research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld analysis of (1aS,3aR,4aS,5aR)-15-acet­­oxy­linden-7(11),8-trieno-12,8-lactone

crossmark logo

aShaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an 710061, People's Republic of China
*Correspondence e-mail: sxw@ms.xab.ac.cn

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 9 March 2022; accepted 2 May 2022; online 20 May 2022)

The structure of the title com­pound, C17H20O4 [systematic name: (1aS,3aR,4aS,5aR)-15-(acet­oxy)linden-7(11),8-trieno-12,8-lactone or (4aR,5S,5aR,6aS,6bR)-5-(acet­oxy­meth­yl)-4a,5,5a,6,6a,6b-hexa­hydro-3,6b-di­methyl­cyclo­propa[2,3]indeno­[5,6-b]furan-2(4H)-one, ent-chloranthalactone C], a natural product iso­lated from the whole plant Chloranthus japonicus Sieb., is a typical lin­den­ane-type sesquiterpenoid. The mol­ecule com­prises a bi­cyclo­[3.1.0]hexane ring (A/B system) bearing an acetoxymethyl (C-4) group, a bi­cyclo­[4.3.0]nonane ring (B/C system) containing a double bond (C-8/9) and a chiral quaternary carbon (C-10), and a 7(11)-en-12,8-olide structural moiety on the cyclo­hexan-8-ene (C ring). In the tetra­cyclic skeleton, the 1,3-cyclo­propane ring has a β-con­figuration, and atoms H-5 and H3-14 have α- and β-orientations, respectively. In the crystal, the mol­ecules are assembled into a two-dimensional network by weak O⋯H/H⋯O inter­actions. Hirshfeld surface analysis illustrates that the greatest contributions are from H⋯H (55.2%), O⋯H/H⋯O (34.6%) and C⋯H/H⋯C (8.9%) contacts.

1. Chemical context

Lindenanolides are precursors for various sesquiterpene dimer derivatives (Uchida et al., 1980[Uchida, M., Koike, Y., Kusano, G., Kondo, Y., Nozoe, S., Kabuto, C. & Takemoto, T. (1980). Chem. Pharm. Bull. 28, 92-102.]; Wang et al., 2009[Wang, X. C., Wang, L. L., Ouyang, X., Ma, S. P., Liu, J. H. & Hu, L. H. (2009). Helv. Chim. Acta, 92, 313-320.]; Shi et al., 2016[Shi, X. W., Lu, Q. Q., Pescitelli, G., Ivšić, T., Zhou, J. H. & Gao, J. M. (2016). Chirality, 28, 158-163.]). Inspired by the clinical application of artemisinin, these com­pounds have become a products library for screening anti­malarial drugs (Dondorp et al., 2010[Dondorp, A. M., Yeung, S., White, L., Nguon, C., Day, N. P., Socheat, D. & von Seidlein, L. (2010). Nat. Rev. Microbiol. 8, 272-280.]; Zhou et al., 2017[Zhou, B., Wu, Y., Dalal, S., Merino, E. F., Liu, Q. F., Xu, C. H., Yuan, T., Ding, J., Kingston, D. G. I., Cassera, M. B. & Yue, J. M. (2017). J. Nat. Prod. 80, 96-107.]). The roots of Chloranthus japonicus (called Yinxiancao) were reported to exhibit anti­fungal and anti-inflammatory activities, and have been used as traditional Chinese medicine to treat malaria (Kawabata & Mizutani, 1989[Kawabata, J. & Mizutani, J. (1989). Agric. Biol. Chem. 53, 203-207.]). Chloran­tha­lactone C was characterized as an α,β,γ,δ-unsaturated γ-lac­tone and was converted into desacetyl enol lactone hydrate and ketoalcohol under moderate alkaline conditions (Uchida et al., 1980[Uchida, M., Koike, Y., Kusano, G., Kondo, Y., Nozoe, S., Kabuto, C. & Takemoto, T. (1980). Chem. Pharm. Bull. 28, 92-102.]). Because of the unique stereostructure in lindenane, these lactone derivatives have been studied extensively and serve as precursors for screening cytotoxicity against mouse lymphosarcoma, liver cancer and human cervical cancer cells, the expression of cell adhesion mol­ecules and the mode of anti­plasmodial agents (Uchida et al., 1980[Uchida, M., Koike, Y., Kusano, G., Kondo, Y., Nozoe, S., Kabuto, C. & Takemoto, T. (1980). Chem. Pharm. Bull. 28, 92-102.]; Zhang et al., 2012[Zhang, M., Wang, J. S., Oyama, M., Luo, J., Guo, C., Ito, T., Iinuma, M. & Kong, L. Y. (2012). J. Asian Nat. Prod. Res. 14, 708-712.]; Zhou et al., 2017[Zhou, B., Wu, Y., Dalal, S., Merino, E. F., Liu, Q. F., Xu, C. H., Yuan, T., Ding, J., Kingston, D. G. I., Cassera, M. B. & Yue, J. M. (2017). J. Nat. Prod. 80, 96-107.]). Based on the anti­wiggler activity, we are currently searching for a biological pesticide preparation to inhibit flyblow breeding in vegetable production (Shi et al., 2016[Shi, X. W., Lu, Q. Q., Pescitelli, G., Ivšić, T., Zhou, J. H. & Gao, J. M. (2016). Chirality, 28, 158-163.]) and report here the structure of the title com­pound.

2. Structural commentary

The mol­ecular structure of the title com­pound is shown in Scheme 1 and Fig. 1[link]. This com­pound consists of a novel polycyclic framework embedded with a sterically congested cyclo­pentane ring (B), an unusual trans-5/6 ring junction and an angular methyl group. The chiral quaternary C atom at the 10-position is located on the same side of the B ring plane as the cyclo­propane ring and the 4-acet­oxy­methyl and 5-hydrogen are positioned on the other side. The positions of the substituents can be described as having a β-configuration for the cyclo­propane ring at the 1,3-positions, axial for the H atom at the 5-position and bis­ectional for the methyl H atom at the chiral quaternary C atom in the 10-position. Two cyclic olefinic bonds are located between atoms C2 and C3, and between atoms C4 and C5, and are attached to the cyclo­hexane (C) and cyclo­penta­nolactone (D) rings, respectively. The torsion angles C9—C10—C11—C12 and C12—C10—C11—C6 of 115.2 (4) and −115.2 (4)°, respectively, describe the geometric metamerism of the junction between cyclo­propane ring A and cyclo­pentane ring B. The difference in configuration of the oxygen-containing groups can be confirmed by the torsion angles C7—C9—C15—O3 and O1—C1—O2—C4, which were 179.9 (3) and −179.0 (4)°, respectively. The torsion angles C5—C6—C11—C12 and C2—C3—C8—C7 are the same at 155.5 (4)°, indicating the conformational stability of the A/B and C/D ring junctions. Also, the C2—C3—C4—C5 and C8—C3—C4—O2 torsion angles are 177.1 (4) and 177.2 (3)°, respectively, and the O2—C1—C2—C14 and C14—C2—C3—C4 torsion angles are 179.9 (3) and −178.9 (4)°, respectively, and describe the geometric characteristics of the C and D rings. In the title mol­ecule, the central six-membered lindenane ses­qui­terpenoid ring has a half-chair conformation, with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1358-1367.]; Luger & Bülow, 1983[Luger, P. & Bülow, R. (1983). J. Appl. Cryst. 16, 431-432.]) of QT = 0.3387 (11) Å, θ = 49.11 (19)° and ψ = 167.3 (2)°. Furthermore, the C9—C7—C8—C3 and C5—C4—O2—C1 torsion angles [−178.6 (3) and −177.6 (4)°, respectively] indicate the geometric stability of the B/C and C/D ring junctions. In addition, the main A/B/C/D skeleton and the acetoxymethyl system (atoms C15–C17/O3/O4) are not coplanar, the torsion angles C15—O3—C16—C17 and C15—O3—C16—O4 being −175.9 (3) and 2.8 (6)°, respectively.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title com­pound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of the title com­pound, the mol­ecules are linked via multiple C—H⋯O weak hydrogen bonds, generating two-dimensional (2D) layers propagating along the c-axis direction (Fig. 2[link] and Table 1[link]). Details of the hydrogen-bonding inter­actions and the symmetry codes are given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.97 2.81 3.481 (5) 127
C11—H11⋯O3ii 0.98 2.54 3.497 (5) 167
C13—H13C⋯O1iii 0.96 2.60 3.499 (5) 157
C13—H13B⋯O4iv 0.96 2.61 3.530 (6) 160
C14—H14A⋯O2i 0.96 2.76 3.530 (5) 138
C17—H17C⋯O3v 0.96 2.86 3.478 (5) 124
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-1, y, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) x, y+1, z; (v) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The packing of mol­ecules in the crystal structure of the title com­pound, viewed along the c direction (C—H⋯O hydrogen bonds are shown as green dashed lines).

4. Hirshfeld surface analysis

Hirshfeld surface analysis was performed and the associated fingerprint plots, providing a 2D view of the inter­molecular inter­actions within the mol­ecular crystals, were generated using CrystalExplorer (Version 21.5; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with a standard resolution of the three-dimensional (3D) dnorm surfaces plotted over a fixed colour scale of −0.1253 (red) to 1.4046 (blue) arbitrary units (Fig. 3[link]). The intense red spots symbolize short contacts and negative dnorm values on the surface are related to the presence of C—H⋯O hydrogen bonds in the crystal structure. This result corresponds to the results obtained from the solid crystalline structure with the formation of hydrogen bonds. Weak C⋯H/H⋯C contacts are shown by dim red spots (Fig. 4[link]). The 2D fingerprint plots for the H⋯H, H⋯O/O⋯H, and H⋯C/C⋯H contacts are shown in Fig. 5[link]. H⋯H inter­actions play an integral role in the overall crystal packing, contributing 55.2%, and are located in the middle region of the fingerprint plot. The most significant H⋯O/O⋯H contacts contribute 34.6% to the Hirshfeld surface and the proportion of weak H⋯C/C⋯H contacts is 8.9%.

[Figure 3]
Figure 3
Front view of the 3D Hirshfeld surface of the title com­pound mapped over dnorm in the range from −0.1253 to 1.4046 arbitrary units.
[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm for the mol­ecules of the title com­pound showing: (a) H⋯O/O⋯H contacts (front), (b) H⋯O/O⋯H contacts (profile), (c) H⋯O/O⋯H contacts (back) and (d) C⋯H/H⋯C contacts (back). H atoms not involved in bonding have been omitted for clarity.
[Figure 5]
Figure 5
The 2D fingerprint plots of the title com­pound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C inter­actions. The de and di values represent the distances (in Å) from a point on the Hirshfeld surface to the nearest atoms inside and outside the surface, respectively.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the same carbon ring skeleton as the title com­pound yielded only one mol­ecule, 5-[(tert-butyl­dimethyl­sil­yl)­oxy]-3,6b-dimethyl-4a,5,5a,6,6a,6b-hexa­hydro­cyclo­propa[2,3]indeno­[5,6-b]furan-2(4H)-one (CCDC reference 804060; Qian & Zhao, 2011[Qian, S. & Zhao, G. (2011). Synlett, pp. 722-724.]), which has a (tert-butyl­dimethyl­sil­yl)­oxy group attached to ring A of the carbon skeleton.

6. Isolation and crystallization

The title sesquiterpenoid was isolated as a colourless solid from the EtOAc soluble fraction of C. japonicus by chromatography over silica gel, and eluted with a mixture of ethyl acetate and hexane (1:20 to 5:1 v/v gradient) to yield the title com­pound. Crystals were obtained after recrystallization from acetone or chloro­form–methanol (6:1 v/v) at room temperature by slow evaporation over a period of a few days. 1H NMR (500 MHz, chloro­form-d): δ 6.22 (1H, s, H-9), 4.20 (2H, d, J = 6.1 Hz, H-11), 2.63 (1H, d, J = 13.0 Hz), 2.30–2.21 (2H, m), 2.09 (3H, s, OCOCH3), 1.87 (3H, br s, H-13), 1.73 (1H, tt, J = 10.1, 4.9 Hz), 1.53 (1H, td, J = 8.1, 3.8 Hz), 1.30 (1H, ddd, J = 11.9, 8.0, 3.7 Hz), 0.91 (1H, dd, J = 3.8, 2.1 Hz), 0.89 (3H, s, H-15), 0.83 (1H, td, J = 8.4, 6.0 Hz). 13C NMR (125 MHz, chloro­form-d): δ 171.34 (OCOCH3 or C-12), 171.31 (OCOCH3 or C-12), 149.69 (C-8), 148.41 (C-7), 122.47 (C-11), 120.13 (C-9), 66.23 (C-15), 60.45 (C-5), 43.11 (C-4), 42.15 (C-10), 27.47 (C-1), 22.87 (C-6), 22.48 (C-3), 21.25 (OCOCH3 or C-14), 21.21 (OCOCH3 or C-14), 17.15 (C-2), 8.83 (C-13).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically (C—H = 0.96–0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) for CH hydrogens or 1.5Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C17H20O4
Mr 288.33
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 6.7641 (3), 6.9254 (3), 31.4538 (14)
V3) 1473.42 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
No. of measured, independent and observed [I > 2σ(I)] reflections 12659, 2576, 1857
Rint 0.057
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.117, 1.05
No. of reflections 2576
No. of parameters 193
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.21
Absolute structure Flack x determined using 574 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.10 (8)
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(4aR,5S,5aR,6aS,6bR)-5-(Acetoxymethyl)-4a,5,5a,6,6a,6b-hexahydro-3,6b-dimethylcyclopropa[2,3]indeno[5,6-b]furan-2(4H)-one top
Crystal data top
C17H20O4Dx = 1.300 Mg m3
Mr = 288.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3545 reflections
a = 6.7641 (3) Åθ = 2.6–20.7°
b = 6.9254 (3) ŵ = 0.09 mm1
c = 31.4538 (14) ÅT = 296 K
V = 1473.42 (11) Å3Block, colorless
Z = 40.20 × 0.20 × 0.20 mm
F(000) = 616
Data collection top
Bruker SMART CCD
diffractometer
1857 reflections with I > 2σ(I)
phi and ω scansRint = 0.057
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.0°, θmin = 2.6°
h = 78
12659 measured reflectionsk = 86
2576 independent reflectionsl = 3237
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.380P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.30 e Å3
2576 reflectionsΔρmin = 0.21 e Å3
193 parametersAbsolute structure: Flack x determined using 574 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.10 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1658 (5)0.5144 (4)0.54793 (8)0.0745 (9)
O20.1329 (4)0.5303 (4)0.47683 (7)0.0537 (7)
O30.9151 (4)0.1520 (4)0.31668 (8)0.0566 (8)
O40.9315 (6)0.1600 (5)0.32844 (14)0.1261 (18)
C10.2446 (6)0.5140 (6)0.51366 (12)0.0536 (10)
C20.4539 (6)0.4960 (5)0.50214 (10)0.0480 (9)
C30.4648 (5)0.4991 (5)0.45952 (10)0.0418 (8)
C40.2650 (5)0.5215 (5)0.44282 (11)0.0442 (9)
C50.2143 (5)0.5386 (5)0.40250 (11)0.0447 (10)
H50.08290.54950.39420.054*
C60.3810 (5)0.5396 (5)0.37059 (10)0.0389 (9)
C70.5465 (5)0.4057 (5)0.38746 (10)0.0387 (9)
H70.48020.28390.39440.046*
C80.6345 (5)0.4765 (6)0.42937 (10)0.0426 (9)
H8A0.72900.38360.44030.051*
H8B0.70140.59910.42530.051*
C90.6749 (5)0.3603 (5)0.34836 (10)0.0414 (9)
H90.75860.47130.34140.050*
C100.5169 (6)0.3322 (6)0.31409 (11)0.0503 (10)
H100.49880.20250.30230.060*
C110.3340 (6)0.4435 (6)0.32784 (11)0.0506 (11)
H110.20470.38180.32430.061*
C120.4461 (6)0.5003 (7)0.28864 (10)0.0613 (11)
H12A0.38530.47390.26130.074*
H12B0.52350.61810.28970.074*
C130.4477 (6)0.7496 (5)0.36559 (12)0.0523 (11)
H13A0.34690.82170.35110.078*
H13B0.56790.75390.34940.078*
H13C0.47010.80500.39320.078*
C140.6127 (7)0.4764 (6)0.53450 (12)0.0650 (12)
H14A0.60470.35120.54750.098*
H14B0.59680.57430.55580.098*
H14C0.73930.49110.52110.098*
C150.8003 (6)0.1832 (5)0.35511 (11)0.0488 (10)
H15A0.88770.20190.37920.059*
H15B0.71710.07200.36080.059*
C160.9745 (5)0.0230 (6)0.30723 (13)0.0550 (10)
C171.1017 (6)0.0305 (7)0.26893 (12)0.0660 (12)
H17A1.21790.04620.27350.099*
H17B1.03010.01920.24500.099*
H17C1.13940.16190.26350.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.106 (2)0.074 (2)0.0437 (16)0.017 (2)0.0283 (16)0.0019 (15)
O20.0592 (16)0.0591 (17)0.0427 (15)0.0035 (15)0.0182 (13)0.0021 (13)
O30.076 (2)0.0422 (16)0.0520 (16)0.0031 (15)0.0267 (16)0.0038 (13)
O40.137 (4)0.058 (2)0.184 (4)0.013 (2)0.101 (3)0.014 (3)
C10.080 (3)0.040 (2)0.040 (2)0.013 (2)0.014 (2)0.001 (2)
C20.069 (3)0.036 (2)0.039 (2)0.002 (2)0.0037 (19)0.0026 (18)
C30.054 (2)0.0344 (19)0.0366 (19)0.000 (2)0.0037 (17)0.0007 (17)
C40.049 (2)0.043 (2)0.040 (2)0.000 (2)0.0113 (18)0.0030 (19)
C50.038 (2)0.052 (2)0.044 (2)0.003 (2)0.0027 (17)0.0035 (19)
C60.0395 (19)0.045 (2)0.0324 (18)0.0053 (18)0.0005 (16)0.0023 (16)
C70.042 (2)0.040 (2)0.0340 (19)0.0054 (18)0.0046 (17)0.0033 (15)
C80.044 (2)0.047 (2)0.0366 (18)0.003 (2)0.0007 (16)0.0045 (17)
C90.045 (2)0.041 (2)0.039 (2)0.0055 (18)0.0052 (18)0.0040 (16)
C100.054 (2)0.058 (3)0.039 (2)0.005 (2)0.005 (2)0.0120 (19)
C110.044 (2)0.068 (3)0.040 (2)0.011 (2)0.0019 (18)0.0067 (18)
C120.061 (2)0.091 (3)0.0322 (19)0.002 (3)0.0002 (18)0.002 (2)
C130.057 (3)0.048 (2)0.052 (2)0.006 (2)0.000 (2)0.0053 (18)
C140.093 (3)0.058 (3)0.044 (2)0.004 (3)0.006 (2)0.003 (2)
C150.062 (2)0.046 (2)0.039 (2)0.001 (2)0.015 (2)0.0029 (18)
C160.047 (2)0.048 (3)0.070 (3)0.006 (2)0.013 (2)0.007 (2)
C170.063 (3)0.071 (3)0.064 (3)0.006 (3)0.014 (2)0.017 (2)
Geometric parameters (Å, º) top
O1—C11.202 (4)C9—C151.507 (5)
O2—C11.388 (4)C9—C101.530 (5)
O2—C41.396 (4)C9—H90.9800
O3—C161.311 (5)C10—C121.492 (6)
O3—C151.453 (4)C10—C111.520 (5)
O4—C161.196 (5)C10—H100.9800
C1—C21.467 (6)C11—C121.500 (5)
C2—C31.343 (4)C11—H110.9800
C2—C141.486 (5)C12—H12A0.9700
C3—C41.458 (5)C12—H12B0.9700
C3—C81.497 (5)C13—H13A0.9600
C4—C51.319 (5)C13—H13B0.9600
C5—C61.509 (5)C13—H13C0.9600
C5—H50.9300C14—H14A0.9600
C6—C131.531 (5)C14—H14B0.9600
C6—C111.534 (5)C14—H14C0.9600
C6—C71.548 (5)C15—H15A0.9700
C7—C81.528 (4)C15—H15B0.9700
C7—C91.538 (5)C16—C171.481 (5)
C7—H70.9800C17—H17A0.9600
C8—H8A0.9700C17—H17B0.9600
C8—H8B0.9700C17—H17C0.9600
C1—O2—C4106.7 (3)C11—C10—C9107.7 (3)
C16—O3—C15119.3 (3)C12—C10—H10118.1
O1—C1—O2120.4 (4)C11—C10—H10118.1
O1—C1—C2130.5 (4)C9—C10—H10118.1
O2—C1—C2109.0 (3)C12—C11—C1059.2 (3)
C3—C2—C1107.4 (3)C12—C11—C6120.1 (3)
C3—C2—C14130.2 (4)C10—C11—C6107.5 (3)
C1—C2—C14122.4 (3)C12—C11—H11118.2
C2—C3—C4108.1 (3)C10—C11—H11118.2
C2—C3—C8132.3 (3)C6—C11—H11118.2
C4—C3—C8119.6 (3)C10—C12—C1161.1 (3)
C5—C4—O2124.5 (3)C10—C12—H12A117.7
C5—C4—C3126.6 (3)C11—C12—H12A117.7
O2—C4—C3108.8 (3)C10—C12—H12B117.7
C4—C5—C6116.5 (3)C11—C12—H12B117.7
C4—C5—H5121.8H12A—C12—H12B114.8
C6—C5—H5121.8C6—C13—H13A109.5
C5—C6—C13107.0 (3)C6—C13—H13B109.5
C5—C6—C11115.2 (3)H13A—C13—H13B109.5
C13—C6—C11112.5 (3)C6—C13—H13C109.5
C5—C6—C7108.0 (3)H13A—C13—H13C109.5
C13—C6—C7113.1 (3)H13B—C13—H13C109.5
C11—C6—C7101.0 (3)C2—C14—H14A109.5
C8—C7—C9122.4 (3)C2—C14—H14B109.5
C8—C7—C6112.7 (3)H14A—C14—H14B109.5
C9—C7—C6104.9 (3)C2—C14—H14C109.5
C8—C7—H7105.2H14A—C14—H14C109.5
C9—C7—H7105.2H14B—C14—H14C109.5
C6—C7—H7105.2O3—C15—C9107.7 (3)
C3—C8—C7106.3 (3)O3—C15—H15A110.2
C3—C8—H8A110.5C9—C15—H15A110.2
C7—C8—H8A110.5O3—C15—H15B110.2
C3—C8—H8B110.5C9—C15—H15B110.2
C7—C8—H8B110.5H15A—C15—H15B108.5
H8A—C8—H8B108.7O4—C16—O3122.2 (4)
C15—C9—C10112.9 (3)O4—C16—C17124.5 (4)
C15—C9—C7111.8 (3)O3—C16—C17113.3 (4)
C10—C9—C7101.2 (3)C16—C17—H17A109.5
C15—C9—H9110.2C16—C17—H17B109.5
C10—C9—H9110.2H17A—C17—H17B109.5
C7—C9—H9110.2C16—C17—H17C109.5
C12—C10—C1159.7 (3)H17A—C17—H17C109.5
C12—C10—C9120.2 (4)H17B—C17—H17C109.5
C4—O2—C1—O1178.9 (4)C4—C3—C8—C721.5 (5)
C4—O2—C1—C20.5 (4)C9—C7—C8—C3178.6 (3)
O1—C1—C2—C3178.5 (4)C6—C7—C8—C355.0 (4)
O2—C1—C2—C30.8 (5)C8—C7—C9—C1569.2 (4)
O1—C1—C2—C140.9 (7)C6—C7—C9—C15161.0 (3)
O2—C1—C2—C14179.8 (3)C8—C7—C9—C10170.4 (3)
C1—C2—C3—C40.7 (5)C6—C7—C9—C1040.5 (3)
C14—C2—C3—C4179.9 (4)C15—C9—C10—C12151.0 (3)
C1—C2—C3—C8176.5 (4)C7—C9—C10—C1289.3 (4)
C14—C2—C3—C82.9 (7)C15—C9—C10—C11144.3 (3)
C1—O2—C4—C5177.6 (4)C7—C9—C10—C1124.6 (4)
C1—O2—C4—C30.0 (4)C9—C10—C11—C12115.2 (4)
C2—C3—C4—C5177.1 (4)C12—C10—C11—C6115.2 (4)
C8—C3—C4—C55.3 (6)C9—C10—C11—C60.0 (4)
C2—C3—C4—O20.4 (4)C5—C6—C11—C12155.4 (4)
C8—C3—C4—O2177.2 (3)C13—C6—C11—C1232.3 (5)
O2—C4—C5—C6175.6 (3)C7—C6—C11—C1288.5 (4)
C3—C4—C5—C61.5 (6)C5—C6—C11—C10140.6 (3)
C4—C5—C6—C1388.5 (4)C13—C6—C11—C1096.4 (4)
C4—C5—C6—C11145.6 (4)C7—C6—C11—C1024.5 (4)
C4—C5—C6—C733.5 (4)C9—C10—C12—C1193.8 (4)
C5—C6—C7—C862.8 (4)C6—C11—C12—C1093.4 (4)
C13—C6—C7—C855.4 (4)C16—O3—C15—C9153.7 (3)
C11—C6—C7—C8175.8 (3)C10—C9—C15—O366.5 (4)
C5—C6—C7—C9161.8 (3)C7—C9—C15—O3179.9 (3)
C13—C6—C7—C980.0 (3)C15—O3—C16—O42.8 (6)
C11—C6—C7—C940.5 (3)C15—O3—C16—C17175.9 (3)
C2—C3—C8—C7155.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.813.481 (5)127
C11—H11···O3ii0.982.543.497 (5)167
C13—H13C···O1iii0.962.603.499 (5)157
C13—H13B···O4iv0.962.613.530 (6)160
C14—H14A···O2i0.962.763.530 (5)138
C17—H17C···O3v0.962.863.478 (5)124
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1, y, z; (iii) x+1/2, y+3/2, z+1; (iv) x, y+1, z; (v) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Hubei Normal University and Nian Zhao for recording the X-ray crystallographic data for the crystals.

Funding information

Funding for this research was provided by: Natural Science Basic Research Program of Shaanxi (grant Nos. 2020JM-708 and 2021JQ-968); Science and Technology Program of Shaanxi Academy of Sciences (grant Nos. 2018nk-01 and 2018k-11); Xi'an Science and Technology Plan Project (grant No. 20NYYF0043).

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1358–1367.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDondorp, A. M., Yeung, S., White, L., Nguon, C., Day, N. P., Socheat, D. & von Seidlein, L. (2010). Nat. Rev. Microbiol. 8, 272–280.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKawabata, J. & Mizutani, J. (1989). Agric. Biol. Chem. 53, 203–207.  CAS Google Scholar
First citationLuger, P. & Bülow, R. (1983). J. Appl. Cryst. 16, 431–432.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQian, S. & Zhao, G. (2011). Synlett, pp. 722–724.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, X. W., Lu, Q. Q., Pescitelli, G., Ivšić, T., Zhou, J. H. & Gao, J. M. (2016). Chirality, 28, 158–163.  CrossRef PubMed Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchida, M., Koike, Y., Kusano, G., Kondo, Y., Nozoe, S., Kabuto, C. & Takemoto, T. (1980). Chem. Pharm. Bull. 28, 92–102.  CrossRef CAS Google Scholar
First citationWang, X. C., Wang, L. L., Ouyang, X., Ma, S. P., Liu, J. H. & Hu, L. H. (2009). Helv. Chim. Acta, 92, 313–320.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M., Wang, J. S., Oyama, M., Luo, J., Guo, C., Ito, T., Iinuma, M. & Kong, L. Y. (2012). J. Asian Nat. Prod. Res. 14, 708–712.  CrossRef CAS PubMed Google Scholar
First citationZhou, B., Wu, Y., Dalal, S., Merino, E. F., Liu, Q. F., Xu, C. H., Yuan, T., Ding, J., Kingston, D. G. I., Cassera, M. B. & Yue, J. M. (2017). J. Nat. Prod. 80, 96–107.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds