4)]. This indicates that the formation of the inter­molecular hydrogen bonds in the title compound affects the distribution of electron density around this hydrogen-bonded nitro­gen centre, resulting in an impact on the respective CH2—N single bonds in the heterocyclic cage system.

3. Supra­molecular features

The most prominent supra­molecular feature in this crystal structure is the formation of the expected three-mol­ecule aggregate sustained by two hy­droxy-O—H⋯N hydrogen bonds (Fig. 2[link]). In the crystal packing, roughly in the a-axis direction, adjacent aggregates are linked by C—H⋯π inter­actions with a C—H⋯Cg distance of 3.851 (2) Å and a C—H⋯Cg angle of 163°, (Table 1[link]). The C—H⋯π inter­action is facilitated between one methyl­ene group (C1—H1A) and a symmetry-derived ring (C11–C16; symmetry code: −x + 1, −y + 1, −z + 1). These non-covalent inter­actions lead to the formation of a crystal packing pattern in which the phenol mol­ecules are arranged in an alternating fashion, as is evident when viewed along the [101] direction (Fig. 3[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound viewed roughly along the b-axis direction, showing the inter­molecular O—H⋯N hydrogen bonds and selected C—H⋯π inter­actions.
[Figure 3]
Figure 3
A partial packing diagram viewed along [101] direction. Dashed lines indicate the inter­molecular O—H⋯N hydrogen bonds. Only H atoms involved in the hydrogen bonds are shown for clarity.

4. Database survey

Using the Cambridge Structural Database (CSD, Version 5.42, September 2021 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), a search for the title compound structure and names used in this article was conducted with CONQUEST (version 2021.2.0; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). The crystal structures of both 2-tert-butyl-4-methyl­phenol (TBMP; Beckmann et al., 2004[Beckmann, P. A., Paty, C., Allocco, E., Herd, M., Kuranz, C. & Rheingold, A. L. (2004). J. Chem. Phys. 120, 5309-5314.]) and 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD; Rivera et al., 2014[Rivera, A., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o266.]) are already known (refcodes: PAGMEQ and TAZTCD). 2-tert-Butyl-4-methyl­phenol crystallizes with two mol­ecules in the asymmetric unit, which exhibit non-classical intra­molecular C—H⋯O hydrogen bonds similar to what is found in the adduct structure reported here, plus weak inter­molecular O—H⋯π inter­actions. Tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane crystallizes with one quarter of a mol­ecule in the asymmetric unit. There are no significant differences in the metrical parameters between the structure of the title co-crystal and the singly crystallized entities except for the C—N distances discussed above (section 2).

Co-crystals of tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane have already been reported, i.e. with 3-nitro­phenol (Rivera et al., 2019[Rivera, A., Rojas, J. J., Sadat-Bernal, J., Ríos-Motta, J. & Bolte, M. (2019). Acta Cryst. C75, 1635-1643.]), 4-iodo­phenol (Rivera et al., 2017a[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2017a). Acta Cryst. E73, 1692-1695.]), 4-chloro-3,5-di­methyl­phenol (Rivera et al., 2015a[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015a). Acta Cryst. E71, 737-740.]), hydro­quinone (Rivera et al., 2007[Rivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180-186.]), and 4-bromo­phenol (Rivera et al., 2015b[Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015b). Acta Cryst. E71, 463-465.]) (refcodes: HOXGUZ, JELVII, QUFROA, WEXQIA, XULKOG).

In addition, one crystal structure with a singly protonated tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane was determined prev­iously, namely 3,6,8-tri­aza-1-azoniatri­cyclo­[4.4.1.13,8]dodecane 4-nitro­phenolate 4-nitro­phenol (Rivera et al., 2017b[Rivera, A., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2017b). J. Struct. Chem. 58, 789-796.]; refcode: REYKAK).

In another closely related adduct structure, a slightly less sterically crowded alcohol was used bearing an iso-propyl instead of the tert-butyl substituent on the aromatic ring: tris-[5-methyl-2-(propan-2-yl)phenol]1,3,5,7-tetra­aza­tri­cyclo­[3.3.1.13,7]decane (Mazzeo et al., 2019[Mazzeo, P. P., Carraro, C., Monica, A., Capucci, D., Pelagatti, P., Bianchi, F., Agazzi, S., Careri, M., Raio, A., Carta, M., Menicucci, F., Belli, M., Michelozzi, M. & Bacchi, A. (2019). ACS Sustainable Chem. Eng. 7, 17929-17940.]; refcode: WUTDUN).

5. Synthesis and crystallization

A mixture of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) (1 mmol) and 2-tert-butyl-4-methyl­phenol (TBMP) (2 mmol) was ground using a mortar and pestle at room temperature for 15 min. Completion of the reaction was monitored by TLC. The mixture was recrystallized from n-hexa­ne:chloro­form (8:2) solution to obtain colourless crystals suitable for X-ray analysis, m.p. = 374–375 K. (yield: 85%).

6. Refinement

The structure of the title compound had been previously deposited by us and was thereby reported as a Private Communication (Bolte et al., 2021[Bolte, M., Rivera, A. & Rios-Motta, J. (2021). Private Communication (refcode EWICAR). CCDC, Cambridge, England.], refcode EWICAR). Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The oxygen-bound hydrogen atom was found and refined isotropically without restraints or constraints. Other hydrogen atoms were generated geometrically, and refined with a riding model with C—H = 0.98 Å, Uiso(H) = 1.5Ueq(C) for methyl, C—H = 0.99 Å, Uiso(H) = 1.2Ueq(C) for methyl­ene, and C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms.

Table 2
Experimental details

Crystal data
Chemical formula C8H16N4·2C11H16O
Mr 496.72
Crystal system, space group Monoclinic, P2/c
Temperature (K) 173
a, b, c (Å) 11.4741 (10), 7.6770 (5), 17.2226 (14)
β (°) 108.166 (6)
V3) 1441.5 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.28 × 0.27 × 0.11
 
Data collection
Diffractometer Stoe IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.554, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17127, 3307, 2862
Rint 0.029
(sin θ/λ)max−1) 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.132, 1.05
No. of reflections 3307
No. of parameters 170
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.19
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL (Sheldrick, 2015).

2-tert-Butyl-4-methylphenol–\ 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (2/1) top
Crystal data top
C8H16N4·2C11H16OF(000) = 544
Mr = 496.72Dx = 1.144 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 11.4741 (10) ÅCell parameters from 17127 reflections
b = 7.6770 (5) Åθ = 3.6–27.8°
c = 17.2226 (14) ŵ = 0.07 mm1
β = 108.166 (6)°T = 173 K
V = 1441.5 (2) Å3Plate, colourless
Z = 20.28 × 0.27 × 0.11 mm
Data collection top
STOE IPDS II two-circle-
diffractometer
2862 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.029
ω scansθmax = 27.6°, θmin = 3.6°
Absorption correction: multi-scan
(X-Area; Stoe & Cie, 2001)
h = 1414
Tmin = 0.554, Tmax = 1.000k = 99
17127 measured reflectionsl = 2222
3307 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.4499P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.132(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.26 e Å3
3307 reflectionsΔρmin = 0.19 e Å3
170 parametersExtinction correction: SHELXL-2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.021 (5)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.55515 (9)0.67062 (14)0.32614 (6)0.0269 (2)
N20.41669 (11)0.93222 (15)0.28288 (7)0.0334 (3)
C10.47468 (13)0.80357 (18)0.34461 (8)0.0332 (3)
H1A0.4087810.7415910.3592290.040*
H1B0.5236290.8672300.3940100.040*
C20.30542 (14)0.8720 (2)0.22156 (10)0.0469 (4)
H2A0.2655330.9737600.1885900.056*
H2B0.2487880.8281220.2502490.056*
C30.31959 (13)0.7318 (2)0.16366 (9)0.0397 (3)
H3A0.2697620.6302160.1694460.048*
H3B0.2844250.7758880.1071440.048*
C40.5000001.0300 (3)0.2500000.0418 (5)
H4A0.4496371.1066270.2060380.050*0.5
H4B0.5503621.1066300.2939610.050*0.5
C50.5000000.5738 (2)0.2500000.0282 (4)
H5A0.4357610.4971080.2586050.034*0.5
H5B0.5642380.4971070.2413950.034*0.5
O10.65236 (10)0.40303 (14)0.44346 (6)0.0399 (3)
H10.6079 (18)0.482 (3)0.4109 (12)0.053 (5)*
C110.69530 (12)0.46490 (16)0.52226 (7)0.0284 (3)
C120.79366 (11)0.37879 (15)0.57928 (7)0.0247 (3)
C130.83508 (11)0.45122 (17)0.65783 (7)0.0280 (3)
H130.9016870.3960880.6973780.034*
C140.78431 (12)0.59956 (17)0.68142 (8)0.0303 (3)
C150.68468 (14)0.67652 (18)0.62418 (8)0.0343 (3)
H150.6464550.7755720.6387720.041*
C160.64080 (14)0.60914 (18)0.54571 (8)0.0350 (3)
H160.5721590.6624900.5071840.042*
C170.85309 (13)0.21469 (17)0.55726 (7)0.0313 (3)
C180.75571 (18)0.0728 (2)0.52590 (12)0.0545 (5)
H18A0.7176840.0457750.5681350.082*
H18B0.6928110.1142930.4766350.082*
H18C0.7943850.0323040.5128950.082*
C190.95174 (18)0.1387 (3)0.63136 (9)0.0546 (5)
H19A0.9150530.1093300.6740080.082*
H19B0.9862400.0333930.6149170.082*
H19C1.0170070.2248080.6525300.082*
C200.91373 (19)0.2589 (3)0.49204 (11)0.0565 (5)
H20A0.8522930.3078540.4439280.085*
H20B0.9792260.3443020.5140430.085*
H20C0.9484590.1528870.4764300.085*
C210.83767 (16)0.6747 (2)0.76656 (9)0.0441 (4)
H21A0.8952410.5910260.8013010.066*
H21B0.7713450.6982040.7897360.066*
H21C0.8809120.7833890.7636890.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0282 (5)0.0284 (5)0.0214 (5)0.0016 (4)0.0039 (4)0.0010 (4)
N20.0362 (6)0.0291 (6)0.0360 (6)0.0066 (5)0.0126 (5)0.0002 (5)
C10.0423 (7)0.0327 (7)0.0270 (6)0.0051 (6)0.0141 (5)0.0016 (5)
C20.0303 (7)0.0566 (10)0.0495 (9)0.0131 (7)0.0064 (6)0.0033 (7)
C30.0268 (6)0.0447 (8)0.0407 (8)0.0011 (6)0.0006 (5)0.0006 (6)
C40.0581 (13)0.0249 (9)0.0478 (12)0.0000.0242 (10)0.000
C50.0356 (9)0.0236 (8)0.0228 (8)0.0000.0055 (7)0.000
O10.0527 (6)0.0388 (6)0.0200 (4)0.0145 (5)0.0005 (4)0.0011 (4)
C110.0373 (7)0.0269 (6)0.0199 (5)0.0007 (5)0.0072 (5)0.0004 (4)
C120.0299 (6)0.0228 (6)0.0215 (5)0.0008 (5)0.0082 (4)0.0006 (4)
C130.0303 (6)0.0296 (6)0.0223 (6)0.0006 (5)0.0058 (5)0.0017 (5)
C140.0390 (7)0.0282 (6)0.0257 (6)0.0038 (5)0.0128 (5)0.0048 (5)
C150.0496 (8)0.0253 (6)0.0321 (6)0.0065 (6)0.0189 (6)0.0008 (5)
C160.0436 (7)0.0323 (7)0.0275 (6)0.0111 (6)0.0089 (5)0.0055 (5)
C170.0414 (7)0.0293 (6)0.0218 (6)0.0094 (5)0.0077 (5)0.0015 (5)
C180.0691 (11)0.0254 (7)0.0611 (10)0.0007 (7)0.0090 (9)0.0098 (7)
C190.0657 (11)0.0584 (10)0.0316 (7)0.0367 (9)0.0033 (7)0.0055 (7)
C200.0749 (12)0.0587 (11)0.0495 (9)0.0235 (9)0.0391 (9)0.0062 (8)
C210.0546 (9)0.0442 (8)0.0326 (7)0.0016 (7)0.0122 (6)0.0157 (6)
Geometric parameters (Å, º) top
N1—C51.4680 (13)C13—C141.3961 (18)
N1—C3i1.4694 (17)C13—H130.9500
N1—C11.4761 (17)C14—C151.3874 (19)
N2—C11.4517 (17)C14—C211.5159 (18)
N2—C21.456 (2)C15—C161.3868 (19)
N2—C41.4615 (16)C15—H150.9500
C1—H1A0.9900C16—H160.9500
C1—H1B0.9900C17—C201.533 (2)
C2—C31.510 (2)C17—C191.5328 (19)
C2—H2A0.9900C17—C181.533 (2)
C2—H2B0.9900C18—H18A0.9800
C3—H3A0.9900C18—H18B0.9800
C3—H3B0.9900C18—H18C0.9800
C4—H4A0.9900C19—H19A0.9800
C4—H4B0.9900C19—H19B0.9800
C5—H5A0.9900C19—H19C0.9800
C5—H5B0.9900C20—H20A0.9800
O1—C111.3760 (15)C20—H20B0.9800
O1—H10.88 (2)C20—H20C0.9800
C11—C161.3920 (18)C21—H21A0.9800
C11—C121.4086 (17)C21—H21B0.9800
C12—C131.4016 (16)C21—H21C0.9800
C12—C171.5353 (17)
C5—N1—C3i113.69 (9)C14—C13—C12123.91 (12)
C5—N1—C1114.72 (9)C14—C13—H13118.0
C3i—N1—C1114.05 (11)C12—C13—H13118.0
C1—N2—C2114.42 (12)C15—C14—C13117.82 (11)
C1—N2—C4115.31 (10)C15—C14—C21121.34 (12)
C2—N2—C4114.44 (11)C13—C14—C21120.83 (12)
N2—C1—N1119.16 (10)C16—C15—C14120.13 (12)
N2—C1—H1A107.5C16—C15—H15119.9
N1—C1—H1A107.5C14—C15—H15119.9
N2—C1—H1B107.5C15—C16—C11121.33 (12)
N1—C1—H1B107.5C15—C16—H16119.3
H1A—C1—H1B107.0C11—C16—H16119.3
N2—C2—C3117.06 (12)C20—C17—C19107.96 (14)
N2—C2—H2A108.0C20—C17—C18110.29 (14)
C3—C2—H2A108.0C19—C17—C18106.91 (14)
N2—C2—H2B108.0C20—C17—C12109.72 (12)
C3—C2—H2B108.0C19—C17—C12112.10 (10)
H2A—C2—H2B107.3C18—C17—C12109.81 (12)
N1i—C3—C2116.84 (11)C17—C18—H18A109.5
N1i—C3—H3A108.1C17—C18—H18B109.5
C2—C3—H3A108.1H18A—C18—H18B109.5
N1i—C3—H3B108.1C17—C18—H18C109.5
C2—C3—H3B108.1H18A—C18—H18C109.5
H3A—C3—H3B107.3H18B—C18—H18C109.5
N2i—C4—N2118.16 (16)C17—C19—H19A109.5
N2i—C4—H4A107.8C17—C19—H19B109.5
N2—C4—H4A107.8H19A—C19—H19B109.5
N2i—C4—H4B107.8C17—C19—H19C109.5
N2—C4—H4B107.8H19A—C19—H19C109.5
H4A—C4—H4B107.1H19B—C19—H19C109.5
N1—C5—N1i119.17 (14)C17—C20—H20A109.5
N1—C5—H5A107.5C17—C20—H20B109.5
N1i—C5—H5A107.5H20A—C20—H20B109.5
N1—C5—H5B107.5C17—C20—H20C109.5
N1i—C5—H5B107.5H20A—C20—H20C109.5
H5A—C5—H5B107.0H20B—C20—H20C109.5
C11—O1—H1110.4 (13)C14—C21—H21A109.5
O1—C11—C16120.38 (11)C14—C21—H21B109.5
O1—C11—C12119.23 (11)H21A—C21—H21B109.5
C16—C11—C12120.39 (11)C14—C21—H21C109.5
C13—C12—C11116.33 (11)H21A—C21—H21C109.5
C13—C12—C17121.39 (11)H21B—C21—H21C109.5
C11—C12—C17122.27 (10)
C2—N2—C1—N181.95 (16)C11—C12—C13—C140.39 (19)
C4—N2—C1—N153.89 (17)C17—C12—C13—C14179.70 (12)
C5—N1—C1—N252.30 (16)C12—C13—C14—C151.9 (2)
C3i—N1—C1—N281.31 (15)C12—C13—C14—C21177.37 (13)
C1—N2—C2—C367.63 (18)C13—C14—C15—C161.9 (2)
C4—N2—C2—C368.60 (19)C21—C14—C15—C16177.41 (14)
N2—C2—C3—N1i0.8 (2)C14—C15—C16—C110.4 (2)
C1—N2—C4—N2i53.56 (9)O1—C11—C16—C15178.23 (13)
C2—N2—C4—N2i82.27 (10)C12—C11—C16—C152.9 (2)
C3i—N1—C5—N1i81.55 (10)C13—C12—C17—C20115.74 (15)
C1—N1—C5—N1i52.24 (8)C11—C12—C17—C2064.16 (17)
O1—C11—C12—C13178.33 (11)C13—C12—C17—C194.20 (19)
C16—C11—C12—C132.75 (19)C11—C12—C17—C19175.90 (14)
O1—C11—C12—C171.58 (19)C13—C12—C17—C18122.88 (14)
C16—C11—C12—C17177.35 (12)C11—C12—C17—C1857.22 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.88 (2)2.01 (2)2.8534 (15)161.6 (17)
C18—H18B···O10.982.302.966 (2)124
C20—H20A···O10.982.413.058 (3)124
C1—H1A···Cg1ii0.982.903.851 (2)163
Symmetry code: (ii) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: Facultad de Ciencias, Universidad Nacional de Colombia (grant No. 53864).

References

First citationBeckmann, P. A., Paty, C., Allocco, E., Herd, M., Kuranz, C. & Rheingold, A. L. (2004). J. Chem. Phys. 120, 5309–5314.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBolte, M., Rivera, A. & Rios-Motta, J. (2021). Private Communication (refcode EWICAR). CCDC, Cambridge, England.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurckhalter, J. H. & Leib, R. I. J. (1961). J. Org. Chem. 26, 4078–4083.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLutz, M. & Spek, A. L. (2005). Acta Cryst. C61, o639–o641.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMajerz, I., Kwiatkowska, E. & Koll, A. (2007). J. Mol. Struct. 831, 106–113.  Web of Science CrossRef CAS Google Scholar
First citationMazzeo, P. P., Carraro, C., Monica, A., Capucci, D., Pelagatti, P., Bianchi, F., Agazzi, S., Careri, M., Raio, A., Carta, M., Menicucci, F., Belli, M., Michelozzi, M. & Bacchi, A. (2019). ACS Sustainable Chem. Eng. 7, 17929–17940.  Web of Science CSD CrossRef CAS Google Scholar
First citationRivera, A., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o266.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180–186.  Web of Science CSD CrossRef CAS Google Scholar
First citationRivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015a). Acta Cryst. E71, 737–740.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2017a). Acta Cryst. E73, 1692–1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Rojas, J. J., Sadat-Bernal, J., Ríos-Motta, J. & Bolte, M. (2019). Acta Cryst. C75, 1635–1643.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2017b). J. Struct. Chem. 58, 789–796.  Web of Science CSD CrossRef CAS Google Scholar
First citationRivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015b). Acta Cryst. E71, 463–465.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTramontini, M., Angiolini, L. & Ghedini, N. (1988). Polymer, 29, 771–788.  CrossRef CAS Web of Science Google Scholar
First citationWang, J., Liu, C., Liu, X., Shao, L. & Zhang, X.-M. (2019). J. Phys. Org. Chem. 32, e3927.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds