research communications
H-spiro[imidazo[1,2-a]pyridine-7,3′-indoline]-6,8-dicarbonitrile dimethyl sulfoxide disolvate
and Hirshfeld surface analysis of 5-amino-5′-bromo-2′-oxo-2,3-dihydro-1aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e`Composite Materials' Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fAcademy of Sciences of the Republic of Tajikistan, Kh Yu Yusufbekov Pamir Biological Institute, 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru
In the title compound, C16H11BrN6O·2C2H6OS, the 1,2,3,7-tetrahydroimidazo[1,2-a]pyridine ring system and the oxindole moiety are both nearly planar [maximum deviations = 0.042 (2) and 0.115 (2) Å, respectively] and their planes form a dihedral angle of 86.04 (5)° with each other. Intermolecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds link molecules in the crystal through the O atoms of the solvent molecules, generating a three-dimensional network. A Hirshfeld surface analysis was performed to further analyse the intermolecular interactions.
Keywords: crystal structure; spiro[imidazo[1,2-a]pyridine; hydrogen bonds; dimethyl sulfoxide; disorder; Hirshfeld surface analysis.
CCDC reference: 2170241
1. Chemical context
C—C and C—N bond-forming reactions represent a significant synthetic class because they play critical roles in various applications in different fields of chemistry (Yadigarov et al., 2009; Abdelhamid et al., 2011; Yin et al., 2020; Khalilov et al., 2021). Nitrogen heterocycles, particularly those including the spiro[imidazo[1,2-a]pyridine] moiety, play a key role in medicinal chemistry (Han et al., 2008; Mamedov et al., 2020; Samaneh et al., 2021). The conjugate addition to oxoindolinylidenemalononitriles has been well studied in simple two-component reactions with respect to producing spiro derivatives (Lu et al., 2012; Jun et al., 2019). We have previously reported the three-component reaction of 2-(2-oxoindolin-3-ylidene)malononitrile with malononitrile and ethylenediamine which resulted in 5-amino-2′-oxo-2,3-dihydro-1H-spiro[imidazo[1,2-a]pyridine-7,3′-indoline]-6,8-dicarbonitrile (Magerramov et al., 2018). In the framework of our ongoing structural studies (Naghiyev et al., 2020, 2021a,b), herein the and Hirshfeld surface analysis of 5-amino-5′-bromo-2′-oxo-2,3-dihydro-1H-spiro[imidazo[1,2-a]pyridine-7,3′-indoline]-6,8-dicarbonitrile, (1), is reported.
2. Structural commentary
In the title compound, (1) (see Scheme and Fig. 1), the 1,2,3,7-tetrahydroimidazo[1,2-a]pyridine ring system (N1/N4/C2/C3/C5–C8/C8A) and the oxindole moiety (O1/N2/C1/C7/C11–C16) are nearly planar, with maximum deviations of 0.042 (2) Å for C3 and 0.115 (2) Å for O1. These ring systems make a dihedral angle of 86.04 (5)° with each other. The cyano (–C≡N) and amine (NH2) groups form an intermolecular hydrogen bond with one dimethyl sulfoxide (DMSO) group, giving an S(10) motif (Bernstein et al., 1995) (Table 1).
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked through the O atoms of the DMSO solvent molecules by intermolecular N—H⋯O and C—H⋯O hydrogen bonds which, together with C—H⋯N hydrogen bonds, form a three-dimensional (3D) network (Table 1 and Fig. 2). The π-cloud of the C8A—N1 bond (which has some multiple-bond character) acts as an to Br1 in a kind of `halogen bond', with a Br1⋯C8A(−x + 1, −y + 1, −z) distance of 3.284 (2) Å.
The Hirshfeld surfaces were calculated and the two-dimensional (2D) fingerprint plots generated using CrystalExplorer (Version 17.5; Turner et al., 2017). Fig. 3 shows the 3D Hirshfeld surface of (1) with dnorm (normalized contact distance) plotted over the range from −0.6206 to 1.3180 a.u. The interactions given in Table 1 play a key role in the molecular packing of (1).
The overall 2D fingerprint plot for (1) is given in Fig. 4(a), and those delineated into H⋯H, N⋯H/H⋯N, O⋯H/H⋯O, C⋯H/H⋯C and Br⋯H/H⋯Br contacts are shown in Figs. 4(b)–(f). The percentage contributions to the Hirshfeld surfaces from the various interatomic contacts are as follows: H⋯H [Fig. 4(b); 27.1%], N⋯H/H⋯N [Fig. 4(c); 23.8%], O⋯H/H⋯O [Fig. 4(d); 15.7%], C⋯H/H⋯C [Fig. 4(e); 13.2%] and Br⋯H/H⋯Br [Fig. 4(f); 10.2%]. Other minor contributions to the Hirshfeld surface are from Br⋯C/C⋯Br (3.9%), Br⋯N/N⋯Br (2.0%), C⋯C (1.5%), S⋯C/C⋯S (0.8%), S⋯H/H⋯S (0.6%), S⋯N/N⋯S (0.4%), O⋯N/N⋯O (0.4%) and Br⋯O/O⋯Br (0.3%).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for the 5-bromo-1,3-dihydro-2H-indol-2-one unit of (1) gave 87 hits. The three compounds most resembling (1) are (I) (COGQAS; Nagalakshmi et al., 2014a), (II) (WOPKAP; Nagalakshmi et al., 2014b) and (III) (XODQOY; Nagalakshmi et al., 2014c), showing very similar conformation of the molecular core.
In the crystal of (I), N—H⋯O hydrogen bonds lead to the formation of chains along the c-axis direction. Within the chains there are further N—H⋯O and C—H⋯O hydrogen bonds enclosing R22(14) ring motifs. The chains are linked via N—H⋯O and C—H⋯O hydrogen bonds involving the dimethyl sulfoxide solvent molecule which acts as both an acceptor and a donor.
In (II), the contains two independent molecules (A and B) having similar conformations. In the crystal, molecules are linked by N—H⋯O hydrogen bonds, forming chains along the a axis which enclose R22(16) ring motifs. The rings are linked by weak N—H⋯O and C—H⋯O hydrogen bonds, and C—H⋯π interactions, forming sheets lying parallel to the (001) plane.
In (III), two intramolecular N—H⋯O hydrogen bonds are formed, each closing an S(6) loop. In the crystal, strong N—H⋯O hydrogen bonds lead to the formation of zigzag chains along the c axis. These are consolidated in the 3D crystal packing by weak N—H⋯O hydrogen bonding, as well as by C—H⋯O, C—H⋯Br and C—H⋯π interactions.
5. Synthesis and crystallization
To a solution of 2-(5-bromo-2-oxoindolin-3-ylidene)malononitrile (1.4 g, 5.1 mmol), which was previously prepared by a known procedure (Negar et al., 2012), and malononitrile (0.34 g, 5.2 mmol) in methanol (25 ml), ethylenediamine (0.31 g, 5.2 mmol) was added and the mixture was stirred at room temperature for 72 h (Fig. 5). Methanol (15 ml) was removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from an ethanol–water (1:1 v/v) solution (yield 69%; m.p. 479–480 K). Single crystals of (1) were grown from DMSO solution.
1H NMR (300 MHz, DMSO-d6, ppm): δ 3.50 (t, 4H, 2CH2N), 6.61 (s, 2H, NH2), 6.78 (d, 1H, Ar-H, 3JH-H = 7.8 Hz), 7.35 (s, 1H, Ar-H), 7.37 (d, 1H, Ar-H, 3JH-H = 7.8 Hz), 7.73 (s, H, NH), 10.44 (s, H, NH). 13C NMR (75 MHz, DMSO-d6, ppm): δ 42.46 (CH2N), 45.15 (CH2N), 51.24 (Cquat), 51.71 (=Cquat), 54.69 (=Cquat), 112.02 (CHarom), 114.43 (Br—Carom), 119.63 (CN), 120.15 (CN), 128.02 (CHarom), 131.90 (CHarom), 137.83 (Carom), 140.80 (Carom), 152.19 (=Cquat), 154.76 (=Cquat), 179.67 (O=C).
6. Refinement
Crystal data, data collection and structure . The H atoms were included in calculated positions and treated as riding atoms; N—H = 0.90 Å with Uiso(H) = 1.2Ueq(N), and C—H = 0.95–0.99 Å with Uiso(H) = 1.2 or 1.5Ueq(C). Both DMSO solvent molecules are disordered over two positions, with final occupancies of 0.90:0.10 for the first and 0.95:0.05 for the second molecule. In the first disordered DMSO molecule, the C17B and C18B atoms of the minor component were refined isotropically. The disordered atoms O2A/O2B, O3A/O3B, C19A/C19B and C20A/C20B were refined with anisotropic displacement parameters, constrained to be the same for both components. The S—C and S—O bond lengths in both disordered DMSO molecules were restrained to similarity.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2170241
https://doi.org/10.1107/S2056989022004741/zv2013sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022004741/zv2013Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C16H11BrN6O·2C2H6OS | F(000) = 1104 |
Mr = 539.47 | Dx = 1.538 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 10.3940 (1) Å | Cell parameters from 27880 reflections |
b = 26.2421 (2) Å | θ = 3.4–79.2° |
c = 8.9860 (1) Å | µ = 4.38 mm−1 |
β = 108.056 (1)° | T = 100 K |
V = 2330.32 (4) Å3 | Prism, colourless |
Z = 4 | 0.05 × 0.03 × 0.02 mm |
Rigaku XtaLAB Synergy Dualflex HyPix diffractometer | 5062 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 5047 reflections with I > 2σ(I) |
Detector resolution: 0 pixels mm-1 | Rint = 0.029 |
φ and ω scans | θmax = 79.4°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2021) | h = −13→13 |
Tmin = 0.793, Tmax = 0.899 | k = −31→33 |
31508 measured reflections | l = −11→11 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0287P)2 + 4.5523P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.094 | (Δ/σ)max = 0.003 |
S = 1.17 | Δρmax = 0.63 e Å−3 |
5062 reflections | Δρmin = −0.41 e Å−3 |
331 parameters | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
6 restraints | Extinction coefficient: 0.00068 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.43785 (3) | 0.56355 (2) | 0.19141 (3) | 0.02651 (10) | |
O1 | 0.84018 (19) | 0.31921 (7) | 0.4894 (2) | 0.0262 (4) | |
N1 | 0.7688 (2) | 0.33596 (8) | −0.0737 (2) | 0.0236 (4) | |
H1 | 0.846974 | 0.349380 | −0.079035 | 0.028* | |
C1 | 0.7948 (2) | 0.36248 (9) | 0.4575 (3) | 0.0195 (5) | |
N2 | 0.8234 (2) | 0.40340 (8) | 0.5544 (2) | 0.0223 (4) | |
H2 | 0.883850 | 0.403189 | 0.650976 | 0.027* | |
C2 | 0.6818 (3) | 0.30219 (12) | −0.1925 (3) | 0.0311 (6) | |
H2A | 0.730367 | 0.270499 | −0.201996 | 0.037* | |
H2B | 0.651308 | 0.319271 | −0.295753 | 0.037* | |
C3 | 0.5622 (3) | 0.29063 (10) | −0.1340 (3) | 0.0269 (6) | |
H3A | 0.476650 | 0.303812 | −0.207158 | 0.032* | |
H3B | 0.553120 | 0.253560 | −0.119462 | 0.032* | |
N4 | 0.5981 (2) | 0.31762 (8) | 0.0156 (2) | 0.0181 (4) | |
C5 | 0.5237 (2) | 0.31827 (8) | 0.1184 (3) | 0.0162 (4) | |
N5 | 0.4101 (2) | 0.28990 (8) | 0.0779 (2) | 0.0206 (4) | |
H5A | 0.387282 | 0.271975 | −0.011822 | 0.025* | |
H5B | 0.357158 | 0.288865 | 0.140338 | 0.025* | |
C6 | 0.5691 (2) | 0.34678 (9) | 0.2534 (3) | 0.0175 (4) | |
C7 | 0.6955 (2) | 0.37927 (9) | 0.2964 (3) | 0.0164 (4) | |
C8 | 0.7672 (2) | 0.37480 (9) | 0.1734 (3) | 0.0170 (4) | |
C8A | 0.7175 (2) | 0.34454 (9) | 0.0441 (3) | 0.0169 (4) | |
C9 | 0.4989 (3) | 0.34610 (9) | 0.3650 (3) | 0.0227 (5) | |
N9 | 0.4511 (3) | 0.34703 (10) | 0.4650 (3) | 0.0313 (5) | |
C10 | 0.8877 (3) | 0.40296 (9) | 0.1953 (3) | 0.0219 (5) | |
N10 | 0.9860 (3) | 0.42647 (10) | 0.2186 (3) | 0.0321 (5) | |
C11 | 0.7468 (2) | 0.44627 (9) | 0.4847 (3) | 0.0198 (5) | |
C12 | 0.6681 (2) | 0.43415 (9) | 0.3327 (3) | 0.0173 (4) | |
C13 | 0.5776 (2) | 0.46901 (9) | 0.2424 (3) | 0.0187 (5) | |
H13 | 0.523468 | 0.461160 | 0.138649 | 0.022* | |
C14 | 0.5690 (2) | 0.51605 (9) | 0.3097 (3) | 0.0208 (5) | |
C15 | 0.6498 (3) | 0.52928 (10) | 0.4587 (3) | 0.0244 (5) | |
H15 | 0.642919 | 0.562266 | 0.499107 | 0.029* | |
C16 | 0.7414 (3) | 0.49383 (10) | 0.5490 (3) | 0.0243 (5) | |
H16 | 0.798109 | 0.502105 | 0.651194 | 0.029* | |
S1A | 0.13352 (7) | 0.39460 (3) | 0.95312 (8) | 0.02416 (16) | 0.9 |
O2A | −0.0128 (3) | 0.38792 (11) | 0.8623 (5) | 0.0249 (7) | 0.9 |
C17A | 0.2226 (3) | 0.38206 (13) | 0.8160 (4) | 0.0335 (7) | 0.9 |
H17A | 0.214127 | 0.345875 | 0.787662 | 0.050* | 0.9 |
H17B | 0.318415 | 0.390664 | 0.863195 | 0.050* | 0.9 |
H17C | 0.184208 | 0.402768 | 0.721890 | 0.050* | 0.9 |
C18A | 0.1618 (4) | 0.46142 (14) | 0.9724 (5) | 0.0453 (9) | 0.9 |
H18A | 0.126943 | 0.477575 | 0.869331 | 0.068* | 0.9 |
H18B | 0.259115 | 0.468053 | 1.015790 | 0.068* | 0.9 |
H18C | 0.115059 | 0.475458 | 1.042574 | 0.068* | 0.9 |
S1B | 0.0823 (6) | 0.4388 (2) | 0.9322 (8) | 0.0235 (12) | 0.1 |
O2B | −0.024 (3) | 0.3988 (13) | 0.874 (6) | 0.0249 (7) | 0.1 |
C17B | 0.224 (2) | 0.4099 (11) | 1.073 (3) | 0.035 (6)* | 0.1 |
H17D | 0.252431 | 0.379726 | 1.026836 | 0.053* | 0.1 |
H17E | 0.198648 | 0.399764 | 1.165015 | 0.053* | 0.1 |
H17F | 0.299037 | 0.434301 | 1.104281 | 0.053* | 0.1 |
C18B | 0.150 (4) | 0.4529 (15) | 0.778 (3) | 0.048 (8)* | 0.1 |
H18D | 0.168102 | 0.421089 | 0.730947 | 0.072* | 0.1 |
H18E | 0.234154 | 0.472179 | 0.819275 | 0.072* | 0.1 |
H18F | 0.084401 | 0.473284 | 0.697880 | 0.072* | 0.1 |
S2A | 0.11696 (8) | 0.28805 (3) | 0.26820 (8) | 0.0263 (2) | 0.948 (2) |
O3A | 0.24507 (19) | 0.25919 (7) | 0.2727 (2) | 0.0245 (4) | 0.95 |
C19A | 0.1529 (3) | 0.32357 (12) | 0.4465 (4) | 0.0286 (7) | 0.95 |
H19A | 0.214320 | 0.351728 | 0.444556 | 0.043* | 0.95 |
H19B | 0.195632 | 0.301184 | 0.535359 | 0.043* | 0.95 |
H19C | 0.068477 | 0.337256 | 0.457128 | 0.043* | 0.95 |
C20A | 0.0076 (3) | 0.24245 (15) | 0.3136 (6) | 0.0422 (11) | 0.95 |
H20A | −0.027573 | 0.219286 | 0.224693 | 0.063* | 0.95 |
H20B | −0.067876 | 0.260108 | 0.334906 | 0.063* | 0.95 |
H20C | 0.058216 | 0.222893 | 0.406131 | 0.063* | 0.95 |
S2B | 0.0451 (16) | 0.2982 (5) | 0.2263 (16) | 0.0263 (2) | 0.052 (2) |
O3B | 0.165 (3) | 0.2865 (13) | 0.169 (4) | 0.0245 (4) | 0.05 |
C19B | 0.149 (6) | 0.306 (3) | 0.425 (3) | 0.0286 (7) | 0.05 |
H19D | 0.244796 | 0.302777 | 0.430774 | 0.043* | 0.05 |
H19E | 0.127063 | 0.279408 | 0.490034 | 0.043* | 0.05 |
H19F | 0.133444 | 0.339513 | 0.463042 | 0.043* | 0.05 |
C20B | 0.045 (10) | 0.240 (2) | 0.326 (11) | 0.0422 (11) | 0.05 |
H20D | −0.020108 | 0.241711 | 0.385397 | 0.063* | 0.05 |
H20E | 0.135442 | 0.233028 | 0.398604 | 0.063* | 0.05 |
H20F | 0.018655 | 0.211771 | 0.250113 | 0.063* | 0.05 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02864 (16) | 0.01708 (14) | 0.03326 (17) | 0.00539 (10) | 0.00878 (11) | 0.00476 (10) |
O1 | 0.0292 (10) | 0.0233 (9) | 0.0252 (9) | 0.0092 (7) | 0.0069 (8) | 0.0058 (7) |
N1 | 0.0255 (11) | 0.0263 (11) | 0.0216 (10) | −0.0070 (9) | 0.0111 (9) | −0.0061 (8) |
C1 | 0.0192 (11) | 0.0212 (11) | 0.0186 (11) | 0.0012 (9) | 0.0067 (9) | 0.0025 (9) |
N2 | 0.0216 (10) | 0.0247 (11) | 0.0165 (9) | 0.0033 (8) | −0.0002 (8) | 0.0011 (8) |
C2 | 0.0280 (14) | 0.0391 (16) | 0.0275 (13) | −0.0081 (12) | 0.0106 (11) | −0.0137 (12) |
C3 | 0.0325 (14) | 0.0252 (13) | 0.0228 (12) | −0.0088 (11) | 0.0085 (11) | −0.0084 (10) |
N4 | 0.0179 (9) | 0.0202 (10) | 0.0161 (9) | −0.0034 (8) | 0.0054 (8) | −0.0035 (8) |
C5 | 0.0178 (10) | 0.0130 (10) | 0.0179 (10) | 0.0018 (8) | 0.0056 (9) | 0.0032 (8) |
N5 | 0.0214 (10) | 0.0218 (10) | 0.0192 (10) | −0.0040 (8) | 0.0074 (8) | −0.0034 (8) |
C6 | 0.0196 (11) | 0.0148 (10) | 0.0188 (11) | −0.0009 (9) | 0.0068 (9) | −0.0007 (8) |
C7 | 0.0185 (11) | 0.0136 (10) | 0.0164 (10) | 0.0000 (8) | 0.0044 (9) | −0.0004 (8) |
C8 | 0.0196 (11) | 0.0144 (10) | 0.0169 (11) | −0.0012 (8) | 0.0054 (9) | 0.0008 (8) |
C8A | 0.0176 (11) | 0.0136 (10) | 0.0192 (11) | 0.0012 (8) | 0.0052 (9) | 0.0021 (8) |
C9 | 0.0247 (12) | 0.0192 (11) | 0.0240 (12) | −0.0048 (9) | 0.0073 (10) | −0.0059 (9) |
N9 | 0.0330 (12) | 0.0352 (13) | 0.0300 (12) | −0.0105 (10) | 0.0162 (10) | −0.0130 (10) |
C10 | 0.0263 (13) | 0.0197 (11) | 0.0204 (11) | −0.0026 (10) | 0.0084 (10) | −0.0031 (9) |
N10 | 0.0312 (12) | 0.0331 (13) | 0.0339 (13) | −0.0126 (10) | 0.0130 (10) | −0.0100 (10) |
C11 | 0.0201 (11) | 0.0202 (11) | 0.0168 (11) | −0.0012 (9) | 0.0025 (9) | 0.0007 (9) |
C12 | 0.0187 (11) | 0.0159 (11) | 0.0171 (11) | −0.0023 (8) | 0.0052 (9) | −0.0025 (8) |
C13 | 0.0205 (11) | 0.0169 (11) | 0.0170 (11) | −0.0019 (9) | 0.0037 (9) | −0.0004 (9) |
C14 | 0.0204 (11) | 0.0170 (11) | 0.0251 (12) | 0.0004 (9) | 0.0069 (10) | 0.0029 (9) |
C15 | 0.0307 (13) | 0.0180 (11) | 0.0258 (13) | −0.0031 (10) | 0.0106 (11) | −0.0058 (10) |
C16 | 0.0273 (13) | 0.0243 (12) | 0.0195 (11) | −0.0049 (10) | 0.0046 (10) | −0.0065 (10) |
S1A | 0.0207 (3) | 0.0278 (4) | 0.0216 (3) | −0.0033 (3) | 0.0030 (3) | 0.0009 (3) |
O2A | 0.0197 (10) | 0.0340 (18) | 0.0191 (12) | −0.0052 (12) | 0.0032 (8) | 0.0003 (13) |
C17A | 0.0303 (16) | 0.0348 (17) | 0.0396 (18) | −0.0050 (13) | 0.0172 (14) | 0.0012 (14) |
C18A | 0.046 (2) | 0.0296 (18) | 0.064 (3) | −0.0077 (17) | 0.0228 (19) | −0.0129 (17) |
S1B | 0.023 (3) | 0.011 (3) | 0.041 (3) | 0.004 (2) | 0.017 (3) | 0.005 (2) |
O2B | 0.0197 (10) | 0.0340 (18) | 0.0191 (12) | −0.0052 (12) | 0.0032 (8) | 0.0003 (13) |
S2A | 0.0283 (4) | 0.0275 (3) | 0.0226 (3) | 0.0065 (3) | 0.0074 (3) | 0.0015 (3) |
O3A | 0.0256 (10) | 0.0235 (9) | 0.0263 (10) | 0.0008 (8) | 0.0108 (8) | −0.0013 (7) |
C19A | 0.0278 (14) | 0.0235 (15) | 0.0378 (16) | −0.0057 (13) | 0.0148 (12) | −0.0156 (12) |
C20A | 0.028 (2) | 0.0434 (18) | 0.062 (2) | −0.0157 (15) | 0.023 (2) | −0.0283 (17) |
S2B | 0.0283 (4) | 0.0275 (3) | 0.0226 (3) | 0.0065 (3) | 0.0074 (3) | 0.0015 (3) |
O3B | 0.0256 (10) | 0.0235 (9) | 0.0263 (10) | 0.0008 (8) | 0.0108 (8) | −0.0013 (7) |
C19B | 0.0278 (14) | 0.0235 (15) | 0.0378 (16) | −0.0057 (13) | 0.0148 (12) | −0.0156 (12) |
C20B | 0.028 (2) | 0.0434 (18) | 0.062 (2) | −0.0157 (15) | 0.023 (2) | −0.0283 (17) |
Br1—C14 | 1.909 (2) | C16—H16 | 0.9500 |
O1—C1 | 1.229 (3) | S1A—O2A | 1.497 (3) |
N1—C8A | 1.344 (3) | S1A—C18A | 1.778 (4) |
N1—C2 | 1.464 (3) | S1A—C17A | 1.787 (3) |
N1—H1 | 0.9000 | C17A—H17A | 0.9800 |
C1—N2 | 1.356 (3) | C17A—H17B | 0.9800 |
C1—C7 | 1.559 (3) | C17A—H17C | 0.9800 |
N2—C11 | 1.408 (3) | C18A—H18A | 0.9800 |
N2—H2 | 0.8999 | C18A—H18B | 0.9800 |
C2—C3 | 1.523 (4) | C18A—H18C | 0.9800 |
C2—H2A | 0.9900 | S1B—O2B | 1.497 (4) |
C2—H2B | 0.9900 | S1B—C18B | 1.777 (5) |
C3—N4 | 1.462 (3) | S1B—C17B | 1.787 (5) |
C3—H3A | 0.9900 | C17B—H17D | 0.9800 |
C3—H3B | 0.9900 | C17B—H17E | 0.9800 |
N4—C5 | 1.377 (3) | C17B—H17F | 0.9800 |
N4—C8A | 1.381 (3) | C18B—H18D | 0.9800 |
C5—N5 | 1.347 (3) | C18B—H18E | 0.9800 |
C5—C6 | 1.378 (3) | C18B—H18F | 0.9800 |
N5—H5A | 0.8996 | S2A—O3A | 1.521 (2) |
N5—H5B | 0.8999 | S2A—C20A | 1.782 (3) |
C6—C9 | 1.412 (3) | S2A—C19A | 1.790 (3) |
C6—C7 | 1.513 (3) | C19A—H19A | 0.9800 |
C7—C8 | 1.517 (3) | C19A—H19B | 0.9800 |
C7—C12 | 1.523 (3) | C19A—H19C | 0.9800 |
C8—C8A | 1.369 (3) | C20A—H20A | 0.9800 |
C8—C10 | 1.414 (3) | C20A—H20B | 0.9800 |
C9—N9 | 1.154 (4) | C20A—H20C | 0.9800 |
C10—N10 | 1.156 (4) | S2B—O3B | 1.522 (4) |
C11—C16 | 1.384 (4) | S2B—C20B | 1.782 (5) |
C11—C12 | 1.394 (3) | S2B—C19B | 1.790 (4) |
C12—C13 | 1.381 (3) | C19B—H19D | 0.9800 |
C13—C14 | 1.390 (3) | C19B—H19E | 0.9800 |
C13—H13 | 0.9500 | C19B—H19F | 0.9800 |
C14—C15 | 1.386 (4) | C20B—H20D | 0.9800 |
C15—C16 | 1.397 (4) | C20B—H20E | 0.9800 |
C15—H15 | 0.9500 | C20B—H20F | 0.9800 |
C8A—N1—C2 | 111.7 (2) | C11—C16—H16 | 121.1 |
C8A—N1—H1 | 124.1 | C15—C16—H16 | 121.1 |
C2—N1—H1 | 124.2 | O2A—S1A—C18A | 106.15 (19) |
O1—C1—N2 | 126.2 (2) | O2A—S1A—C17A | 105.0 (2) |
O1—C1—C7 | 125.0 (2) | C18A—S1A—C17A | 98.23 (18) |
N2—C1—C7 | 108.8 (2) | S1A—C17A—H17A | 109.5 |
C1—N2—C11 | 111.5 (2) | S1A—C17A—H17B | 109.5 |
C1—N2—H2 | 124.2 | H17A—C17A—H17B | 109.5 |
C11—N2—H2 | 124.3 | S1A—C17A—H17C | 109.5 |
N1—C2—C3 | 104.8 (2) | H17A—C17A—H17C | 109.5 |
N1—C2—H2A | 110.8 | H17B—C17A—H17C | 109.5 |
C3—C2—H2A | 110.8 | S1A—C18A—H18A | 109.5 |
N1—C2—H2B | 110.8 | S1A—C18A—H18B | 109.5 |
C3—C2—H2B | 110.8 | H18A—C18A—H18B | 109.5 |
H2A—C2—H2B | 108.9 | S1A—C18A—H18C | 109.5 |
N4—C3—C2 | 102.6 (2) | H18A—C18A—H18C | 109.5 |
N4—C3—H3A | 111.3 | H18B—C18A—H18C | 109.5 |
C2—C3—H3A | 111.3 | O2B—S1B—C18B | 107 (2) |
N4—C3—H3B | 111.3 | O2B—S1B—C17B | 108 (2) |
C2—C3—H3B | 111.3 | C18B—S1B—C17B | 101.7 (16) |
H3A—C3—H3B | 109.2 | S1B—C17B—H17D | 109.5 |
C5—N4—C8A | 121.9 (2) | S1B—C17B—H17E | 109.5 |
C5—N4—C3 | 125.9 (2) | H17D—C17B—H17E | 109.5 |
C8A—N4—C3 | 112.2 (2) | S1B—C17B—H17F | 109.5 |
N5—C5—N4 | 116.1 (2) | H17D—C17B—H17F | 109.5 |
N5—C5—C6 | 124.8 (2) | H17E—C17B—H17F | 109.5 |
N4—C5—C6 | 119.1 (2) | S1B—C18B—H18D | 109.5 |
C5—N5—H5A | 119.8 | S1B—C18B—H18E | 109.5 |
C5—N5—H5B | 120.2 | H18D—C18B—H18E | 109.5 |
H5A—N5—H5B | 120.0 | S1B—C18B—H18F | 109.5 |
C5—C6—C9 | 120.5 (2) | H18D—C18B—H18F | 109.5 |
C5—C6—C7 | 124.4 (2) | H18E—C18B—H18F | 109.5 |
C9—C6—C7 | 115.1 (2) | O3A—S2A—C20A | 105.94 (15) |
C6—C7—C8 | 110.72 (19) | O3A—S2A—C19A | 107.28 (13) |
C6—C7—C12 | 112.51 (19) | C20A—S2A—C19A | 96.65 (19) |
C8—C7—C12 | 113.31 (19) | S2A—C19A—H19A | 109.5 |
C6—C7—C1 | 110.56 (19) | S2A—C19A—H19B | 109.5 |
C8—C7—C1 | 108.74 (19) | H19A—C19A—H19B | 109.5 |
C12—C7—C1 | 100.51 (18) | S2A—C19A—H19C | 109.5 |
C8A—C8—C10 | 120.4 (2) | H19A—C19A—H19C | 109.5 |
C8A—C8—C7 | 121.5 (2) | H19B—C19A—H19C | 109.5 |
C10—C8—C7 | 118.2 (2) | S2A—C20A—H20A | 109.5 |
N1—C8A—C8 | 128.9 (2) | S2A—C20A—H20B | 109.5 |
N1—C8A—N4 | 108.7 (2) | H20A—C20A—H20B | 109.5 |
C8—C8A—N4 | 122.3 (2) | S2A—C20A—H20C | 109.5 |
N9—C9—C6 | 174.4 (3) | H20A—C20A—H20C | 109.5 |
N10—C10—C8 | 177.5 (3) | H20B—C20A—H20C | 109.5 |
C16—C11—C12 | 121.8 (2) | O3B—S2B—C20B | 97 (4) |
C16—C11—N2 | 128.7 (2) | O3B—S2B—C19B | 93 (3) |
C12—C11—N2 | 109.4 (2) | C20B—S2B—C19B | 72 (4) |
C13—C12—C11 | 120.7 (2) | S2B—C19B—H19D | 109.5 |
C13—C12—C7 | 129.7 (2) | S2B—C19B—H19E | 109.5 |
C11—C12—C7 | 109.5 (2) | H19D—C19B—H19E | 109.5 |
C12—C13—C14 | 117.1 (2) | S2B—C19B—H19F | 109.5 |
C12—C13—H13 | 121.4 | H19D—C19B—H19F | 109.5 |
C14—C13—H13 | 121.4 | H19E—C19B—H19F | 109.5 |
C15—C14—C13 | 122.8 (2) | S2B—C20B—H20D | 109.5 |
C15—C14—Br1 | 119.25 (19) | S2B—C20B—H20E | 109.5 |
C13—C14—Br1 | 117.94 (18) | H20D—C20B—H20E | 109.5 |
C14—C15—C16 | 119.6 (2) | S2B—C20B—H20F | 109.5 |
C14—C15—H15 | 120.2 | H20D—C20B—H20F | 109.5 |
C16—C15—H15 | 120.2 | H20E—C20B—H20F | 109.5 |
C11—C16—C15 | 117.8 (2) | ||
O1—C1—N2—C11 | −175.7 (2) | C2—N1—C8A—C8 | −178.1 (3) |
C7—C1—N2—C11 | 5.0 (3) | C2—N1—C8A—N4 | 0.9 (3) |
C8A—N1—C2—C3 | 1.0 (3) | C10—C8—C8A—N1 | 0.9 (4) |
N1—C2—C3—N4 | −2.3 (3) | C7—C8—C8A—N1 | −179.2 (2) |
C2—C3—N4—C5 | −178.4 (2) | C10—C8—C8A—N4 | −178.0 (2) |
C2—C3—N4—C8A | 3.0 (3) | C7—C8—C8A—N4 | 1.9 (3) |
C8A—N4—C5—N5 | −179.2 (2) | C5—N4—C8A—N1 | 178.8 (2) |
C3—N4—C5—N5 | 2.4 (3) | C3—N4—C8A—N1 | −2.6 (3) |
C8A—N4—C5—C6 | 0.3 (3) | C5—N4—C8A—C8 | −2.1 (3) |
C3—N4—C5—C6 | −178.2 (2) | C3—N4—C8A—C8 | 176.5 (2) |
N5—C5—C6—C9 | 2.8 (4) | C1—N2—C11—C16 | 175.8 (3) |
N4—C5—C6—C9 | −176.6 (2) | C1—N2—C11—C12 | −2.6 (3) |
N5—C5—C6—C7 | −178.9 (2) | C16—C11—C12—C13 | −2.4 (4) |
N4—C5—C6—C7 | 1.7 (3) | N2—C11—C12—C13 | 176.2 (2) |
C5—C6—C7—C8 | −1.8 (3) | C16—C11—C12—C7 | −179.5 (2) |
C9—C6—C7—C8 | 176.6 (2) | N2—C11—C12—C7 | −1.0 (3) |
C5—C6—C7—C12 | 126.2 (2) | C6—C7—C12—C13 | −55.6 (3) |
C9—C6—C7—C12 | −55.4 (3) | C8—C7—C12—C13 | 70.9 (3) |
C5—C6—C7—C1 | −122.3 (2) | C1—C7—C12—C13 | −173.2 (2) |
C9—C6—C7—C1 | 56.1 (3) | C6—C7—C12—C11 | 121.2 (2) |
O1—C1—C7—C6 | 56.6 (3) | C8—C7—C12—C11 | −112.3 (2) |
N2—C1—C7—C6 | −124.1 (2) | C1—C7—C12—C11 | 3.6 (2) |
O1—C1—C7—C8 | −65.2 (3) | C11—C12—C13—C14 | 0.0 (4) |
N2—C1—C7—C8 | 114.1 (2) | C7—C12—C13—C14 | 176.5 (2) |
O1—C1—C7—C12 | 175.6 (2) | C12—C13—C14—C15 | 2.3 (4) |
N2—C1—C7—C12 | −5.1 (2) | C12—C13—C14—Br1 | −176.74 (18) |
C6—C7—C8—C8A | 0.0 (3) | C13—C14—C15—C16 | −2.1 (4) |
C12—C7—C8—C8A | −127.5 (2) | Br1—C14—C15—C16 | 176.9 (2) |
C1—C7—C8—C8A | 121.6 (2) | C12—C11—C16—C15 | 2.5 (4) |
C6—C7—C8—C10 | 179.8 (2) | N2—C11—C16—C15 | −175.7 (2) |
C12—C7—C8—C10 | 52.4 (3) | C14—C15—C16—C11 | −0.3 (4) |
C1—C7—C8—C10 | −58.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2Ai | 0.90 | 1.98 | 2.855 (4) | 165 |
N1—H1···O2Bi | 0.90 | 2.00 | 2.87 (4) | 160 |
N2—H2···O2Aii | 0.90 | 1.91 | 2.793 (5) | 166 |
N2—H2···O2Bii | 0.90 | 1.94 | 2.82 (5) | 166 |
N5—H5A···O3Aiii | 0.90 | 2.20 | 3.034 (3) | 155 |
N5—H5B···O3A | 0.90 | 2.06 | 2.918 (3) | 160 |
C2—H2B···N9iv | 0.99 | 2.59 | 3.469 (4) | 148 |
C19A—H19A···N9 | 0.98 | 2.41 | 3.114 (5) | 128 |
C19A—H19C···O1v | 0.98 | 2.52 | 3.392 (4) | 148 |
C20A—H20B···O1v | 0.98 | 2.46 | 3.359 (4) | 152 |
Symmetry codes: (i) x+1, y, z−1; (ii) x+1, y, z; (iii) x, −y+1/2, z−1/2; (iv) x, y, z−1; (v) x−1, y, z. |
Acknowledgements
The authors would like to thank Baku State University and the Ministry of Education and Science of the Russian Federation for their support of this research. Authors' contributions are as follows. Conceptualization, FNN and IGM; methodology, FNN and IGM; investigation, FNN, MA and APN; writing (original draft), MA and IGM; writing (review and editing of the manuscript), MA and FNN; visualization, MA, FNN and IGM; funding acquisition, VNK, RMR and FNN; resources, AAA, VNK and FNN; supervision, IGM and MA.
Funding information
Funding for this research was provided by: Ministry of Education and Science of the Russian Federation (award No. 075-03-2020-223 (FSSF-2020-0017)).
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Han, F., Shioda, N., Moriguchi, S., Yamamoto, Y., Raie, A. Y. A., Yamaguchi, Y., Hino, M. & Fukunaga, K. (2008). J. Pharmacol. Exp. Ther. 326, 127–134. Web of Science CrossRef PubMed CAS Google Scholar
Jun, J., Juan, L., Xinhua, L., Hongxin, L., Haiyan, W. & Hong-Ping, X. (2019). Synlett, 30, 1241–1245. Google Scholar
Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761. Web of Science CrossRef Google Scholar
Lu, L., Deyan, W., Xiangmin, L., Sinan, W., Hao, L., Jian, L. & Wei, W. (2012). Chem. Commun. 48, 1692–1694. Google Scholar
Magerramov, A. M., Nagiev, F. N., Mamedova, G. Z. Kh. A., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1713–1715. Web of Science CSD CrossRef Google Scholar
Mamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498–499. Web of Science CrossRef CAS Google Scholar
Nagalakshmi, R. A., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o604–o605. CSD CrossRef IUCr Journals Google Scholar
Nagalakshmi, R. A., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, o971–o972. CSD CrossRef IUCr Journals Google Scholar
Nagalakshmi, R. A., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2014c). Acta Cryst. E70, o816–o817. CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. Web of Science CSD CrossRef CAS Google Scholar
Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195–199. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512–515. Web of Science CSD CrossRef IUCr Journals Google Scholar
Negar, L., Ghodsi Mohammadi, Z., Alireza, B. & Parisa, G. (2012). Eur. J. Chem. 3, 310–313. Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Samaneh, A., Homa, A. & Javad, A. (2021). J. Chin. Chem. Soc. 68, 1090–1103. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858. Web of Science CrossRef CAS Google Scholar
Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.