research communications
First hydrogen-bonded adduct of sterically hindered 2-tert-butyl-4-methylphenol (TBMP) with 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD) via coupling of classical hydrogen bonds and C—H⋯π non-covalent interactions
aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co
The title compound, C8H16N4·2C11H16O, was synthesized from the corresponding sterically crowded phenol by treatment with the aminal cage polyamine. Single-crystal X-ray diffraction structural analysis revealed the three-molecule aggregate to crystallize in the monoclinic P2/c with one half of a 1,3,6,8-tetraaztricyclo[4.4.1.13,8]dodecane (TATD) molecule and one 2-tert-butyl-4-methylphenol molecule per The features intermolecular O—H⋯N and C—H⋯O hydrogen bonds, as well as intermolecular C—H⋯π interactions.
Keywords: crystal structure; co-crystalline adduct; hydrogen bonding; C—H⋯π interactions; TBMP; TATD.
CCDC reference: 2092229
1. Chemical context
Co-crystals of et al., 2007). In this context, not only the initial formation of a hydrogen-bonded adduct was investigated between a Mannich preformed reagent and the phenolic substrate (Burckhalter & Leib, 1961), but also the great interest in and chemical importance of the aminoalkylation of aromatic substrates via the Mannich reaction was addressed (Tramontini et al., 1988). For a long time we have directed continuing efforts to the systematic study of hydrogen bonding and other non-covalent interactions of with aminal cages (preformed Mannich bases) (Rivera et al., 2007, 2015a,b, 2017a,b, 2019). Herein we report the mechanochemical preparation and of the title adduct prepared by mixing in an agate mortar the sterically hindered 2-tert-butyl-4-methylphenol (TBMP) with 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD) in a 2:1 ratio. The crystallographic information available for pure 2-tert-butyl-4-methylphenol (Beckmann et al., 2004) does not report O—H⋯O hydrogen bonds, which are commonly found in the crystal structures of suggesting that the alcohol is sterically protected. The reaction of TBMP with TATD, in notable contrast to this, proceeds cleanly to give the title O—H⋯N hydrogen-bonded adduct exclusively. A search of the Cambridge Structural Database (version 5.42; Groom et al., 2016) for crystal structures containing hydrogen-bonded TBMP co-crystals with a hydrogen-bond acceptor resulted in zero hits, emphasizing the general rarity of this observation. The resultant reported here also exhibits C—H⋯O hydrogen-bonding interactions, which constitute a fundamental force in maintaining crystal and three-dimensional chemical structures in chemistry and biology (Wang et al., 2019).
with various nitrogen bases are model systems often used for studying the nature of the hydrogen bond (Majerz2. Structural commentary
The title compound crystallizes in the monoclinic P2/c. The comprises one half of a 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD) molecule and one 2-tert-butyl-4-methylphenol (TBMP) molecule held together by one intermolecular O—H⋯N hydrogen bond [O⋯N = 2.8534 (15) Å; O—H⋯N = 161.6 (17)°; Table 1]. The complete adduct is generated by symmetry by a crystallographic twofold rotation axis, resulting in C2 symmetry for the three-molecule aggregate (Fig. 1). Apart from the two neutral intermolecular O—H⋯N bonds in the three-molecule arrangement, as indicated by a PLATON analysis (Spek, 2020), there are four non-classical intramolecular C—H⋯O hydrogen bonds between the TBMP phenol oxygen atoms and the ortho tert–butyl C—H bonds (two for each phenol oxygen atom O1; methyl group atoms C18—H18B and C20—H20A; geometric details are given in Table 1).
The –OH group is not perfectly co-planar with the benzene ring with a C16—C11—O1—H1 torsion angle of 18.0°. This angle differs from the corresponding more acute torsion angles in free 2-tert-butyl-4-methylphenol (0.73 and −0.36°; Beckmann et al., 2004) and other related sterically very congested (Lutz & Spek, 2005). The observed C11—O1 bond length [1.376 (2) Å] is in a good agreement with the mean value of 1.377 Å reported for 2-tert-butyl-4-methylphenol (Beckmann et al., 2004).
The C—N1 bond lengths of the nitrogen atom, which is engaged in the intermolecular hydrogen bond to TBMP, are slightly elongated at 1.476 (2) Å (N1—C1), 1.469 (2) Å (N1—C3) and 1.468 (2) Å (N1—C5) compared to the mean value of 1.458 Å reported for the free aminal cage structure (Rivera et al., 2014) and compared to the C—N2 bond lengths here [1.452 (2) Å (N2—C1), 1.456 (2) Å (N2—C2), and 1.462 (2) Å (N2—C4)]. This indicates that the formation of the intermolecular hydrogen bonds in the title compound affects the distribution of electron density around this hydrogen-bonded nitrogen centre, resulting in an impact on the respective CH2—N single bonds in the heterocyclic cage system.
3. Supramolecular features
The most prominent supramolecular feature in this ). In the crystal packing, roughly in the a-axis direction, adjacent aggregates are linked by C—H⋯π interactions with a C—H⋯Cg distance of 3.851 (2) Å and a C—H⋯Cg angle of 163°, (Table 1). The C—H⋯π interaction is facilitated between one methylene group (C1—H1A) and a symmetry-derived ring (C11–C16; symmetry code: −x + 1, −y + 1, −z + 1). These non-covalent interactions lead to the formation of a crystal packing pattern in which the phenol molecules are arranged in an alternating fashion, as is evident when viewed along the [101] direction (Fig. 3).
is the formation of the expected three-molecule aggregate sustained by two hydroxy-O—H⋯N hydrogen bonds (Fig. 24. Database survey
Using the Cambridge Structural Database (CSD, Version 5.42, September 2021 update; Groom et al., 2016), a search for the title compound structure and names used in this article was conducted with CONQUEST (version 2021.2.0; Bruno et al., 2002). The crystal structures of both 2-tert-butyl-4-methylphenol (TBMP; Beckmann et al., 2004) and 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD; Rivera et al., 2014) are already known (refcodes: PAGMEQ and TAZTCD). 2-tert-Butyl-4-methylphenol crystallizes with two molecules in the which exhibit non-classical intramolecular C—H⋯O hydrogen bonds similar to what is found in the adduct structure reported here, plus weak intermolecular O—H⋯π interactions. Tetraazatricyclo[4.4.1.13,8]dodecane crystallizes with one quarter of a molecule in the There are no significant differences in the metrical parameters between the structure of the title and the singly crystallized entities except for the C—N distances discussed above (section 2).
Co-crystals of tetraazatricyclo[4.4.1.13,8]dodecane have already been reported, i.e. with 3-nitrophenol (Rivera et al., 2019), 4-iodophenol (Rivera et al., 2017a), 4-chloro-3,5-dimethylphenol (Rivera et al., 2015a), hydroquinone (Rivera et al., 2007), and 4-bromophenol (Rivera et al., 2015b) (refcodes: HOXGUZ, JELVII, QUFROA, WEXQIA, XULKOG).
In addition, one 3,8]dodecane was determined previously, namely 3,6,8-triaza-1-azoniatricyclo[4.4.1.13,8]dodecane 4-nitrophenolate 4-nitrophenol (Rivera et al., 2017b; refcode: REYKAK).
with a singly protonated tetraazatricyclo[4.4.1.1In another closely related adduct structure, a slightly less sterically crowded alcohol was used bearing an iso-propyl instead of the tert-butyl substituent on the aromatic ring: tris-[5-methyl-2-(propan-2-yl)phenol]1,3,5,7-tetraazatricyclo[3.3.1.13,7]decane (Mazzeo et al., 2019; refcode: WUTDUN).
5. Synthesis and crystallization
A mixture of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD) (1 mmol) and 2-tert-butyl-4-methylphenol (TBMP) (2 mmol) was ground using a mortar and pestle at room temperature for 15 min. Completion of the reaction was monitored by TLC. The mixture was recrystallized from n-hexane:chloroform (8:2) solution to obtain colourless crystals suitable for X-ray analysis, m.p. = 374–375 K. (yield: 85%).
6. Refinement
The structure of the title compound had been previously deposited by us and was thereby reported as a Private Communication (Bolte et al., 2021, refcode EWICAR). Crystal data, data collection and structure details are summarized in Table 2. The oxygen-bound hydrogen atom was found and refined isotropically without restraints or constraints. Other hydrogen atoms were generated geometrically, and refined with a riding model with C—H = 0.98 Å, Uiso(H) = 1.5Ueq(C) for methyl, C—H = 0.99 Å, Uiso(H) = 1.2Ueq(C) for methylene, and C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms.
|
Supporting information
CCDC reference: 2092229
https://doi.org/10.1107/S2056989022004972/yz2019sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022004972/yz2019Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022004972/yz2019Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL (Sheldrick, 2015).C8H16N4·2C11H16O | F(000) = 544 |
Mr = 496.72 | Dx = 1.144 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.4741 (10) Å | Cell parameters from 17127 reflections |
b = 7.6770 (5) Å | θ = 3.6–27.8° |
c = 17.2226 (14) Å | µ = 0.07 mm−1 |
β = 108.166 (6)° | T = 173 K |
V = 1441.5 (2) Å3 | Plate, colourless |
Z = 2 | 0.28 × 0.27 × 0.11 mm |
STOE IPDS II two-circle- diffractometer | 2862 reflections with I > 2σ(I) |
Radiation source: Genix 3D IµS microfocus X-ray source | Rint = 0.029 |
ω scans | θmax = 27.6°, θmin = 3.6° |
Absorption correction: multi-scan (X-Area; Stoe & Cie, 2001) | h = −14→14 |
Tmin = 0.554, Tmax = 1.000 | k = −9→9 |
17127 measured reflections | l = −22→22 |
3307 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.050 | w = 1/[σ2(Fo2) + (0.0663P)2 + 0.4499P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.132 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.26 e Å−3 |
3307 reflections | Δρmin = −0.19 e Å−3 |
170 parameters | Extinction correction: SHELXL-2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.021 (5) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.55515 (9) | 0.67062 (14) | 0.32614 (6) | 0.0269 (2) | |
N2 | 0.41669 (11) | 0.93222 (15) | 0.28288 (7) | 0.0334 (3) | |
C1 | 0.47468 (13) | 0.80357 (18) | 0.34461 (8) | 0.0332 (3) | |
H1A | 0.408781 | 0.741591 | 0.359229 | 0.040* | |
H1B | 0.523629 | 0.867230 | 0.394010 | 0.040* | |
C2 | 0.30542 (14) | 0.8720 (2) | 0.22156 (10) | 0.0469 (4) | |
H2A | 0.265533 | 0.973760 | 0.188590 | 0.056* | |
H2B | 0.248788 | 0.828122 | 0.250249 | 0.056* | |
C3 | 0.31959 (13) | 0.7318 (2) | 0.16366 (9) | 0.0397 (3) | |
H3A | 0.269762 | 0.630216 | 0.169446 | 0.048* | |
H3B | 0.284425 | 0.775888 | 0.107144 | 0.048* | |
C4 | 0.500000 | 1.0300 (3) | 0.250000 | 0.0418 (5) | |
H4A | 0.449637 | 1.106627 | 0.206038 | 0.050* | 0.5 |
H4B | 0.550362 | 1.106630 | 0.293961 | 0.050* | 0.5 |
C5 | 0.500000 | 0.5738 (2) | 0.250000 | 0.0282 (4) | |
H5A | 0.435761 | 0.497108 | 0.258605 | 0.034* | 0.5 |
H5B | 0.564238 | 0.497107 | 0.241395 | 0.034* | 0.5 |
O1 | 0.65236 (10) | 0.40303 (14) | 0.44346 (6) | 0.0399 (3) | |
H1 | 0.6079 (18) | 0.482 (3) | 0.4109 (12) | 0.053 (5)* | |
C11 | 0.69530 (12) | 0.46490 (16) | 0.52226 (7) | 0.0284 (3) | |
C12 | 0.79366 (11) | 0.37879 (15) | 0.57928 (7) | 0.0247 (3) | |
C13 | 0.83508 (11) | 0.45122 (17) | 0.65783 (7) | 0.0280 (3) | |
H13 | 0.901687 | 0.396088 | 0.697378 | 0.034* | |
C14 | 0.78431 (12) | 0.59956 (17) | 0.68142 (8) | 0.0303 (3) | |
C15 | 0.68468 (14) | 0.67652 (18) | 0.62418 (8) | 0.0343 (3) | |
H15 | 0.646455 | 0.775572 | 0.638772 | 0.041* | |
C16 | 0.64080 (14) | 0.60914 (18) | 0.54571 (8) | 0.0350 (3) | |
H16 | 0.572159 | 0.662490 | 0.507184 | 0.042* | |
C17 | 0.85309 (13) | 0.21469 (17) | 0.55726 (7) | 0.0313 (3) | |
C18 | 0.75571 (18) | 0.0728 (2) | 0.52590 (12) | 0.0545 (5) | |
H18A | 0.717684 | 0.045775 | 0.568135 | 0.082* | |
H18B | 0.692811 | 0.114293 | 0.476635 | 0.082* | |
H18C | 0.794385 | −0.032304 | 0.512895 | 0.082* | |
C19 | 0.95174 (18) | 0.1387 (3) | 0.63136 (9) | 0.0546 (5) | |
H19A | 0.915053 | 0.109330 | 0.674008 | 0.082* | |
H19B | 0.986240 | 0.033393 | 0.614917 | 0.082* | |
H19C | 1.017007 | 0.224808 | 0.652530 | 0.082* | |
C20 | 0.91373 (19) | 0.2589 (3) | 0.49204 (11) | 0.0565 (5) | |
H20A | 0.852293 | 0.307854 | 0.443928 | 0.085* | |
H20B | 0.979226 | 0.344302 | 0.514043 | 0.085* | |
H20C | 0.948459 | 0.152887 | 0.476430 | 0.085* | |
C21 | 0.83767 (16) | 0.6747 (2) | 0.76656 (9) | 0.0441 (4) | |
H21A | 0.895241 | 0.591026 | 0.801301 | 0.066* | |
H21B | 0.771345 | 0.698204 | 0.789736 | 0.066* | |
H21C | 0.880912 | 0.783389 | 0.763689 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0282 (5) | 0.0284 (5) | 0.0214 (5) | 0.0016 (4) | 0.0039 (4) | −0.0010 (4) |
N2 | 0.0362 (6) | 0.0291 (6) | 0.0360 (6) | 0.0066 (5) | 0.0126 (5) | 0.0002 (5) |
C1 | 0.0423 (7) | 0.0327 (7) | 0.0270 (6) | 0.0051 (6) | 0.0141 (5) | −0.0016 (5) |
C2 | 0.0303 (7) | 0.0566 (10) | 0.0495 (9) | 0.0131 (7) | 0.0064 (6) | −0.0033 (7) |
C3 | 0.0268 (6) | 0.0447 (8) | 0.0407 (8) | 0.0011 (6) | 0.0006 (5) | −0.0006 (6) |
C4 | 0.0581 (13) | 0.0249 (9) | 0.0478 (12) | 0.000 | 0.0242 (10) | 0.000 |
C5 | 0.0356 (9) | 0.0236 (8) | 0.0228 (8) | 0.000 | 0.0055 (7) | 0.000 |
O1 | 0.0527 (6) | 0.0388 (6) | 0.0200 (4) | 0.0145 (5) | −0.0005 (4) | −0.0011 (4) |
C11 | 0.0373 (7) | 0.0269 (6) | 0.0199 (5) | 0.0007 (5) | 0.0072 (5) | 0.0004 (4) |
C12 | 0.0299 (6) | 0.0228 (6) | 0.0215 (5) | −0.0008 (5) | 0.0082 (4) | −0.0006 (4) |
C13 | 0.0303 (6) | 0.0296 (6) | 0.0223 (6) | 0.0006 (5) | 0.0058 (5) | −0.0017 (5) |
C14 | 0.0390 (7) | 0.0282 (6) | 0.0257 (6) | −0.0038 (5) | 0.0128 (5) | −0.0048 (5) |
C15 | 0.0496 (8) | 0.0253 (6) | 0.0321 (6) | 0.0065 (6) | 0.0189 (6) | 0.0008 (5) |
C16 | 0.0436 (7) | 0.0323 (7) | 0.0275 (6) | 0.0111 (6) | 0.0089 (5) | 0.0055 (5) |
C17 | 0.0414 (7) | 0.0293 (6) | 0.0218 (6) | 0.0094 (5) | 0.0077 (5) | −0.0015 (5) |
C18 | 0.0691 (11) | 0.0254 (7) | 0.0611 (10) | 0.0007 (7) | 0.0090 (9) | −0.0098 (7) |
C19 | 0.0657 (11) | 0.0584 (10) | 0.0316 (7) | 0.0367 (9) | 0.0033 (7) | −0.0055 (7) |
C20 | 0.0749 (12) | 0.0587 (11) | 0.0495 (9) | 0.0235 (9) | 0.0391 (9) | 0.0062 (8) |
C21 | 0.0546 (9) | 0.0442 (8) | 0.0326 (7) | −0.0016 (7) | 0.0122 (6) | −0.0157 (6) |
N1—C5 | 1.4680 (13) | C13—C14 | 1.3961 (18) |
N1—C3i | 1.4694 (17) | C13—H13 | 0.9500 |
N1—C1 | 1.4761 (17) | C14—C15 | 1.3874 (19) |
N2—C1 | 1.4517 (17) | C14—C21 | 1.5159 (18) |
N2—C2 | 1.456 (2) | C15—C16 | 1.3868 (19) |
N2—C4 | 1.4615 (16) | C15—H15 | 0.9500 |
C1—H1A | 0.9900 | C16—H16 | 0.9500 |
C1—H1B | 0.9900 | C17—C20 | 1.533 (2) |
C2—C3 | 1.510 (2) | C17—C19 | 1.5328 (19) |
C2—H2A | 0.9900 | C17—C18 | 1.533 (2) |
C2—H2B | 0.9900 | C18—H18A | 0.9800 |
C3—H3A | 0.9900 | C18—H18B | 0.9800 |
C3—H3B | 0.9900 | C18—H18C | 0.9800 |
C4—H4A | 0.9900 | C19—H19A | 0.9800 |
C4—H4B | 0.9900 | C19—H19B | 0.9800 |
C5—H5A | 0.9900 | C19—H19C | 0.9800 |
C5—H5B | 0.9900 | C20—H20A | 0.9800 |
O1—C11 | 1.3760 (15) | C20—H20B | 0.9800 |
O1—H1 | 0.88 (2) | C20—H20C | 0.9800 |
C11—C16 | 1.3920 (18) | C21—H21A | 0.9800 |
C11—C12 | 1.4086 (17) | C21—H21B | 0.9800 |
C12—C13 | 1.4016 (16) | C21—H21C | 0.9800 |
C12—C17 | 1.5353 (17) | ||
C5—N1—C3i | 113.69 (9) | C14—C13—C12 | 123.91 (12) |
C5—N1—C1 | 114.72 (9) | C14—C13—H13 | 118.0 |
C3i—N1—C1 | 114.05 (11) | C12—C13—H13 | 118.0 |
C1—N2—C2 | 114.42 (12) | C15—C14—C13 | 117.82 (11) |
C1—N2—C4 | 115.31 (10) | C15—C14—C21 | 121.34 (12) |
C2—N2—C4 | 114.44 (11) | C13—C14—C21 | 120.83 (12) |
N2—C1—N1 | 119.16 (10) | C16—C15—C14 | 120.13 (12) |
N2—C1—H1A | 107.5 | C16—C15—H15 | 119.9 |
N1—C1—H1A | 107.5 | C14—C15—H15 | 119.9 |
N2—C1—H1B | 107.5 | C15—C16—C11 | 121.33 (12) |
N1—C1—H1B | 107.5 | C15—C16—H16 | 119.3 |
H1A—C1—H1B | 107.0 | C11—C16—H16 | 119.3 |
N2—C2—C3 | 117.06 (12) | C20—C17—C19 | 107.96 (14) |
N2—C2—H2A | 108.0 | C20—C17—C18 | 110.29 (14) |
C3—C2—H2A | 108.0 | C19—C17—C18 | 106.91 (14) |
N2—C2—H2B | 108.0 | C20—C17—C12 | 109.72 (12) |
C3—C2—H2B | 108.0 | C19—C17—C12 | 112.10 (10) |
H2A—C2—H2B | 107.3 | C18—C17—C12 | 109.81 (12) |
N1i—C3—C2 | 116.84 (11) | C17—C18—H18A | 109.5 |
N1i—C3—H3A | 108.1 | C17—C18—H18B | 109.5 |
C2—C3—H3A | 108.1 | H18A—C18—H18B | 109.5 |
N1i—C3—H3B | 108.1 | C17—C18—H18C | 109.5 |
C2—C3—H3B | 108.1 | H18A—C18—H18C | 109.5 |
H3A—C3—H3B | 107.3 | H18B—C18—H18C | 109.5 |
N2i—C4—N2 | 118.16 (16) | C17—C19—H19A | 109.5 |
N2i—C4—H4A | 107.8 | C17—C19—H19B | 109.5 |
N2—C4—H4A | 107.8 | H19A—C19—H19B | 109.5 |
N2i—C4—H4B | 107.8 | C17—C19—H19C | 109.5 |
N2—C4—H4B | 107.8 | H19A—C19—H19C | 109.5 |
H4A—C4—H4B | 107.1 | H19B—C19—H19C | 109.5 |
N1—C5—N1i | 119.17 (14) | C17—C20—H20A | 109.5 |
N1—C5—H5A | 107.5 | C17—C20—H20B | 109.5 |
N1i—C5—H5A | 107.5 | H20A—C20—H20B | 109.5 |
N1—C5—H5B | 107.5 | C17—C20—H20C | 109.5 |
N1i—C5—H5B | 107.5 | H20A—C20—H20C | 109.5 |
H5A—C5—H5B | 107.0 | H20B—C20—H20C | 109.5 |
C11—O1—H1 | 110.4 (13) | C14—C21—H21A | 109.5 |
O1—C11—C16 | 120.38 (11) | C14—C21—H21B | 109.5 |
O1—C11—C12 | 119.23 (11) | H21A—C21—H21B | 109.5 |
C16—C11—C12 | 120.39 (11) | C14—C21—H21C | 109.5 |
C13—C12—C11 | 116.33 (11) | H21A—C21—H21C | 109.5 |
C13—C12—C17 | 121.39 (11) | H21B—C21—H21C | 109.5 |
C11—C12—C17 | 122.27 (10) | ||
C2—N2—C1—N1 | 81.95 (16) | C11—C12—C13—C14 | 0.39 (19) |
C4—N2—C1—N1 | −53.89 (17) | C17—C12—C13—C14 | −179.70 (12) |
C5—N1—C1—N2 | −52.30 (16) | C12—C13—C14—C15 | 1.9 (2) |
C3i—N1—C1—N2 | 81.31 (15) | C12—C13—C14—C21 | −177.37 (13) |
C1—N2—C2—C3 | −67.63 (18) | C13—C14—C15—C16 | −1.9 (2) |
C4—N2—C2—C3 | 68.60 (19) | C21—C14—C15—C16 | 177.41 (14) |
N2—C2—C3—N1i | −0.8 (2) | C14—C15—C16—C11 | −0.4 (2) |
C1—N2—C4—N2i | 53.56 (9) | O1—C11—C16—C15 | −178.23 (13) |
C2—N2—C4—N2i | −82.27 (10) | C12—C11—C16—C15 | 2.9 (2) |
C3i—N1—C5—N1i | −81.55 (10) | C13—C12—C17—C20 | −115.74 (15) |
C1—N1—C5—N1i | 52.24 (8) | C11—C12—C17—C20 | 64.16 (17) |
O1—C11—C12—C13 | 178.33 (11) | C13—C12—C17—C19 | 4.20 (19) |
C16—C11—C12—C13 | −2.75 (19) | C11—C12—C17—C19 | −175.90 (14) |
O1—C11—C12—C17 | −1.58 (19) | C13—C12—C17—C18 | 122.88 (14) |
C16—C11—C12—C17 | 177.35 (12) | C11—C12—C17—C18 | −57.22 (17) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Cg1 is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.88 (2) | 2.01 (2) | 2.8534 (15) | 161.6 (17) |
C18—H18B···O1 | 0.98 | 2.30 | 2.966 (2) | 124 |
C20—H20A···O1 | 0.98 | 2.41 | 3.058 (3) | 124 |
C1—H1A···Cg1ii | 0.98 | 2.90 | 3.851 (2) | 163 |
Symmetry code: (ii) −x+1, −y+1, −z+1. |
Funding information
Funding for this research was provided by: Facultad de Ciencias, Universidad Nacional de Colombia (grant No. 53864).
References
Beckmann, P. A., Paty, C., Allocco, E., Herd, M., Kuranz, C. & Rheingold, A. L. (2004). J. Chem. Phys. 120, 5309–5314. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bolte, M., Rivera, A. & Rios-Motta, J. (2021). Private Communication (refcode EWICAR). CCDC, Cambridge, England. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burckhalter, J. H. & Leib, R. I. J. (1961). J. Org. Chem. 26, 4078–4083. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Lutz, M. & Spek, A. L. (2005). Acta Cryst. C61, o639–o641. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Majerz, I., Kwiatkowska, E. & Koll, A. (2007). J. Mol. Struct. 831, 106–113. Web of Science CrossRef CAS Google Scholar
Mazzeo, P. P., Carraro, C., Monica, A., Capucci, D., Pelagatti, P., Bianchi, F., Agazzi, S., Careri, M., Raio, A., Carta, M., Menicucci, F., Belli, M., Michelozzi, M. & Bacchi, A. (2019). ACS Sustainable Chem. Eng. 7, 17929–17940. Web of Science CSD CrossRef CAS Google Scholar
Rivera, A., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o266. CSD CrossRef IUCr Journals Google Scholar
Rivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180–186. Web of Science CSD CrossRef CAS Google Scholar
Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015a). Acta Cryst. E71, 737–740. CSD CrossRef IUCr Journals Google Scholar
Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2017a). Acta Cryst. E73, 1692–1695. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rivera, A., Rojas, J. J., Sadat-Bernal, J., Ríos-Motta, J. & Bolte, M. (2019). Acta Cryst. C75, 1635–1643. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rivera, A., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2017b). J. Struct. Chem. 58, 789–796. Web of Science CSD CrossRef CAS Google Scholar
Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015b). Acta Cryst. E71, 463–465. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Tramontini, M., Angiolini, L. & Ghedini, N. (1988). Polymer, 29, 771–788. CrossRef CAS Web of Science Google Scholar
Wang, J., Liu, C., Liu, X., Shao, L. & Zhang, X.-M. (2019). J. Phys. Org. Chem. 32, e3927. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.