research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 5-amino-5′-bromo-2′-oxo-2,3-di­hydro-1H-spiro­[imidazo[1,2-a]pyridine-7,3′-indoline]-6,8-dicarbo­nitrile di­methyl sulfoxide disolvate

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e`Composite Materials' Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fAcademy of Sciences of the Republic of Tajikistan, Kh Yu Yusufbekov Pamir Biological Institute, 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 12 January 2022; accepted 3 May 2022; online 10 May 2022)

In the title compound, C16H11BrN6O·2C2H6OS, the 1,2,3,7-tetra­hydro­imid­azo[1,2-a]pyridine ring system and the oxindole moiety are both nearly planar [maximum deviations = 0.042 (2) and 0.115 (2) Å, respectively] and their planes form a dihedral angle of 86.04 (5)° with each other. Inter­molecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds link mol­ecules in the crystal through the O atoms of the solvent mol­ecules, generating a three-dimensional network. A Hirshfeld surface analysis was performed to further analyse the inter­molecular inter­actions.

1. Chemical context

C—C and C—N bond-forming reactions represent a significant synthetic class because they play critical roles in various applications in different fields of chemistry (Yadigarov et al., 2009[Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856-1858.]; Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Yin et al., 2020[Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60-63.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]). Nitro­gen heterocycles, particularly those including the spiro­[imidazo[1,2-a]pyridine] moiety, play a key role in medi­cinal chemistry (Han et al., 2008[Han, F., Shioda, N., Moriguchi, S., Yamamoto, Y., Raie, A. Y. A., Yamaguchi, Y., Hino, M. & Fukunaga, K. (2008). J. Pharmacol. Exp. Ther. 326, 127-134.]; Mamedov et al., 2020[Mamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498-499.]; Samaneh et al., 2021[Samaneh, A., Homa, A. & Javad, A. (2021). J. Chin. Chem. Soc. 68, 1090-1103.]). The conjugate addition to oxo­in­dol­inylidenemalono­nitriles has been well studied in simple two-component reactions with respect to producing spiro derivatives (Lu et al., 2012[Lu, L., Deyan, W., Xiangmin, L., Sinan, W., Hao, L., Jian, L. & Wei, W. (2012). Chem. Commun. 48, 1692-1694.]; Jun et al., 2019[Jun, J., Juan, L., Xinhua, L., Hongxin, L., Haiyan, W. & Hong-Ping, X. (2019). Synlett, 30, 1241-1245.]). We have previously reported the three-component reaction of 2-(2-oxoindolin-3-yl­idene)malono­nitrile with malono­nitrile and ethyl­enedi­amine which resulted in 5-amino-2′-oxo-2,3-di­hydro-1H-spiro­[imidazo[1,2-a]pyridine-7,3′-indoline]-6,8-dicarbo­nitrile (Magerramov et al., 2018[Magerramov, A. M., Nagiev, F. N., Mamedova, G. Z. Kh. A., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1713-1715.]). In the framework of our ongoing structural studies (Naghiyev et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235-2248.], 2021a[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195-199.],b[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512-515.]), herein the crystal structure and Hirshfeld surface analysis of 5-amino-5′-bromo-2′-oxo-2,3-di­hydro-1H-spiro­[imidazo[1,2-a]pyridine-7,3′-indoline]-6,8-dicarbo­nitrile, (1), is reported.

2. Structural commentary

In the title compound, (1) (see Scheme[link] and Fig. 1[link]), the 1,2,3,7-tetra­hydro­imidazo[1,2-a]pyridine ring system (N1/N4/C2/C3/C5–C8/C8A) and the oxindole moiety (O1/N2/C1/C7/C11–C16) are nearly planar, with maximum deviations of 0.042 (2) Å for C3 and 0.115 (2) Å for O1. These ring systems make a dihedral angle of 86.04 (5)° with each other. The cyano (–C≡N) and amine (NH2) groups form an inter­molecular hydrogen bond with one dimethyl sulfoxide (DMSO) group, giving an S(10) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) (Table 1[link]).

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2Ai 0.90 1.98 2.855 (4) 165
N1—H1⋯O2Bi 0.90 2.00 2.87 (4) 160
N2—H2⋯O2Aii 0.90 1.91 2.793 (5) 166
N2—H2⋯O2Bii 0.90 1.94 2.82 (5) 166
N5—H5A⋯O3Aiii 0.90 2.20 3.034 (3) 155
N5—H5B⋯O3A 0.90 2.06 2.918 (3) 160
C2—H2B⋯N9iv 0.99 2.59 3.469 (4) 148
C19A—H19A⋯N9 0.98 2.41 3.114 (5) 128
C19A—H19C⋯O1v 0.98 2.52 3.392 (4) 148
C20A—H20B⋯O1v 0.98 2.46 3.359 (4) 152
Symmetry codes: (i) [x+1, y, z-1]; (ii) x+1, y, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, y, z-1]; (v) [x-1, y, z].
[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and displacement ellipsoids drawn at the 50% probability level. The minor components of the disorder are not shown.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked through the O atoms of the DMSO solvent mol­ecules by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds which, together with C—H⋯N hydrogen bonds, form a three-dimensional (3D) network (Table 1[link] and Fig. 2[link]). The π-cloud of the C8A—N1 bond (which has some multiple-bond character) acts as an electron donor to Br1 in a kind of `halogen bond', with a Br1⋯C8A(−x + 1, −y + 1, −z) distance of 3.284 (2) Å.

[Figure 2]
Figure 2
A view of the mol­ecular packing of (1) along the a-axis direction.

The Hirshfeld surfaces were calculated and the two-dimensional (2D) fingerprint plots generated using CrystalExplorer (Version 17.5; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). Fig. 3[link] shows the 3D Hirshfeld surface of (1) with dnorm (normalized contact distance) plotted over the range from −0.6206 to 1.3180 a.u. The inter­actions given in Table 1[link] play a key role in the mol­ecular packing of (1).

[Figure 3]
Figure 3
View of the 3D Hirshfeld surface of (1) plotted over dnorm in the range from −0.6206 to 1.3180 a.u.

The overall 2D fingerprint plot for (1) is given in Fig. 4[link](a), and those delineated into H⋯H, N⋯H/H⋯N, O⋯H/H⋯O, C⋯H/H⋯C and Br⋯H/H⋯Br contacts are shown in Figs. 4[link](b)–(f). The percentage contributions to the Hirshfeld surfaces from the various inter­atomic contacts are as follows: H⋯H [Fig. 4[link](b); 27.1%], N⋯H/H⋯N [Fig. 4[link](c); 23.8%], O⋯H/H⋯O [Fig. 4[link](d); 15.7%], C⋯H/H⋯C [Fig. 4[link](e); 13.2%] and Br⋯H/H⋯Br [Fig. 4[link](f); 10.2%]. Other minor contributions to the Hirshfeld surface are from Br⋯C/C⋯Br (3.9%), Br⋯N/N⋯Br (2.0%), C⋯C (1.5%), S⋯C/C⋯S (0.8%), S⋯H/H⋯S (0.6%), S⋯N/N⋯S (0.4%), O⋯N/N⋯O (0.4%) and Br⋯O/O⋯Br (0.3%).

[Figure 4]
Figure 4
The full 2D fingerprint plots for (1), showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N, (d) O⋯H/H⋯O, (e) C⋯H/H⋯C and (f) Br⋯H/H⋯Br inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 5-bromo-1,3-di­hydro-2H-indol-2-one unit of (1) gave 87 hits. The three compounds most resembling (1) are (I) (COGQAS; Nagalakshmi et al., 2014a[Nagalakshmi, R. A., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o604-o605.]), (II) (WOPKAP; Nagalakshmi et al., 2014b[Nagalakshmi, R. A., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, o971-o972.]) and (III) (XODQOY; Nagalakshmi et al., 2014c[Nagalakshmi, R. A., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2014c). Acta Cryst. E70, o816-o817.]), showing very similar conformation of the mol­ecular core.

In the crystal of (I), N—H⋯O hydrogen bonds lead to the formation of chains along the c-axis direction. Within the chains there are further N—H⋯O and C—H⋯O hydrogen bonds enclosing R22(14) ring motifs. The chains are linked via N—H⋯O and C—H⋯O hydrogen bonds involving the dimethyl sulfoxide solvent mol­ecule which acts as both an acceptor and a donor.

In (II), the asymmetric unit contains two independent mol­ecules (A and B) having similar conformations. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains along the a axis which enclose R22(16) ring motifs. The rings are linked by weak N—H⋯O and C—H⋯O hydrogen bonds, and C—H⋯π inter­actions, forming sheets lying parallel to the (001) plane.

In (III), two intra­molecular N—H⋯O hydrogen bonds are formed, each closing an S(6) loop. In the crystal, strong N—H⋯O hydrogen bonds lead to the formation of zigzag chains along the c axis. These are consolidated in the 3D crystal packing by weak N—H⋯O hydrogen bonding, as well as by C—H⋯O, C—H⋯Br and C—H⋯π inter­actions.

5. Synthesis and crystallization

To a solution of 2-(5-bromo-2-oxoindolin-3-yl­idene)malono­nitrile (1.4 g, 5.1 mmol), which was previously prepared by a known procedure (Negar et al., 2012[Negar, L., Ghodsi Mohammadi, Z., Alireza, B. & Parisa, G. (2012). Eur. J. Chem. 3, 310-313.]), and malono­nitrile (0.34 g, 5.2 mmol) in methanol (25 ml), ethyl­enedi­amine (0.31 g, 5.2 mmol) was added and the mixture was stirred at room temperature for 72 h (Fig. 5[link]). Methanol (15 ml) was removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from an ethanol–water (1:1 v/v) solution (yield 69%; m.p. 479–480 K). Single crystals of (1) were grown from DMSO solution.

[Figure 5]
Figure 5
The synthesis of 5-amino-5′-bromo-2′-oxo-2,3-di­hydro-1H-spiro­[imidazo[1,2-a]pyridine-7,3′-indoline]-6,8-dicarbo­nitrile by a reported procedure (Magerramov et al., 2018[Magerramov, A. M., Nagiev, F. N., Mamedova, G. Z. Kh. A., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1713-1715.]).

1H NMR (300 MHz, DMSO-d6, ppm): δ 3.50 (t, 4H, 2CH2N), 6.61 (s, 2H, NH2), 6.78 (d, 1H, Ar-H, 3JH-H = 7.8 Hz), 7.35 (s, 1H, Ar-H), 7.37 (d, 1H, Ar-H, 3JH-H = 7.8 Hz), 7.73 (s, H, NH), 10.44 (s, H, NH). 13C NMR (75 MHz, DMSO-d6, ppm): δ 42.46 (CH2N), 45.15 (CH2N), 51.24 (Cquat), 51.71 (=Cquat), 54.69 (=Cquat), 112.02 (CHarom), 114.43 (Br—Carom), 119.63 (CN), 120.15 (CN), 128.02 (CHarom), 131.90 (CHarom), 137.83 (Carom), 140.80 (Carom), 152.19 (=Cquat), 154.76 (=Cquat), 179.67 (O=C).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were included in calculated positions and treated as riding atoms; N—H = 0.90 Å with Uiso(H) = 1.2Ueq(N), and C—H = 0.95–0.99 Å with Uiso(H) = 1.2 or 1.5Ueq(C). Both DMSO solvent mol­ecules are disordered over two positions, with final occupancies of 0.90:0.10 for the first and 0.95:0.05 for the second mol­ecule. In the first disordered DMSO molecule, the C17B and C18B atoms of the minor component were refined isotropically. The disordered atoms O2A/O2B, O3A/O3B, C19A/C19B and C20A/C20B were refined with anisotropic displacement parameters, constrained to be the same for both components. The S—C and S—O bond lengths in both disordered DMSO mol­ecules were restrained to similarity.

Table 2
Experimental details

Crystal data
Chemical formula C16H11BrN6O·2C2H6OS
Mr 539.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.3940 (1), 26.2421 (2), 8.9860 (1)
β (°) 108.056 (1)
V3) 2330.32 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.38
Crystal size (mm) 0.05 × 0.03 × 0.02
 
Data collection
Diffractometer Rigaku XtaLAB Synergy Dualflex HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.793, 0.899
No. of measured, independent and observed [I > 2σ(I)] reflections 31508, 5062, 5047
Rint 0.029
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.17
No. of reflections 5062
No. of parameters 331
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.41
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

5-Amino-5'-bromo-2'-oxo-2,3-dihydro-1H-spiro[imidazo[1,2-a]pyridine-7,3'-indoline]-6,8-dicarbonitrile dimethyl sulfoxide disolvate top
Crystal data top
C16H11BrN6O·2C2H6OSF(000) = 1104
Mr = 539.47Dx = 1.538 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 10.3940 (1) ÅCell parameters from 27880 reflections
b = 26.2421 (2) Åθ = 3.4–79.2°
c = 8.9860 (1) ŵ = 4.38 mm1
β = 108.056 (1)°T = 100 K
V = 2330.32 (4) Å3Prism, colourless
Z = 40.05 × 0.03 × 0.02 mm
Data collection top
Rigaku XtaLAB Synergy Dualflex HyPix
diffractometer
5062 independent reflections
Radiation source: micro-focus sealed X-ray tube5047 reflections with I > 2σ(I)
Detector resolution: 0 pixels mm-1Rint = 0.029
φ and ω scansθmax = 79.4°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2021)
h = 1313
Tmin = 0.793, Tmax = 0.899k = 3133
31508 measured reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0287P)2 + 4.5523P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.003
S = 1.17Δρmax = 0.63 e Å3
5062 reflectionsΔρmin = 0.41 e Å3
331 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.00068 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.43785 (3)0.56355 (2)0.19141 (3)0.02651 (10)
O10.84018 (19)0.31921 (7)0.4894 (2)0.0262 (4)
N10.7688 (2)0.33596 (8)0.0737 (2)0.0236 (4)
H10.8469740.3493800.0790350.028*
C10.7948 (2)0.36248 (9)0.4575 (3)0.0195 (5)
N20.8234 (2)0.40340 (8)0.5544 (2)0.0223 (4)
H20.8838500.4031890.6509760.027*
C20.6818 (3)0.30219 (12)0.1925 (3)0.0311 (6)
H2A0.7303670.2704990.2019960.037*
H2B0.6513080.3192710.2957530.037*
C30.5622 (3)0.29063 (10)0.1340 (3)0.0269 (6)
H3A0.4766500.3038120.2071580.032*
H3B0.5531200.2535600.1194620.032*
N40.5981 (2)0.31762 (8)0.0156 (2)0.0181 (4)
C50.5237 (2)0.31827 (8)0.1184 (3)0.0162 (4)
N50.4101 (2)0.28990 (8)0.0779 (2)0.0206 (4)
H5A0.3872820.2719750.0118220.025*
H5B0.3571580.2888650.1403380.025*
C60.5691 (2)0.34678 (9)0.2534 (3)0.0175 (4)
C70.6955 (2)0.37927 (9)0.2964 (3)0.0164 (4)
C80.7672 (2)0.37480 (9)0.1734 (3)0.0170 (4)
C8A0.7175 (2)0.34454 (9)0.0441 (3)0.0169 (4)
C90.4989 (3)0.34610 (9)0.3650 (3)0.0227 (5)
N90.4511 (3)0.34703 (10)0.4650 (3)0.0313 (5)
C100.8877 (3)0.40296 (9)0.1953 (3)0.0219 (5)
N100.9860 (3)0.42647 (10)0.2186 (3)0.0321 (5)
C110.7468 (2)0.44627 (9)0.4847 (3)0.0198 (5)
C120.6681 (2)0.43415 (9)0.3327 (3)0.0173 (4)
C130.5776 (2)0.46901 (9)0.2424 (3)0.0187 (5)
H130.5234680.4611600.1386490.022*
C140.5690 (2)0.51605 (9)0.3097 (3)0.0208 (5)
C150.6498 (3)0.52928 (10)0.4587 (3)0.0244 (5)
H150.6429190.5622660.4991070.029*
C160.7414 (3)0.49383 (10)0.5490 (3)0.0243 (5)
H160.7981090.5021050.6511940.029*
S1A0.13352 (7)0.39460 (3)0.95312 (8)0.02416 (16)0.9
O2A0.0128 (3)0.38792 (11)0.8623 (5)0.0249 (7)0.9
C17A0.2226 (3)0.38206 (13)0.8160 (4)0.0335 (7)0.9
H17A0.2141270.3458750.7876620.050*0.9
H17B0.3184150.3906640.8631950.050*0.9
H17C0.1842080.4027680.7218900.050*0.9
C18A0.1618 (4)0.46142 (14)0.9724 (5)0.0453 (9)0.9
H18A0.1269430.4775750.8693310.068*0.9
H18B0.2591150.4680531.0157900.068*0.9
H18C0.1150590.4754581.0425740.068*0.9
S1B0.0823 (6)0.4388 (2)0.9322 (8)0.0235 (12)0.1
O2B0.024 (3)0.3988 (13)0.874 (6)0.0249 (7)0.1
C17B0.224 (2)0.4099 (11)1.073 (3)0.035 (6)*0.1
H17D0.2524310.3797261.0268360.053*0.1
H17E0.1986480.3997641.1650150.053*0.1
H17F0.2990370.4343011.1042810.053*0.1
C18B0.150 (4)0.4529 (15)0.778 (3)0.048 (8)*0.1
H18D0.1681020.4210890.7309470.072*0.1
H18E0.2341540.4721790.8192750.072*0.1
H18F0.0844010.4732840.6978800.072*0.1
S2A0.11696 (8)0.28805 (3)0.26820 (8)0.0263 (2)0.948 (2)
O3A0.24507 (19)0.25919 (7)0.2727 (2)0.0245 (4)0.95
C19A0.1529 (3)0.32357 (12)0.4465 (4)0.0286 (7)0.95
H19A0.2143200.3517280.4445560.043*0.95
H19B0.1956320.3011840.5353590.043*0.95
H19C0.0684770.3372560.4571280.043*0.95
C20A0.0076 (3)0.24245 (15)0.3136 (6)0.0422 (11)0.95
H20A0.0275730.2192860.2246930.063*0.95
H20B0.0678760.2601080.3349060.063*0.95
H20C0.0582160.2228930.4061310.063*0.95
S2B0.0451 (16)0.2982 (5)0.2263 (16)0.0263 (2)0.052 (2)
O3B0.165 (3)0.2865 (13)0.169 (4)0.0245 (4)0.05
C19B0.149 (6)0.306 (3)0.425 (3)0.0286 (7)0.05
H19D0.2447960.3027770.4307740.043*0.05
H19E0.1270630.2794080.4900340.043*0.05
H19F0.1334440.3395130.4630420.043*0.05
C20B0.045 (10)0.240 (2)0.326 (11)0.0422 (11)0.05
H20D0.0201080.2417110.3853970.063*0.05
H20E0.1354420.2330280.3986040.063*0.05
H20F0.0186550.2117710.2501130.063*0.05
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02864 (16)0.01708 (14)0.03326 (17)0.00539 (10)0.00878 (11)0.00476 (10)
O10.0292 (10)0.0233 (9)0.0252 (9)0.0092 (7)0.0069 (8)0.0058 (7)
N10.0255 (11)0.0263 (11)0.0216 (10)0.0070 (9)0.0111 (9)0.0061 (8)
C10.0192 (11)0.0212 (11)0.0186 (11)0.0012 (9)0.0067 (9)0.0025 (9)
N20.0216 (10)0.0247 (11)0.0165 (9)0.0033 (8)0.0002 (8)0.0011 (8)
C20.0280 (14)0.0391 (16)0.0275 (13)0.0081 (12)0.0106 (11)0.0137 (12)
C30.0325 (14)0.0252 (13)0.0228 (12)0.0088 (11)0.0085 (11)0.0084 (10)
N40.0179 (9)0.0202 (10)0.0161 (9)0.0034 (8)0.0054 (8)0.0035 (8)
C50.0178 (10)0.0130 (10)0.0179 (10)0.0018 (8)0.0056 (9)0.0032 (8)
N50.0214 (10)0.0218 (10)0.0192 (10)0.0040 (8)0.0074 (8)0.0034 (8)
C60.0196 (11)0.0148 (10)0.0188 (11)0.0009 (9)0.0068 (9)0.0007 (8)
C70.0185 (11)0.0136 (10)0.0164 (10)0.0000 (8)0.0044 (9)0.0004 (8)
C80.0196 (11)0.0144 (10)0.0169 (11)0.0012 (8)0.0054 (9)0.0008 (8)
C8A0.0176 (11)0.0136 (10)0.0192 (11)0.0012 (8)0.0052 (9)0.0021 (8)
C90.0247 (12)0.0192 (11)0.0240 (12)0.0048 (9)0.0073 (10)0.0059 (9)
N90.0330 (12)0.0352 (13)0.0300 (12)0.0105 (10)0.0162 (10)0.0130 (10)
C100.0263 (13)0.0197 (11)0.0204 (11)0.0026 (10)0.0084 (10)0.0031 (9)
N100.0312 (12)0.0331 (13)0.0339 (13)0.0126 (10)0.0130 (10)0.0100 (10)
C110.0201 (11)0.0202 (11)0.0168 (11)0.0012 (9)0.0025 (9)0.0007 (9)
C120.0187 (11)0.0159 (11)0.0171 (11)0.0023 (8)0.0052 (9)0.0025 (8)
C130.0205 (11)0.0169 (11)0.0170 (11)0.0019 (9)0.0037 (9)0.0004 (9)
C140.0204 (11)0.0170 (11)0.0251 (12)0.0004 (9)0.0069 (10)0.0029 (9)
C150.0307 (13)0.0180 (11)0.0258 (13)0.0031 (10)0.0106 (11)0.0058 (10)
C160.0273 (13)0.0243 (12)0.0195 (11)0.0049 (10)0.0046 (10)0.0065 (10)
S1A0.0207 (3)0.0278 (4)0.0216 (3)0.0033 (3)0.0030 (3)0.0009 (3)
O2A0.0197 (10)0.0340 (18)0.0191 (12)0.0052 (12)0.0032 (8)0.0003 (13)
C17A0.0303 (16)0.0348 (17)0.0396 (18)0.0050 (13)0.0172 (14)0.0012 (14)
C18A0.046 (2)0.0296 (18)0.064 (3)0.0077 (17)0.0228 (19)0.0129 (17)
S1B0.023 (3)0.011 (3)0.041 (3)0.004 (2)0.017 (3)0.005 (2)
O2B0.0197 (10)0.0340 (18)0.0191 (12)0.0052 (12)0.0032 (8)0.0003 (13)
S2A0.0283 (4)0.0275 (3)0.0226 (3)0.0065 (3)0.0074 (3)0.0015 (3)
O3A0.0256 (10)0.0235 (9)0.0263 (10)0.0008 (8)0.0108 (8)0.0013 (7)
C19A0.0278 (14)0.0235 (15)0.0378 (16)0.0057 (13)0.0148 (12)0.0156 (12)
C20A0.028 (2)0.0434 (18)0.062 (2)0.0157 (15)0.023 (2)0.0283 (17)
S2B0.0283 (4)0.0275 (3)0.0226 (3)0.0065 (3)0.0074 (3)0.0015 (3)
O3B0.0256 (10)0.0235 (9)0.0263 (10)0.0008 (8)0.0108 (8)0.0013 (7)
C19B0.0278 (14)0.0235 (15)0.0378 (16)0.0057 (13)0.0148 (12)0.0156 (12)
C20B0.028 (2)0.0434 (18)0.062 (2)0.0157 (15)0.023 (2)0.0283 (17)
Geometric parameters (Å, º) top
Br1—C141.909 (2)C16—H160.9500
O1—C11.229 (3)S1A—O2A1.497 (3)
N1—C8A1.344 (3)S1A—C18A1.778 (4)
N1—C21.464 (3)S1A—C17A1.787 (3)
N1—H10.9000C17A—H17A0.9800
C1—N21.356 (3)C17A—H17B0.9800
C1—C71.559 (3)C17A—H17C0.9800
N2—C111.408 (3)C18A—H18A0.9800
N2—H20.8999C18A—H18B0.9800
C2—C31.523 (4)C18A—H18C0.9800
C2—H2A0.9900S1B—O2B1.497 (4)
C2—H2B0.9900S1B—C18B1.777 (5)
C3—N41.462 (3)S1B—C17B1.787 (5)
C3—H3A0.9900C17B—H17D0.9800
C3—H3B0.9900C17B—H17E0.9800
N4—C51.377 (3)C17B—H17F0.9800
N4—C8A1.381 (3)C18B—H18D0.9800
C5—N51.347 (3)C18B—H18E0.9800
C5—C61.378 (3)C18B—H18F0.9800
N5—H5A0.8996S2A—O3A1.521 (2)
N5—H5B0.8999S2A—C20A1.782 (3)
C6—C91.412 (3)S2A—C19A1.790 (3)
C6—C71.513 (3)C19A—H19A0.9800
C7—C81.517 (3)C19A—H19B0.9800
C7—C121.523 (3)C19A—H19C0.9800
C8—C8A1.369 (3)C20A—H20A0.9800
C8—C101.414 (3)C20A—H20B0.9800
C9—N91.154 (4)C20A—H20C0.9800
C10—N101.156 (4)S2B—O3B1.522 (4)
C11—C161.384 (4)S2B—C20B1.782 (5)
C11—C121.394 (3)S2B—C19B1.790 (4)
C12—C131.381 (3)C19B—H19D0.9800
C13—C141.390 (3)C19B—H19E0.9800
C13—H130.9500C19B—H19F0.9800
C14—C151.386 (4)C20B—H20D0.9800
C15—C161.397 (4)C20B—H20E0.9800
C15—H150.9500C20B—H20F0.9800
C8A—N1—C2111.7 (2)C11—C16—H16121.1
C8A—N1—H1124.1C15—C16—H16121.1
C2—N1—H1124.2O2A—S1A—C18A106.15 (19)
O1—C1—N2126.2 (2)O2A—S1A—C17A105.0 (2)
O1—C1—C7125.0 (2)C18A—S1A—C17A98.23 (18)
N2—C1—C7108.8 (2)S1A—C17A—H17A109.5
C1—N2—C11111.5 (2)S1A—C17A—H17B109.5
C1—N2—H2124.2H17A—C17A—H17B109.5
C11—N2—H2124.3S1A—C17A—H17C109.5
N1—C2—C3104.8 (2)H17A—C17A—H17C109.5
N1—C2—H2A110.8H17B—C17A—H17C109.5
C3—C2—H2A110.8S1A—C18A—H18A109.5
N1—C2—H2B110.8S1A—C18A—H18B109.5
C3—C2—H2B110.8H18A—C18A—H18B109.5
H2A—C2—H2B108.9S1A—C18A—H18C109.5
N4—C3—C2102.6 (2)H18A—C18A—H18C109.5
N4—C3—H3A111.3H18B—C18A—H18C109.5
C2—C3—H3A111.3O2B—S1B—C18B107 (2)
N4—C3—H3B111.3O2B—S1B—C17B108 (2)
C2—C3—H3B111.3C18B—S1B—C17B101.7 (16)
H3A—C3—H3B109.2S1B—C17B—H17D109.5
C5—N4—C8A121.9 (2)S1B—C17B—H17E109.5
C5—N4—C3125.9 (2)H17D—C17B—H17E109.5
C8A—N4—C3112.2 (2)S1B—C17B—H17F109.5
N5—C5—N4116.1 (2)H17D—C17B—H17F109.5
N5—C5—C6124.8 (2)H17E—C17B—H17F109.5
N4—C5—C6119.1 (2)S1B—C18B—H18D109.5
C5—N5—H5A119.8S1B—C18B—H18E109.5
C5—N5—H5B120.2H18D—C18B—H18E109.5
H5A—N5—H5B120.0S1B—C18B—H18F109.5
C5—C6—C9120.5 (2)H18D—C18B—H18F109.5
C5—C6—C7124.4 (2)H18E—C18B—H18F109.5
C9—C6—C7115.1 (2)O3A—S2A—C20A105.94 (15)
C6—C7—C8110.72 (19)O3A—S2A—C19A107.28 (13)
C6—C7—C12112.51 (19)C20A—S2A—C19A96.65 (19)
C8—C7—C12113.31 (19)S2A—C19A—H19A109.5
C6—C7—C1110.56 (19)S2A—C19A—H19B109.5
C8—C7—C1108.74 (19)H19A—C19A—H19B109.5
C12—C7—C1100.51 (18)S2A—C19A—H19C109.5
C8A—C8—C10120.4 (2)H19A—C19A—H19C109.5
C8A—C8—C7121.5 (2)H19B—C19A—H19C109.5
C10—C8—C7118.2 (2)S2A—C20A—H20A109.5
N1—C8A—C8128.9 (2)S2A—C20A—H20B109.5
N1—C8A—N4108.7 (2)H20A—C20A—H20B109.5
C8—C8A—N4122.3 (2)S2A—C20A—H20C109.5
N9—C9—C6174.4 (3)H20A—C20A—H20C109.5
N10—C10—C8177.5 (3)H20B—C20A—H20C109.5
C16—C11—C12121.8 (2)O3B—S2B—C20B97 (4)
C16—C11—N2128.7 (2)O3B—S2B—C19B93 (3)
C12—C11—N2109.4 (2)C20B—S2B—C19B72 (4)
C13—C12—C11120.7 (2)S2B—C19B—H19D109.5
C13—C12—C7129.7 (2)S2B—C19B—H19E109.5
C11—C12—C7109.5 (2)H19D—C19B—H19E109.5
C12—C13—C14117.1 (2)S2B—C19B—H19F109.5
C12—C13—H13121.4H19D—C19B—H19F109.5
C14—C13—H13121.4H19E—C19B—H19F109.5
C15—C14—C13122.8 (2)S2B—C20B—H20D109.5
C15—C14—Br1119.25 (19)S2B—C20B—H20E109.5
C13—C14—Br1117.94 (18)H20D—C20B—H20E109.5
C14—C15—C16119.6 (2)S2B—C20B—H20F109.5
C14—C15—H15120.2H20D—C20B—H20F109.5
C16—C15—H15120.2H20E—C20B—H20F109.5
C11—C16—C15117.8 (2)
O1—C1—N2—C11175.7 (2)C2—N1—C8A—C8178.1 (3)
C7—C1—N2—C115.0 (3)C2—N1—C8A—N40.9 (3)
C8A—N1—C2—C31.0 (3)C10—C8—C8A—N10.9 (4)
N1—C2—C3—N42.3 (3)C7—C8—C8A—N1179.2 (2)
C2—C3—N4—C5178.4 (2)C10—C8—C8A—N4178.0 (2)
C2—C3—N4—C8A3.0 (3)C7—C8—C8A—N41.9 (3)
C8A—N4—C5—N5179.2 (2)C5—N4—C8A—N1178.8 (2)
C3—N4—C5—N52.4 (3)C3—N4—C8A—N12.6 (3)
C8A—N4—C5—C60.3 (3)C5—N4—C8A—C82.1 (3)
C3—N4—C5—C6178.2 (2)C3—N4—C8A—C8176.5 (2)
N5—C5—C6—C92.8 (4)C1—N2—C11—C16175.8 (3)
N4—C5—C6—C9176.6 (2)C1—N2—C11—C122.6 (3)
N5—C5—C6—C7178.9 (2)C16—C11—C12—C132.4 (4)
N4—C5—C6—C71.7 (3)N2—C11—C12—C13176.2 (2)
C5—C6—C7—C81.8 (3)C16—C11—C12—C7179.5 (2)
C9—C6—C7—C8176.6 (2)N2—C11—C12—C71.0 (3)
C5—C6—C7—C12126.2 (2)C6—C7—C12—C1355.6 (3)
C9—C6—C7—C1255.4 (3)C8—C7—C12—C1370.9 (3)
C5—C6—C7—C1122.3 (2)C1—C7—C12—C13173.2 (2)
C9—C6—C7—C156.1 (3)C6—C7—C12—C11121.2 (2)
O1—C1—C7—C656.6 (3)C8—C7—C12—C11112.3 (2)
N2—C1—C7—C6124.1 (2)C1—C7—C12—C113.6 (2)
O1—C1—C7—C865.2 (3)C11—C12—C13—C140.0 (4)
N2—C1—C7—C8114.1 (2)C7—C12—C13—C14176.5 (2)
O1—C1—C7—C12175.6 (2)C12—C13—C14—C152.3 (4)
N2—C1—C7—C125.1 (2)C12—C13—C14—Br1176.74 (18)
C6—C7—C8—C8A0.0 (3)C13—C14—C15—C162.1 (4)
C12—C7—C8—C8A127.5 (2)Br1—C14—C15—C16176.9 (2)
C1—C7—C8—C8A121.6 (2)C12—C11—C16—C152.5 (4)
C6—C7—C8—C10179.8 (2)N2—C11—C16—C15175.7 (2)
C12—C7—C8—C1052.4 (3)C14—C15—C16—C110.3 (4)
C1—C7—C8—C1058.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2Ai0.901.982.855 (4)165
N1—H1···O2Bi0.902.002.87 (4)160
N2—H2···O2Aii0.901.912.793 (5)166
N2—H2···O2Bii0.901.942.82 (5)166
N5—H5A···O3Aiii0.902.203.034 (3)155
N5—H5B···O3A0.902.062.918 (3)160
C2—H2B···N9iv0.992.593.469 (4)148
C19A—H19A···N90.982.413.114 (5)128
C19A—H19C···O1v0.982.523.392 (4)148
C20A—H20B···O1v0.982.463.359 (4)152
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y, z; (iii) x, y+1/2, z1/2; (iv) x, y, z1; (v) x1, y, z.
 

Acknowledgements

The authors would like to thank Baku State University and the Ministry of Education and Science of the Russian Federation for their support of this research. Authors' contributions are as follows. Conceptualization, FNN and IGM; methodology, FNN and IGM; investigation, FNN, MA and APN; writing (original draft), MA and IGM; writing (review and editing of the manuscript), MA and FNN; visualization, MA, FNN and IGM; funding acquisition, VNK, RMR and FNN; resources, AAA, VNK and FNN; supervision, IGM and MA.

Funding information

Funding for this research was provided by: Ministry of Education and Science of the Russian Federation (award No. 075-03-2020-223 (FSSF-2020-0017)).

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, F., Shioda, N., Moriguchi, S., Yamamoto, Y., Raie, A. Y. A., Yamaguchi, Y., Hino, M. & Fukunaga, K. (2008). J. Pharmacol. Exp. Ther. 326, 127–134.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJun, J., Juan, L., Xinhua, L., Hongxin, L., Haiyan, W. & Hong-Ping, X. (2019). Synlett, 30, 1241–1245.  Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationLu, L., Deyan, W., Xiangmin, L., Sinan, W., Hao, L., Jian, L. & Wei, W. (2012). Chem. Commun. 48, 1692–1694.  Google Scholar
First citationMagerramov, A. M., Nagiev, F. N., Mamedova, G. Z. Kh. A., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1713–1715.  Web of Science CSD CrossRef Google Scholar
First citationMamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498–499.  Web of Science CrossRef CAS Google Scholar
First citationNagalakshmi, R. A., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o604–o605.  CSD CrossRef IUCr Journals Google Scholar
First citationNagalakshmi, R. A., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, o971–o972.  CSD CrossRef IUCr Journals Google Scholar
First citationNagalakshmi, R. A., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2014c). Acta Cryst. E70, o816–o817.  CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195–199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512–515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNegar, L., Ghodsi Mohammadi, Z., Alireza, B. & Parisa, G. (2012). Eur. J. Chem. 3, 310–313.  Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSamaneh, A., Homa, A. & Javad, A. (2021). J. Chin. Chem. Soc. 68, 1090–1103.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationYadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.  Web of Science CrossRef CAS Google Scholar
First citationYin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds