research communications
S,3aR,4aS,5aR)-15-acetoxylinden-7(11),8-trieno-12,8-lactone
and Hirshfeld analysis of (1aaShaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an 710061, People's Republic of China
*Correspondence e-mail: sxw@ms.xab.ac.cn
The structure of the title compound, C17H20O4 [systematic name: (1aS,3aR,4aS,5aR)-15-(acetoxy)linden-7(11),8-trieno-12,8-lactone or (4aR,5S,5aR,6aS,6bR)-5-(acetoxymethyl)-4a,5,5a,6,6a,6b-hexahydro-3,6b-dimethylcyclopropa[2,3]indeno[5,6-b]furan-2(4H)-one, ent-chloranthalactone C], a natural product isolated from the whole plant Chloranthus japonicus Sieb., is a typical lindenane-type sesquiterpenoid. The molecule comprises a bicyclo[3.1.0]hexane ring (A/B system) bearing an acetoxymethyl (C-4) group, a bicyclo[4.3.0]nonane ring (B/C system) containing a double bond (C-8/9) and a chiral quaternary carbon (C-10), and a 7(11)-en-12,8-olide structural moiety on the cyclohexan-8-ene (C ring). In the tetracyclic skeleton, the 1,3-cyclopropane ring has a β-configuration, and atoms H-5 and H3-14 have α- and β-orientations, respectively. In the crystal, the molecules are assembled into a two-dimensional network by weak O⋯H/H⋯O interactions. Hirshfeld surface analysis illustrates that the greatest contributions are from H⋯H (55.2%), O⋯H/H⋯O (34.6%) and C⋯H/H⋯C (8.9%) contacts.
CCDC reference: 2169817
1. Chemical context
Lindenanolides are precursors for various sesquiterpene dimer derivatives (Uchida et al., 1980; Wang et al., 2009; Shi et al., 2016). Inspired by the clinical application of artemisinin, these compounds have become a products library for screening antimalarial drugs (Dondorp et al., 2010; Zhou et al., 2017). The roots of Chloranthus japonicus (called Yinxiancao) were reported to exhibit antifungal and anti-inflammatory activities, and have been used as traditional Chinese medicine to treat malaria (Kawabata & Mizutani, 1989). Chloranthalactone C was characterized as an α,β,γ,δ-unsaturated γ-lactone and was converted into desacetyl enol lactone hydrate and ketoalcohol under moderate alkaline conditions (Uchida et al., 1980). Because of the unique stereostructure in lindenane, these lactone derivatives have been studied extensively and serve as precursors for screening cytotoxicity against mouse lymphosarcoma, liver cancer and human cervical cancer cells, the expression of cell adhesion molecules and the mode of antiplasmodial agents (Uchida et al., 1980; Zhang et al., 2012; Zhou et al., 2017). Based on the antiwiggler activity, we are currently searching for a biological pesticide preparation to inhibit flyblow breeding in vegetable production (Shi et al., 2016) and report here the structure of the title compound.
2. Structural commentary
The molecular structure of the title compound is shown in Scheme 1 and Fig. 1. This compound consists of a novel polycyclic framework embedded with a sterically congested cyclopentane ring (B), an unusual trans-5/6 ring junction and an angular methyl group. The chiral quaternary C atom at the 10-position is located on the same side of the B ring plane as the cyclopropane ring and the 4-acetoxymethyl and 5-hydrogen are positioned on the other side. The positions of the substituents can be described as having a β-configuration for the cyclopropane ring at the 1,3-positions, axial for the H atom at the 5-position and bisectional for the methyl H atom at the chiral quaternary C atom in the 10-position. Two cyclic olefinic bonds are located between atoms C2 and C3, and between atoms C4 and C5, and are attached to the cyclohexane (C) and cyclopentanolactone (D) rings, respectively. The torsion angles C9—C10—C11—C12 and C12—C10—C11—C6 of 115.2 (4) and −115.2 (4)°, respectively, describe the geometric metamerism of the junction between cyclopropane ring A and cyclopentane ring B. The difference in configuration of the oxygen-containing groups can be confirmed by the torsion angles C7—C9—C15—O3 and O1—C1—O2—C4, which were 179.9 (3) and −179.0 (4)°, respectively. The torsion angles C5—C6—C11—C12 and C2—C3—C8—C7 are the same at 155.5 (4)°, indicating the conformational stability of the A/B and C/D ring junctions. Also, the C2—C3—C4—C5 and C8—C3—C4—O2 torsion angles are 177.1 (4) and 177.2 (3)°, respectively, and the O2—C1—C2—C14 and C14—C2—C3—C4 torsion angles are 179.9 (3) and −178.9 (4)°, respectively, and describe the geometric characteristics of the C and D rings. In the title molecule, the central six-membered lindenane sesquiterpenoid ring has a half-chair conformation, with puckering parameters (Cremer & Pople, 1975; Luger & Bülow, 1983) of QT = 0.3387 (11) Å, θ = 49.11 (19)° and ψ = 167.3 (2)°. Furthermore, the C9—C7—C8—C3 and C5—C4—O2—C1 torsion angles [−178.6 (3) and −177.6 (4)°, respectively] indicate the geometric stability of the B/C and C/D ring junctions. In addition, the main A/B/C/D skeleton and the acetoxymethyl system (atoms C15–C17/O3/O4) are not coplanar, the torsion angles C15—O3—C16—C17 and C15—O3—C16—O4 being −175.9 (3) and 2.8 (6)°, respectively.
3. Supramolecular features
In the crystal of the title compound, the molecules are linked via multiple C—H⋯O weak hydrogen bonds, generating two-dimensional (2D) layers propagating along the c-axis direction (Fig. 2 and Table 1). Details of the hydrogen-bonding interactions and the symmetry codes are given in Table 1.
4. Hirshfeld surface analysis
Hirshfeld surface analysis was performed and the associated fingerprint plots, providing a 2D view of the intermolecular interactions within the molecular crystals, were generated using CrystalExplorer (Version 21.5; Spackman et al., 2021), with a standard resolution of the three-dimensional (3D) dnorm surfaces plotted over a fixed colour scale of −0.1253 (red) to 1.4046 (blue) arbitrary units (Fig. 3). The intense red spots symbolize short contacts and negative dnorm values on the surface are related to the presence of C—H⋯O hydrogen bonds in the This result corresponds to the results obtained from the solid crystalline structure with the formation of hydrogen bonds. Weak C⋯H/H⋯C contacts are shown by dim red spots (Fig. 4). The 2D fingerprint plots for the H⋯H, H⋯O/O⋯H, and H⋯C/C⋯H contacts are shown in Fig. 5. H⋯H interactions play an integral role in the overall crystal packing, contributing 55.2%, and are located in the middle region of the fingerprint plot. The most significant H⋯O/O⋯H contacts contribute 34.6% to the Hirshfeld surface and the proportion of weak H⋯C/C⋯H contacts is 8.9%.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2021; Groom et al., 2016) for the same carbon ring skeleton as the title compound yielded only one molecule, 5-[(tert-butyldimethylsilyl)oxy]-3,6b-dimethyl-4a,5,5a,6,6a,6b-hexahydrocyclopropa[2,3]indeno[5,6-b]furan-2(4H)-one (CCDC reference 804060; Qian & Zhao, 2011), which has a (tert-butyldimethylsilyl)oxy group attached to ring A of the carbon skeleton.
6. Isolation and crystallization
The title sesquiterpenoid was isolated as a colourless solid from the EtOAc soluble fraction of C. japonicus by over silica gel, and eluted with a mixture of ethyl acetate and hexane (1:20 to 5:1 v/v gradient) to yield the title compound. Crystals were obtained after recrystallization from acetone or chloroform–methanol (6:1 v/v) at room temperature by slow evaporation over a period of a few days. 1H NMR (500 MHz, chloroform-d): δ 6.22 (1H, s, H-9), 4.20 (2H, d, J = 6.1 Hz, H-11), 2.63 (1H, d, J = 13.0 Hz), 2.30–2.21 (2H, m), 2.09 (3H, s, OCOCH3), 1.87 (3H, br s, H-13), 1.73 (1H, tt, J = 10.1, 4.9 Hz), 1.53 (1H, td, J = 8.1, 3.8 Hz), 1.30 (1H, ddd, J = 11.9, 8.0, 3.7 Hz), 0.91 (1H, dd, J = 3.8, 2.1 Hz), 0.89 (3H, s, H-15), 0.83 (1H, td, J = 8.4, 6.0 Hz). 13C NMR (125 MHz, chloroform-d): δ 171.34 (OCOCH3 or C-12), 171.31 (OCOCH3 or C-12), 149.69 (C-8), 148.41 (C-7), 122.47 (C-11), 120.13 (C-9), 66.23 (C-15), 60.45 (C-5), 43.11 (C-4), 42.15 (C-10), 27.47 (C-1), 22.87 (C-6), 22.48 (C-3), 21.25 (OCOCH3 or C-14), 21.21 (OCOCH3 or C-14), 17.15 (C-2), 8.83 (C-13).
7. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically (C—H = 0.96–0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) for CH hydrogens or 1.5Ueq(C) for methyl H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2169817
https://doi.org/10.1107/S2056989022004625/zn2018sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022004625/zn2018Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022004625/zn2018Isup3.cml
Data collection: SMART (Bruker, 2002); cell
SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C17H20O4 | Dx = 1.300 Mg m−3 |
Mr = 288.33 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 3545 reflections |
a = 6.7641 (3) Å | θ = 2.6–20.7° |
b = 6.9254 (3) Å | µ = 0.09 mm−1 |
c = 31.4538 (14) Å | T = 296 K |
V = 1473.42 (11) Å3 | Block, colorless |
Z = 4 | 0.20 × 0.20 × 0.20 mm |
F(000) = 616 |
Bruker SMART CCD diffractometer | 1857 reflections with I > 2σ(I) |
phi and ω scans | Rint = 0.057 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | θmax = 25.0°, θmin = 2.6° |
h = −7→8 | |
12659 measured reflections | k = −8→6 |
2576 independent reflections | l = −32→37 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.051 | w = 1/[σ2(Fo2) + (0.0466P)2 + 0.380P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.117 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.30 e Å−3 |
2576 reflections | Δρmin = −0.21 e Å−3 |
193 parameters | Absolute structure: Flack x determined using 574 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.10 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1658 (5) | 0.5144 (4) | 0.54793 (8) | 0.0745 (9) | |
O2 | 0.1329 (4) | 0.5303 (4) | 0.47683 (7) | 0.0537 (7) | |
O3 | 0.9151 (4) | 0.1520 (4) | 0.31668 (8) | 0.0566 (8) | |
O4 | 0.9315 (6) | −0.1600 (5) | 0.32844 (14) | 0.1261 (18) | |
C1 | 0.2446 (6) | 0.5140 (6) | 0.51366 (12) | 0.0536 (10) | |
C2 | 0.4539 (6) | 0.4960 (5) | 0.50214 (10) | 0.0480 (9) | |
C3 | 0.4648 (5) | 0.4991 (5) | 0.45952 (10) | 0.0418 (8) | |
C4 | 0.2650 (5) | 0.5215 (5) | 0.44282 (11) | 0.0442 (9) | |
C5 | 0.2143 (5) | 0.5386 (5) | 0.40250 (11) | 0.0447 (10) | |
H5 | 0.0829 | 0.5495 | 0.3942 | 0.054* | |
C6 | 0.3810 (5) | 0.5396 (5) | 0.37059 (10) | 0.0389 (9) | |
C7 | 0.5465 (5) | 0.4057 (5) | 0.38746 (10) | 0.0387 (9) | |
H7 | 0.4802 | 0.2839 | 0.3944 | 0.046* | |
C8 | 0.6345 (5) | 0.4765 (6) | 0.42937 (10) | 0.0426 (9) | |
H8A | 0.7290 | 0.3836 | 0.4403 | 0.051* | |
H8B | 0.7014 | 0.5991 | 0.4253 | 0.051* | |
C9 | 0.6749 (5) | 0.3603 (5) | 0.34836 (10) | 0.0414 (9) | |
H9 | 0.7586 | 0.4713 | 0.3414 | 0.050* | |
C10 | 0.5169 (6) | 0.3322 (6) | 0.31409 (11) | 0.0503 (10) | |
H10 | 0.4988 | 0.2025 | 0.3023 | 0.060* | |
C11 | 0.3340 (6) | 0.4435 (6) | 0.32784 (11) | 0.0506 (11) | |
H11 | 0.2047 | 0.3818 | 0.3243 | 0.061* | |
C12 | 0.4461 (6) | 0.5003 (7) | 0.28864 (10) | 0.0613 (11) | |
H12A | 0.3853 | 0.4739 | 0.2613 | 0.074* | |
H12B | 0.5235 | 0.6181 | 0.2897 | 0.074* | |
C13 | 0.4477 (6) | 0.7496 (5) | 0.36559 (12) | 0.0523 (11) | |
H13A | 0.3469 | 0.8217 | 0.3511 | 0.078* | |
H13B | 0.5679 | 0.7539 | 0.3494 | 0.078* | |
H13C | 0.4701 | 0.8050 | 0.3932 | 0.078* | |
C14 | 0.6127 (7) | 0.4764 (6) | 0.53450 (12) | 0.0650 (12) | |
H14A | 0.6047 | 0.3512 | 0.5475 | 0.098* | |
H14B | 0.5968 | 0.5743 | 0.5558 | 0.098* | |
H14C | 0.7393 | 0.4911 | 0.5211 | 0.098* | |
C15 | 0.8003 (6) | 0.1832 (5) | 0.35511 (11) | 0.0488 (10) | |
H15A | 0.8877 | 0.2019 | 0.3792 | 0.059* | |
H15B | 0.7171 | 0.0720 | 0.3608 | 0.059* | |
C16 | 0.9745 (5) | −0.0230 (6) | 0.30723 (13) | 0.0550 (10) | |
C17 | 1.1017 (6) | −0.0305 (7) | 0.26893 (12) | 0.0660 (12) | |
H17A | 1.2179 | 0.0462 | 0.2735 | 0.099* | |
H17B | 1.0301 | 0.0192 | 0.2450 | 0.099* | |
H17C | 1.1394 | −0.1619 | 0.2635 | 0.099* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.106 (2) | 0.074 (2) | 0.0437 (16) | 0.017 (2) | 0.0283 (16) | −0.0019 (15) |
O2 | 0.0592 (16) | 0.0591 (17) | 0.0427 (15) | 0.0035 (15) | 0.0182 (13) | −0.0021 (13) |
O3 | 0.076 (2) | 0.0422 (16) | 0.0520 (16) | 0.0031 (15) | 0.0267 (16) | −0.0038 (13) |
O4 | 0.137 (4) | 0.058 (2) | 0.184 (4) | 0.013 (2) | 0.101 (3) | 0.014 (3) |
C1 | 0.080 (3) | 0.040 (2) | 0.040 (2) | 0.013 (2) | 0.014 (2) | −0.001 (2) |
C2 | 0.069 (3) | 0.036 (2) | 0.039 (2) | 0.002 (2) | 0.0037 (19) | −0.0026 (18) |
C3 | 0.054 (2) | 0.0344 (19) | 0.0366 (19) | 0.000 (2) | 0.0037 (17) | −0.0007 (17) |
C4 | 0.049 (2) | 0.043 (2) | 0.040 (2) | 0.000 (2) | 0.0113 (18) | −0.0030 (19) |
C5 | 0.038 (2) | 0.052 (2) | 0.044 (2) | −0.003 (2) | 0.0027 (17) | −0.0035 (19) |
C6 | 0.0395 (19) | 0.045 (2) | 0.0324 (18) | −0.0053 (18) | 0.0005 (16) | −0.0023 (16) |
C7 | 0.042 (2) | 0.040 (2) | 0.0340 (19) | −0.0054 (18) | 0.0046 (17) | −0.0033 (15) |
C8 | 0.044 (2) | 0.047 (2) | 0.0366 (18) | −0.003 (2) | −0.0007 (16) | −0.0045 (17) |
C9 | 0.045 (2) | 0.041 (2) | 0.039 (2) | −0.0055 (18) | 0.0052 (18) | −0.0040 (16) |
C10 | 0.054 (2) | 0.058 (3) | 0.039 (2) | −0.005 (2) | 0.005 (2) | −0.0120 (19) |
C11 | 0.044 (2) | 0.068 (3) | 0.040 (2) | −0.011 (2) | 0.0019 (18) | −0.0067 (18) |
C12 | 0.061 (2) | 0.091 (3) | 0.0322 (19) | −0.002 (3) | −0.0002 (18) | 0.002 (2) |
C13 | 0.057 (3) | 0.048 (2) | 0.052 (2) | −0.006 (2) | 0.000 (2) | 0.0053 (18) |
C14 | 0.093 (3) | 0.058 (3) | 0.044 (2) | 0.004 (3) | −0.006 (2) | −0.003 (2) |
C15 | 0.062 (2) | 0.046 (2) | 0.039 (2) | −0.001 (2) | 0.015 (2) | −0.0029 (18) |
C16 | 0.047 (2) | 0.048 (3) | 0.070 (3) | −0.006 (2) | 0.013 (2) | −0.007 (2) |
C17 | 0.063 (3) | 0.071 (3) | 0.064 (3) | 0.006 (3) | 0.014 (2) | −0.017 (2) |
O1—C1 | 1.202 (4) | C9—C15 | 1.507 (5) |
O2—C1 | 1.388 (4) | C9—C10 | 1.530 (5) |
O2—C4 | 1.396 (4) | C9—H9 | 0.9800 |
O3—C16 | 1.311 (5) | C10—C12 | 1.492 (6) |
O3—C15 | 1.453 (4) | C10—C11 | 1.520 (5) |
O4—C16 | 1.196 (5) | C10—H10 | 0.9800 |
C1—C2 | 1.467 (6) | C11—C12 | 1.500 (5) |
C2—C3 | 1.343 (4) | C11—H11 | 0.9800 |
C2—C14 | 1.486 (5) | C12—H12A | 0.9700 |
C3—C4 | 1.458 (5) | C12—H12B | 0.9700 |
C3—C8 | 1.497 (5) | C13—H13A | 0.9600 |
C4—C5 | 1.319 (5) | C13—H13B | 0.9600 |
C5—C6 | 1.509 (5) | C13—H13C | 0.9600 |
C5—H5 | 0.9300 | C14—H14A | 0.9600 |
C6—C13 | 1.531 (5) | C14—H14B | 0.9600 |
C6—C11 | 1.534 (5) | C14—H14C | 0.9600 |
C6—C7 | 1.548 (5) | C15—H15A | 0.9700 |
C7—C8 | 1.528 (4) | C15—H15B | 0.9700 |
C7—C9 | 1.538 (5) | C16—C17 | 1.481 (5) |
C7—H7 | 0.9800 | C17—H17A | 0.9600 |
C8—H8A | 0.9700 | C17—H17B | 0.9600 |
C8—H8B | 0.9700 | C17—H17C | 0.9600 |
C1—O2—C4 | 106.7 (3) | C11—C10—C9 | 107.7 (3) |
C16—O3—C15 | 119.3 (3) | C12—C10—H10 | 118.1 |
O1—C1—O2 | 120.4 (4) | C11—C10—H10 | 118.1 |
O1—C1—C2 | 130.5 (4) | C9—C10—H10 | 118.1 |
O2—C1—C2 | 109.0 (3) | C12—C11—C10 | 59.2 (3) |
C3—C2—C1 | 107.4 (3) | C12—C11—C6 | 120.1 (3) |
C3—C2—C14 | 130.2 (4) | C10—C11—C6 | 107.5 (3) |
C1—C2—C14 | 122.4 (3) | C12—C11—H11 | 118.2 |
C2—C3—C4 | 108.1 (3) | C10—C11—H11 | 118.2 |
C2—C3—C8 | 132.3 (3) | C6—C11—H11 | 118.2 |
C4—C3—C8 | 119.6 (3) | C10—C12—C11 | 61.1 (3) |
C5—C4—O2 | 124.5 (3) | C10—C12—H12A | 117.7 |
C5—C4—C3 | 126.6 (3) | C11—C12—H12A | 117.7 |
O2—C4—C3 | 108.8 (3) | C10—C12—H12B | 117.7 |
C4—C5—C6 | 116.5 (3) | C11—C12—H12B | 117.7 |
C4—C5—H5 | 121.8 | H12A—C12—H12B | 114.8 |
C6—C5—H5 | 121.8 | C6—C13—H13A | 109.5 |
C5—C6—C13 | 107.0 (3) | C6—C13—H13B | 109.5 |
C5—C6—C11 | 115.2 (3) | H13A—C13—H13B | 109.5 |
C13—C6—C11 | 112.5 (3) | C6—C13—H13C | 109.5 |
C5—C6—C7 | 108.0 (3) | H13A—C13—H13C | 109.5 |
C13—C6—C7 | 113.1 (3) | H13B—C13—H13C | 109.5 |
C11—C6—C7 | 101.0 (3) | C2—C14—H14A | 109.5 |
C8—C7—C9 | 122.4 (3) | C2—C14—H14B | 109.5 |
C8—C7—C6 | 112.7 (3) | H14A—C14—H14B | 109.5 |
C9—C7—C6 | 104.9 (3) | C2—C14—H14C | 109.5 |
C8—C7—H7 | 105.2 | H14A—C14—H14C | 109.5 |
C9—C7—H7 | 105.2 | H14B—C14—H14C | 109.5 |
C6—C7—H7 | 105.2 | O3—C15—C9 | 107.7 (3) |
C3—C8—C7 | 106.3 (3) | O3—C15—H15A | 110.2 |
C3—C8—H8A | 110.5 | C9—C15—H15A | 110.2 |
C7—C8—H8A | 110.5 | O3—C15—H15B | 110.2 |
C3—C8—H8B | 110.5 | C9—C15—H15B | 110.2 |
C7—C8—H8B | 110.5 | H15A—C15—H15B | 108.5 |
H8A—C8—H8B | 108.7 | O4—C16—O3 | 122.2 (4) |
C15—C9—C10 | 112.9 (3) | O4—C16—C17 | 124.5 (4) |
C15—C9—C7 | 111.8 (3) | O3—C16—C17 | 113.3 (4) |
C10—C9—C7 | 101.2 (3) | C16—C17—H17A | 109.5 |
C15—C9—H9 | 110.2 | C16—C17—H17B | 109.5 |
C10—C9—H9 | 110.2 | H17A—C17—H17B | 109.5 |
C7—C9—H9 | 110.2 | C16—C17—H17C | 109.5 |
C12—C10—C11 | 59.7 (3) | H17A—C17—H17C | 109.5 |
C12—C10—C9 | 120.2 (4) | H17B—C17—H17C | 109.5 |
C4—O2—C1—O1 | −178.9 (4) | C4—C3—C8—C7 | −21.5 (5) |
C4—O2—C1—C2 | 0.5 (4) | C9—C7—C8—C3 | −178.6 (3) |
O1—C1—C2—C3 | 178.5 (4) | C6—C7—C8—C3 | 55.0 (4) |
O2—C1—C2—C3 | −0.8 (5) | C8—C7—C9—C15 | 69.2 (4) |
O1—C1—C2—C14 | −0.9 (7) | C6—C7—C9—C15 | −161.0 (3) |
O2—C1—C2—C14 | 179.8 (3) | C8—C7—C9—C10 | −170.4 (3) |
C1—C2—C3—C4 | 0.7 (5) | C6—C7—C9—C10 | −40.5 (3) |
C14—C2—C3—C4 | −179.9 (4) | C15—C9—C10—C12 | −151.0 (3) |
C1—C2—C3—C8 | −176.5 (4) | C7—C9—C10—C12 | 89.3 (4) |
C14—C2—C3—C8 | 2.9 (7) | C15—C9—C10—C11 | 144.3 (3) |
C1—O2—C4—C5 | −177.6 (4) | C7—C9—C10—C11 | 24.6 (4) |
C1—O2—C4—C3 | 0.0 (4) | C9—C10—C11—C12 | 115.2 (4) |
C2—C3—C4—C5 | 177.1 (4) | C12—C10—C11—C6 | −115.2 (4) |
C8—C3—C4—C5 | −5.3 (6) | C9—C10—C11—C6 | 0.0 (4) |
C2—C3—C4—O2 | −0.4 (4) | C5—C6—C11—C12 | 155.4 (4) |
C8—C3—C4—O2 | 177.2 (3) | C13—C6—C11—C12 | 32.3 (5) |
O2—C4—C5—C6 | 175.6 (3) | C7—C6—C11—C12 | −88.5 (4) |
C3—C4—C5—C6 | −1.5 (6) | C5—C6—C11—C10 | −140.6 (3) |
C4—C5—C6—C13 | −88.5 (4) | C13—C6—C11—C10 | 96.4 (4) |
C4—C5—C6—C11 | 145.6 (4) | C7—C6—C11—C10 | −24.5 (4) |
C4—C5—C6—C7 | 33.5 (4) | C9—C10—C12—C11 | −93.8 (4) |
C5—C6—C7—C8 | −62.8 (4) | C6—C11—C12—C10 | 93.4 (4) |
C13—C6—C7—C8 | 55.4 (4) | C16—O3—C15—C9 | −153.7 (3) |
C11—C6—C7—C8 | 175.8 (3) | C10—C9—C15—O3 | 66.5 (4) |
C5—C6—C7—C9 | 161.8 (3) | C7—C9—C15—O3 | 179.9 (3) |
C13—C6—C7—C9 | −80.0 (3) | C15—O3—C16—O4 | 2.8 (6) |
C11—C6—C7—C9 | 40.5 (3) | C15—O3—C16—C17 | −175.9 (3) |
C2—C3—C8—C7 | 155.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O1i | 0.97 | 2.81 | 3.481 (5) | 127 |
C11—H11···O3ii | 0.98 | 2.54 | 3.497 (5) | 167 |
C13—H13C···O1iii | 0.96 | 2.60 | 3.499 (5) | 157 |
C13—H13B···O4iv | 0.96 | 2.61 | 3.530 (6) | 160 |
C14—H14A···O2i | 0.96 | 2.76 | 3.530 (5) | 138 |
C17—H17C···O3v | 0.96 | 2.86 | 3.478 (5) | 124 |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) x−1, y, z; (iii) x+1/2, −y+3/2, −z+1; (iv) x, y+1, z; (v) −x+2, y−1/2, −z+1/2. |
Acknowledgements
The authors thank Hubei Normal University and Nian Zhao for recording the X-ray crystallographic data for the crystals.
Funding information
Funding for this research was provided by: Natural Science Basic Research Program of Shaanxi (grant Nos. 2020JM-708 and 2021JQ-968); Science and Technology Program of Shaanxi Academy of Sciences (grant Nos. 2018nk-01 and 2018k-11); Xi'an Science and Technology Plan Project (grant No. 20NYYF0043).
References
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1358–1367. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dondorp, A. M., Yeung, S., White, L., Nguon, C., Day, N. P., Socheat, D. & von Seidlein, L. (2010). Nat. Rev. Microbiol. 8, 272–280. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kawabata, J. & Mizutani, J. (1989). Agric. Biol. Chem. 53, 203–207. CAS Google Scholar
Luger, P. & Bülow, R. (1983). J. Appl. Cryst. 16, 431–432. CrossRef CAS Web of Science IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Qian, S. & Zhao, G. (2011). Synlett, pp. 722–724. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, X. W., Lu, Q. Q., Pescitelli, G., Ivšić, T., Zhou, J. H. & Gao, J. M. (2016). Chirality, 28, 158–163. CrossRef PubMed Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uchida, M., Koike, Y., Kusano, G., Kondo, Y., Nozoe, S., Kabuto, C. & Takemoto, T. (1980). Chem. Pharm. Bull. 28, 92–102. CrossRef CAS Google Scholar
Wang, X. C., Wang, L. L., Ouyang, X., Ma, S. P., Liu, J. H. & Hu, L. H. (2009). Helv. Chim. Acta, 92, 313–320. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, M., Wang, J. S., Oyama, M., Luo, J., Guo, C., Ito, T., Iinuma, M. & Kong, L. Y. (2012). J. Asian Nat. Prod. Res. 14, 708–712. CrossRef CAS PubMed Google Scholar
Zhou, B., Wu, Y., Dalal, S., Merino, E. F., Liu, Q. F., Xu, C. H., Yuan, T., Ding, J., Kingston, D. G. I., Cassera, M. B. & Yue, J. M. (2017). J. Nat. Prod. 80, 96–107. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.