research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of [(Sp)-(2-phenyl­ferrocen­yl)meth­yl]tri­methyl­ammonium iodide di­chloro­methane monosolvate

crossmark logo

aCNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France, and bIUT A Paul Sabatier, de Chimie, Avenue Georges Pompidou, CS 20258, F-81104, Castres Cedex, France
*Correspondence e-mail: jean-claude.daran@lcc-toulouse.fr

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 24 January 2022; accepted 7 June 2022; online 14 June 2022)

As a follow-up to our research on the chemistry of disubstituted ferrocene derivatives, the synthesis and the structure of the title compound, [Fe(C5H5)(C15H19N)]I·CH2Cl2, is described. The cation mol­ecule is built up from a ferrocene disubstituted by a tri­methyl­ammonium methyl group and a phenyl ring. The asymmetric unit contains the iodide to equilibrate the charge and a disordered di­chloro­methane solvate. The disordered model results from a roughly statistical exchange (0.6/0.4) between one Cl and one H. The packing of the structure is stabilized by weak C—H⋯X (X = I, Cl), C—H⋯π(Cp) and C—Cl⋯π(phen­yl) inter­actions, building a three-dimensional network. The cation has planar chirality with Sp(Fc) absolute configuration. The structure of the title compound is compared with related disubstituted (tri­meth­ylammonio)­methyl ferrocenes.

1. Chemical context

Asymmetric catalysis by transition metals has received considerable attention over the last few decades and numerous chiral ligands and complexes allowing high activity and enanti­oselectivity have been reported (Jacobsen et al., 1999[Jacobsen, E. N., Pfalz, A. & Yamamoto, H. (1999). Editors. Comprehensive Asymmetric Catalysis, Vols. 1-3. Berlin: Springer.]; Börner, 2008[Börner, A. (2008). Editor. Phosphorus Ligands in Asymmetric Catalysis, Vols. 1-3. Weinheim: Wiley-VCH.]). For this purpose, catalysts need a chiral ligand presenting at least a chiral center, a chiral axis or a planar chirality. Amongst the various chiral ligands that have been synthesized, ferrocenyl phosphines have proven to be particularly efficient for numerous asymmetric reactions (Buergler et al., 2012[Buergler, J. F., Niedermann, K. & Togni, A. (2012). Chem. Eur. J. 18, 632-640.]; Gómez Arrayás et al., 2006[Gómez Arrayás, R., Adrio, J. & Carretero, J. C. (2006). Angew. Chem. Int. Ed. 45, 7674-7715.]; Toma et al., 2014[Toma, Š., Csizmadiová, J., Mečiarová, M. & Šebesta, R. (2014). Dalton Trans. 43, 16557-16579.])

Over the last few years, our team has developed the synthesis of various chiral ferrocenyl ligands for asymmetric catalysis (Audin et al., 2010[Audin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2010). CR Chimie 13, 890-899.]; Labande et al., 2007[Labande, A., Daran, J.-C., Manoury, E. & Poli, R. (2007). Eur. J. Inorg. Chem. pp. 1205-1209.]; Bayda et al., 2014[Bayda, S., Cassen, A., Daran, J.-C., Audin, C., Poli, R., Manoury, E. & Deydier, E. (2014). J. Organomet. Chem. 772-773, 258-264.]; Daran et al., 2010[Daran, J.-C., Audin, C., Deydier, E., Manoury, E. & Poli, R. (2010). Acta Cryst. E66, m1417-m1418.]; Wei et al., 2012[Wei, M.-M., García-Melchor, M., Daran, J.-C., Audin, C., Lledós, A., Poli, R., Deydier, E. & Manoury, E. (2012). Organometallics, 31, 6669-6680.], 2014[Wei, M.-M., Audin, C., Manoury, E., Deydier, E. & Daran, J.-C. (2014). Acta Cryst. C70, 281-284.]; Loxq et al., 2014[Loxq, P., Debono, N., Gülcemal, S., Daran, J.-C., Manoury, E., Poli, R., Çetinkaya, B. & Labande, A. (2014). New J. Chem. 38, 338-347.]). We mainly focused on a series of chiral bidentate PX ferrocenyl ligands (X = OR, SR, NHC) bearing planar chirality, which have been successfully used in different homogeneous asymmetric catalytic reactions: allylic substitution, meth­oxy­carbonyl­ation, hydrogenation (Kozinets et al., 2012[Kozinets, E. M., Koniev, O., Filippov, O. A., Daran, J.-C., Poli, R., Shubina, E. S., Belkova, N. V. & Manoury, E. (2012). Dalton Trans. 41, 11849-11859.]; Le Roux et al., 2007[Le Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, A. (2007). Adv. Synth. Catal. 349, 309-313.]; Diab et al., 2008[Diab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186-5189.]; Routaboul et al., 2005[Routaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685-2690.]). All of these ligands present a planar chiral 1,2-disubstituted ferrocenyl group with coordination sites on both substituents. More recently, we wanted to extend the application of planar chiral 1,2-disubstituted ferrocenyl groups to the synthesis of ligands with only one substituent bearing a coordination site for fine tuning of existing ligands. To this aim, we needed an enanti­omerically pure planar chiral building block bearing a good leaving group in order to introduce a planar chiral substituent on nucleophilic atoms. In this context, we report here the two-step synthesis of the title [(Sp)-(2-phenyl­ferrocen­yl)meth­yl]tri­methyl­ammonium iodide salt.

[Scheme 1]

The latter is synthesized in two steps, the first consists in the enanti­oselective synthesis of (Sp)-A following the procedure developed by S.-L. You and co-workers (Gao et al., 2013[Gao, D.-W., Shi, Y.-C., Gu, Q., Zhao, Z.-L. & You, S.-L. (2013). J. Am. Chem. Soc. 135, 86-89.]), the second step is a quaternization of the tertiary amine to the ammonium salt by reaction with an excess of iodo methane. (Ferro­cenyl­meth­yl) ammoniums have been used successfully as electrophiles because of the stabilization of carbocations in an α position of ferrocene derivatives and because of the presence of a good leaving group: tri­methyl­amine. Nucleophilic[EM2] substitution (Lin et al., 2020[Lin, Y., Ong, Y. C., Keller, S., Karges, J., Bouchene, R., Manoury, E., Blacque, O., Müller, J., Anghel, N., Hemphill, A., Häberli, C., Taki, A. C., Gasser, R. B., Cariou, K., Keiser, J. & Gasser, G. (2020). Dalton Trans. 49, 6616-6626.]) on the methyl­ene carbon atom in the α position of the ferrocene moiety in compound B, [(Sp)-(2-phenyl­ferrocen­yl)meth­yl]tri­methyl­ammonium iodide, should then be favoured and should provide an efficient access to a wide range of various enanti­omerically pure ferrocene deriv­atives of type C including ligands, by reaction with various nucleophiles (amines, thiols, alcohols) (Fig. 1[link]).

[Figure 1]
Figure 1
Synthesis of the title (Sp)-1-di­methyl­amino­methyl-2-phenyl­ferrocenium iodide salt

2. Structural commentary

The mol­ecular structure is based on a ferrocene moiety in which one of the Cp rings is disubstituted in the 1,2 position by a tri-methyl­ammonium-methyl and a phenyl substituent. The mol­ecule has a positive charge, which is counterbalanced by an iodide (Fig. 2[link]). Moreover, there is one disordered di­chloro­methane solvate mol­ecule per asymmetric unit. The disordered model results from the exchange between one Cl and one H in the ratio 0.6/0.4 (Fig. 3[link]). This disorder might be induced by the occurence of weak C—Cl⋯I intra­molecular and C—H⋯Cl inter­molecular inter­actions. There are weak intra­molecular C—H⋯I inter­actions within the asymmetric unit.

[Figure 2]
Figure 2
View of the asymmetric unit of the title compound with the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level and the H atoms are represented as small circles of arbitrary radii. C—H⋯X (X = I, Cl) inter­actions are represented as dashed lines.
[Figure 3]
Figure 3
ORTEP view of the disordered CH2Cl2 solvent mol­ecule. Ellipsoids are drawn at the 20% probability level. H atoms are represented as small circles of arbitrary radii.

As a result of the presence of the two substituents on the Cp ring, the cation mol­ecule has planar chirality and its absolute structure is Sp, which is confirmed by the refinement of the Flack parameter (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). The phenyl ring is twisted with respect to the Cp ring by 48.74 (17)° and the C1–C11–N1 unit is roughly perpendicular to the Cp ring to which it is attached, making a dihedral angle of 89.7 (2)°.

3. Supra­molecular features

The crystal packing is governed by the occurrence of weak C—H⋯X (X = Cl, I), C—H⋯π and C—Cl⋯π inter­actions (Table 1[link]). The iodine atom is engaged in many weak C—H⋯I inter­actions involving some of the H atoms of the methyl groups, one H atom of the methyl­ene group and the non-disordered H atoms of the di­chloro­methane solvate. These inter­actions build up a ribbon developing parallel to the b axis (Fig. 4[link]). Then the Cl2 atom of the chloro­form solvate inter­acts with the C12—H12C methyl group, thus building a link between the strips, resulting in a layer parallel to the ([\overline{1}]01) plane (Fig. 4[link]). Moreover, there are two weak C—H⋯π inter­actions involving atom H13B of the C13 methyl group with the centroid of the Cp ring (C6–C10; Ct2) and atom C23 of the phenyl group with the centroid of the substituted Cp ring (C1–C5; Ct1). Finally, there is also a C—Cl⋯π inter­action involving the Cl1 atom of the solvate [C30—Cl1⋯Ct3 (C21–C26), 1.757 (8), 3.4096 (2) and 4.7694 (3) Å, 132.13 (1)°]. All these inter­actions build up a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯I1i 0.99 3.17 3.988 (4) 140
C12—H12C⋯I1 0.98 3.21 4.117 (5) 154
C12—H12B⋯Cl2C 0.98 3.51 3.787 (7) 99
C13—H13A⋯I1 0.98 3.27 4.158 (5) 151
C14—H14A⋯I1 0.98 3.14 4.057 (5) 157
C14—H14B⋯I1i 0.98 3.25 4.077 (5) 143
C30A—H30A⋯I1ii 1.00 2.89 3.867 (7) 166
C13—H13B⋯CT2iii 0.98 2.98 3.901 (6) 158
C23—H23⋯CT1iv 0.95 2.69 3.600 (7) 160
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+2]; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) [-x+2, y-{\script{1\over 2}}, -z+2]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 4]
Figure 4
Partial packing view showing the C—H⋯X (X = I, Cl) inter­molecular inter­actions resulting in the formation of ribbons parallel to the b axis and C—H⋯Cl inter­actions linking the ribbons to form a layer parallel to ([\overline{1}]01) plane. The di­chloro­methane solvate builds the link between the layers.

4. Database survey

A search in the Cambridge Structural Database (version 5.36; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using a fragment containing a ferrocenyl disubsituted by a tri­methyl­amoniummethyl and at least a C atom gave six hits that could be compared with the title compound. A comparison of C1—C11, C11—N1 distances and dihedral angles between the Cp ring and the C1–C11–N1 plane is shown in Table 2[link]. In all these compounds, the bulky N(CH3)3 group is always above the Cp ring to which it is attached. The dihedral angles between the Cp and the C–C–N plane range from 69.8 to 89.7° for the title compound.

Table 2
Comparison of the geometry (Å, °) within the methyl­amine C–CH2–N fragment for the title compound with related structures.

  C1—C11 C11—N1 Cp1/C1>N1
Title compound 1.493 (5) 1.531 (4) 89.7 (2)
BECKUQ 1.509 1.534 85.6
LIFWUS 1.465 1.544 69.8
LIFWUS 1.509 1.536 78.6
LIFXAZ 1.494 1.525 70.4
PIJLEB 1.494 1.519 86.9
VIKZIA 1.485 1.538 86.0
XEQKIN 1.497 1.531 84.2
References: BECKUQ (Hitchcock et al., 2002[Hitchcock, P. B., Leigh, G. J. & Togrou, M. (2002). J. Organomet. Chem. 664, 245-257.]); LIFWUS (Malezieux et al., 1994[Malezieux, B., Gruselle, M., Troitskaya, L. L., Sokolov, V. I. & Vaissermann, J. (1994). Organometallics, 13, 2979-2986.]); LIFXAZ (Malezieux et al., 1994[Malezieux, B., Gruselle, M., Troitskaya, L. L., Sokolov, V. I. & Vaissermann, J. (1994). Organometallics, 13, 2979-2986.]); PIJLEB (Butler et al., 2002[Butler, I. R., Horton, P. N. & Hursthouse, M. B. (2002). University of Southampton, Crystal Structure Report Archive, 908.]); VIKZIA (Butler et al., 2002[Butler, I. R., Horton, P. N. & Hursthouse, M. B. (2002). University of Southampton, Crystal Structure Report Archive, 908.]); XEKQIN (Deck et al., 2000[Deck, P. A., Lane, M. J., Montgomery, J. L., Slebodnick, C. & Fronczek, F. R. (2000). Organometallics, 19, 1013-1024.]).

5. Synthesis and crystallization

Synthesis of (Sp)-1-di­meth­ylamino­methyl-2-phen­ylferrocene [(Sp)-A]: To a solution of phen­ylboronic acid (110 mg, 1 mmol) in DMA (8 mL) were added Boc–L–Val–OH (43.5 mg, 0.2 mmol), Pd(OAc)2 (22.5 mg, 0.1 mmol), K2CO3 (138.21 mg, 1 mmol), TBAB (tetra­butyl ammonium bromide; 80 mg, 0.25 mmol) and N,N-di­meth­ylferrocen­ylmeth­ylamine (243 mg, 1 mmol) successively. The mixture was stirred at 333 K under air (open flask). When the reaction was complete (TLC monitoring), the mixture was quenched with saturated aqueous NaHCO3 and the organic phase was extracted three times with EtOAc. The combined organic layers were washed with H2O and brine successively, dried (Na2SO4) and filtered. The solvent was removed under reduced pressure and the residue purified by column chromatography (ethyl acetate/petroleum ether = 1/10, v/v, 2% Et3N) to afford the desired product A as a yellow oil (205 mg, 64% yield). The results are in agreement with published analytical data (Gao et al., 2013[Gao, D.-W., Shi, Y.-C., Gu, Q., Zhao, Z.-L. & You, S.-L. (2013). J. Am. Chem. Soc. 135, 86-89.]).

1H NMR (400 MHz, CDCl3) δ ppm 7.79–7.71 (m, 2H, CH Ph), 7.41–7.31 (m, 2H, CH Ph), 7.30–7.21 (m, 1H, CH Ph), 4.53–4.47 (m, 1H, CH subst Cp), 4.33 (dd, J = 2.5, 1.5 Hz, 1H, CH subst Cp), 4.26 (t, J = 2.5 Hz, 1H, CH subst Cp), 4.08 (s, 5H, CH Cp), 3.67 (d, J = 12.8 Hz, 1H, CH2), 3.18 (d, J = 12.8 Hz, 1H, CH2), 2.21 (s, 6H, CH3). 13C NMR (101 MHz, CDCl3) δ ppm 138.91 (Cq, Ph), 129.36 (CH Ph), 127.93 (CH Ph), 126.06 (CH Ph), 88.17 (Cq subst Cp), 82.24 (Cq subst Cp), 71.56 (CH subst Cp), 70.06 (CH Cp), 69.94 (CH subst Cp), 67.10 (CH subst Cp), 57.93 (CH2), 45.08 (CH3).

Synthesis of [(Sp)-(2-phenyl­ferrocen­yl)meth­yl]tri­methyl­ammonium iodide salt [(Sp)-B]: An excess of MeI (1 mL, 1.62 mmol) was added to a solution of A (250 mg, 0.78 mmol) in Et2O (3 mL). The reaction mixture was stirred for 4 h at RT. An abundant yellow solid precipitated. The yellow solid was filtered, washed with Et2O and dried to yield B as a yellow solid (332 mg, 92% yield), which was crystallized in di­chloro­methane.

1H NMR (400 MHz, CDCl3) δ ppm 7.58–7.50 (m, 2H, CH Ph), 7.46–7.37 (m, 2H, CH Ph), 7.37–7.26 (m, 1H, CH Ph), 5.33 (d, J = 13.4 Hz, 1H, CH2), 4.91 (dd, J = 2.5, 1.5 Hz, 1H, CH subst Cp), 4.83 (d, J = 13.4 Hz, 1H, CH2), 4.56 (dd, J = 2.5, 1.5 Hz,1H, CH subst Cp), 4.52 (t, J = 2.5 Hz, 1H, CH subst Cp), 4.34 (s, 5H, CH Cp), 3.02 (s, 9H, CH3). 13C NMR (101 MHz, CDCl3) δ ppm 136.54 (Cq, Ph), 129.86 (CH Ph), 129.05 (CH Ph), 127.72 (CH Ph), 90.61 (Cq subst Cp), 73.44 (CH subst Cp), 72.15 (Cq subst Cp), 70.96 (CH Cp), 70.44 (Cq subst Cp), 70.04 (Cq subst Cp), 65.21 (CH2), 52.76 (CH3).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 1.0 Å (methine), 0.95 Å (aromatic), 0.99 Å (methyl­ene) and 0.98 Å (meth­yl) with Uiso(H) = 1.2Ueq(CH aromatic, methyl­ene) or Uiso(H) = 1.5Ueq(CH3).

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C15H19N)]I·CH2Cl2
Mr 546.08
Crystal system, space group Monoclinic, P21
Temperature (K) 110
a, b, c (Å) 10.7919 (7), 10.2128 (5), 11.2941 (7)
β (°) 113.031 (3)
V3) 1145.57 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.24
Crystal size (mm) 0.30 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.520, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 58547, 6993, 6822
Rint 0.052
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.06
No. of reflections 6993
No. of parameters 247
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.50, −0.69
Absolute structure Flack x determined using 3144 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.018 (6)
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2. and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

The occurrence of three large residual densities around the C atom of the solvate with distances around 1.76 Å initially suggested the presence of a chloroform solvate mol­ecule. However, if one of the Cl atoms (Cl1) could be refined correctly with full occupancy, the two others display large and elongated ellipsoids. Refining their occupancy factors using the restraints available in SHELXL gave a ratio of 0.6/0.4. So the disordered model is based on an exchange between one H and one Cl (Fig. 3[link]). The model has been refined using the PART instruction to model two CH2Cl2 models. The non-disordered atoms C30, H30 and Cl1 were split with occupancy factor 0.5 and introduced in the two models (C30A, C30B, H30A, H30B, Cl1A, Cl1B). Their coordinates and thermal parameters were constrained to be identical using the EXYZ and EADP commands available in SHELXL. This disordered model is not perfect, as suggested by a large residual electron density in the vicinity of the atom H30B.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

[(Sp)-(2-Phenylferrocenyl)methyl]trimethylammonium iodide dichloromethane monosolvate top
Crystal data top
[Fe(C5H5)(C15H19N)]I·CH2Cl2F(000) = 544
Mr = 546.08Dx = 1.583 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.7919 (7) ÅCell parameters from 9989 reflections
b = 10.2128 (5) Åθ = 2.8–28.3°
c = 11.2941 (7) ŵ = 2.24 mm1
β = 113.031 (3)°T = 110 K
V = 1145.57 (12) Å3Stick, yellow
Z = 20.30 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
6993 independent reflections
Radiation source: micro-focus sealed tube6822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 30.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1515
Tmin = 0.520, Tmax = 0.746k = 1414
58547 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.9038P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6993 reflectionsΔρmax = 1.50 e Å3
247 parametersΔρmin = 0.68 e Å3
1 restraintAbsolute structure: Flack x determined using 3144 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.018 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.94060 (5)0.53142 (6)0.79508 (5)0.02716 (11)
I10.22433 (3)0.13532 (3)0.79999 (3)0.04532 (10)
N10.5997 (3)0.3408 (3)0.8610 (3)0.0281 (6)
C10.7697 (3)0.4388 (3)0.7817 (3)0.0243 (6)
C20.7375 (3)0.5512 (4)0.6967 (3)0.0248 (6)
C30.8016 (4)0.5304 (5)0.6083 (4)0.0323 (7)
H30.7974260.5876790.5406180.039*
C40.8728 (4)0.4085 (5)0.6395 (4)0.0361 (8)
H40.9245130.3717240.5964350.043*
C50.8532 (4)0.3521 (4)0.7450 (4)0.0316 (7)
H50.8889640.2708700.7847660.038*
C61.0323 (5)0.6035 (7)0.9762 (5)0.0588 (18)
H60.9969010.6024491.0410480.071*
C71.1125 (5)0.5035 (6)0.9540 (6)0.0546 (14)
H71.1396850.4240071.0008410.065*
C81.1439 (4)0.5440 (6)0.8501 (6)0.0482 (11)
H81.1965030.4964770.8142020.058*
C91.0835 (5)0.6679 (6)0.8081 (6)0.0517 (13)
H91.0886630.7179590.7392830.062*
C101.0143 (5)0.7038 (6)0.8864 (7)0.0542 (14)
H100.9643870.7820510.8794650.065*
C110.7314 (3)0.4163 (4)0.8937 (3)0.0262 (6)
H11A0.7231210.5021910.9305810.031*
H11B0.8047940.3673960.9606810.031*
C120.4841 (4)0.4146 (5)0.7671 (6)0.0463 (11)
H12A0.4960410.4232690.6857380.069*
H12B0.4799200.5018080.8015020.069*
H12C0.4002920.3673260.7520680.069*
C130.6057 (5)0.2094 (4)0.8064 (5)0.0389 (9)
H13A0.5188100.1651310.7832950.058*
H13B0.6764980.1569950.8704480.058*
H13C0.6258140.2194430.7294240.058*
C140.5803 (6)0.3216 (6)0.9844 (5)0.0501 (13)
H14A0.4943790.2771790.9664310.075*
H14B0.5799530.4069421.0238510.075*
H14C0.6540420.2680851.0433600.075*
C210.6496 (4)0.6618 (3)0.6930 (3)0.0279 (7)
C220.5483 (5)0.6960 (5)0.5744 (4)0.0425 (10)
H220.5397180.6497940.4985880.051*
C230.4595 (6)0.7987 (7)0.5682 (6)0.0594 (16)
H230.3908700.8209090.4875180.071*
C240.4694 (5)0.8671 (5)0.6747 (6)0.0469 (11)
H240.4080250.9359600.6687600.056*
C250.5712 (5)0.8348 (5)0.7930 (5)0.0372 (8)
H250.5796000.8821420.8681500.045*
C260.6603 (4)0.7334 (4)0.8012 (4)0.0308 (7)
H260.7296240.7128960.8820190.037*
C30A0.1255 (9)0.5103 (11)0.4280 (8)0.086 (3)0.5
H30C0.1606400.5867090.4854410.103*0.5
H30A0.0291080.5260780.3748820.103*0.5
Cl1A0.2146 (3)0.4929 (2)0.3278 (2)0.0790 (6)0.5
Cl2B0.1425 (3)0.3690 (3)0.5204 (3)0.0674 (8)0.6
C30B0.1255 (9)0.5103 (11)0.4280 (8)0.086 (3)0.5
H30D0.0320760.5370890.3745070.103*0.5
H30B0.1212150.4238830.4658980.103*0.5
Cl1B0.2146 (3)0.4929 (2)0.3278 (2)0.0790 (6)0.5
Cl2C0.1919 (5)0.6201 (4)0.5491 (4)0.0680 (11)0.4
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0183 (2)0.0300 (2)0.0302 (2)0.00341 (18)0.00622 (17)0.0044 (2)
I10.03471 (13)0.05047 (17)0.04750 (16)0.00545 (12)0.01253 (11)0.00816 (14)
N10.0238 (13)0.0291 (14)0.0308 (15)0.0013 (11)0.0099 (11)0.0001 (11)
C10.0183 (13)0.0244 (15)0.0269 (14)0.0016 (11)0.0052 (11)0.0012 (12)
C20.0205 (13)0.0268 (15)0.0230 (13)0.0016 (12)0.0041 (10)0.0013 (11)
C30.0294 (16)0.0410 (19)0.0267 (15)0.0056 (16)0.0113 (13)0.0044 (15)
C40.0301 (17)0.041 (2)0.040 (2)0.0051 (15)0.0170 (16)0.0133 (17)
C50.0237 (15)0.0258 (16)0.043 (2)0.0018 (12)0.0102 (14)0.0055 (14)
C60.035 (2)0.095 (5)0.040 (2)0.026 (3)0.0078 (18)0.027 (3)
C70.030 (2)0.060 (3)0.051 (3)0.014 (2)0.0078 (19)0.011 (2)
C80.0196 (16)0.059 (3)0.062 (3)0.0088 (19)0.0115 (17)0.013 (3)
C90.036 (2)0.053 (3)0.058 (3)0.020 (2)0.010 (2)0.003 (2)
C100.030 (2)0.048 (3)0.072 (4)0.0106 (19)0.007 (2)0.024 (3)
C110.0221 (14)0.0273 (15)0.0253 (14)0.0034 (12)0.0050 (12)0.0001 (12)
C120.0215 (16)0.045 (2)0.065 (3)0.0037 (16)0.0092 (18)0.016 (2)
C130.036 (2)0.0298 (19)0.050 (2)0.0059 (15)0.0161 (18)0.0073 (17)
C140.054 (3)0.062 (3)0.042 (2)0.023 (2)0.027 (2)0.010 (2)
C210.0245 (14)0.0288 (18)0.0265 (14)0.0016 (12)0.0058 (12)0.0030 (12)
C220.041 (2)0.045 (2)0.0309 (19)0.0142 (19)0.0026 (17)0.0023 (17)
C230.050 (3)0.064 (3)0.046 (3)0.030 (3)0.001 (2)0.007 (2)
C240.044 (2)0.041 (2)0.057 (3)0.018 (2)0.021 (2)0.010 (2)
C250.041 (2)0.0325 (17)0.044 (2)0.0020 (16)0.0226 (18)0.0021 (15)
C260.0319 (17)0.0299 (17)0.0298 (16)0.0016 (14)0.0112 (14)0.0025 (13)
C30A0.071 (5)0.121 (8)0.060 (4)0.051 (5)0.021 (3)0.005 (4)
Cl1A0.1058 (16)0.0728 (11)0.0816 (12)0.0165 (10)0.0615 (12)0.0079 (9)
Cl2B0.0526 (12)0.107 (2)0.0579 (13)0.0290 (14)0.0379 (11)0.0377 (14)
C30B0.071 (5)0.121 (8)0.060 (4)0.051 (5)0.021 (3)0.005 (4)
Cl1B0.1058 (16)0.0728 (11)0.0816 (12)0.0165 (10)0.0615 (12)0.0079 (9)
Cl2C0.105 (3)0.0471 (19)0.0525 (17)0.005 (2)0.0320 (19)0.0071 (15)
Geometric parameters (Å, º) top
Fe1—C12.025 (3)C9—H90.9500
Fe1—C62.030 (5)C10—H100.9500
Fe1—C72.034 (5)C11—H11A0.9900
Fe1—C82.037 (4)C11—H11B0.9900
Fe1—C52.037 (4)C12—H12A0.9800
Fe1—C102.038 (5)C12—H12B0.9800
Fe1—C92.041 (5)C12—H12C0.9800
Fe1—C22.043 (3)C13—H13A0.9800
Fe1—C42.048 (4)C13—H13B0.9800
Fe1—C32.055 (4)C13—H13C0.9800
N1—C121.488 (6)C14—H14A0.9800
N1—C131.489 (5)C14—H14B0.9800
N1—C141.500 (6)C14—H14C0.9800
N1—C111.529 (5)C21—C261.390 (5)
C1—C51.435 (5)C21—C221.402 (5)
C1—C21.449 (5)C22—C231.404 (7)
C1—C111.495 (5)C22—H220.9500
C2—C31.435 (5)C23—C241.359 (9)
C2—C211.465 (5)C23—H230.9500
C3—C41.433 (7)C24—C251.398 (8)
C3—H30.9500C24—H240.9500
C4—C51.412 (6)C25—C261.391 (6)
C4—H40.9500C25—H250.9500
C5—H50.9500C26—H260.9500
C6—C101.400 (10)C30A—Cl2B1.748 (11)
C6—C71.422 (10)C30A—Cl1A1.758 (8)
C6—H60.9500C30A—H30C0.9900
C7—C81.406 (9)C30A—H30A0.9900
C7—H70.9500C30B—Cl2C1.695 (11)
C8—C91.418 (9)C30B—Cl1B1.758 (8)
C8—H80.9500C30B—H30D0.9900
C9—C101.411 (9)C30B—H30B0.9900
C1—Fe1—C6108.39 (19)C7—C6—Fe169.7 (3)
C1—Fe1—C7119.30 (19)C10—C6—H6125.7
C6—Fe1—C741.0 (3)C7—C6—H6125.7
C1—Fe1—C8153.2 (2)Fe1—C6—H6126.0
C6—Fe1—C868.1 (2)C8—C7—C6107.3 (5)
C7—Fe1—C840.4 (2)C8—C7—Fe169.9 (3)
C1—Fe1—C541.37 (15)C6—C7—Fe169.3 (3)
C6—Fe1—C5126.6 (2)C8—C7—H7126.4
C7—Fe1—C5106.4 (2)C6—C7—H7126.4
C8—Fe1—C5117.9 (2)Fe1—C7—H7126.0
C1—Fe1—C10127.2 (2)C7—C8—C9108.2 (5)
C6—Fe1—C1040.3 (3)C7—C8—Fe169.7 (3)
C7—Fe1—C1068.5 (3)C9—C8—Fe169.8 (3)
C8—Fe1—C1068.3 (2)C7—C8—H8125.9
C5—Fe1—C10164.6 (2)C9—C8—H8125.9
C1—Fe1—C9164.8 (2)Fe1—C8—H8126.2
C6—Fe1—C967.8 (3)C10—C9—C8108.0 (5)
C7—Fe1—C968.3 (2)C10—C9—Fe169.7 (3)
C8—Fe1—C940.7 (2)C8—C9—Fe169.5 (3)
C5—Fe1—C9152.8 (2)C10—C9—H9126.0
C10—Fe1—C940.5 (3)C8—C9—H9126.0
C1—Fe1—C241.75 (14)Fe1—C9—H9126.4
C6—Fe1—C2120.6 (2)C6—C10—C9107.8 (5)
C7—Fe1—C2155.2 (2)C6—C10—Fe169.6 (3)
C8—Fe1—C2163.3 (2)C9—C10—Fe169.9 (3)
C5—Fe1—C269.89 (15)C6—C10—H10126.1
C10—Fe1—C2108.24 (19)C9—C10—H10126.1
C9—Fe1—C2126.2 (2)Fe1—C10—H10126.1
C1—Fe1—C468.89 (16)C1—C11—N1114.3 (3)
C6—Fe1—C4163.1 (3)C1—C11—H11A108.7
C7—Fe1—C4124.6 (2)N1—C11—H11A108.7
C8—Fe1—C4106.3 (2)C1—C11—H11B108.7
C5—Fe1—C440.44 (18)N1—C11—H11B108.7
C10—Fe1—C4154.4 (3)H11A—C11—H11B107.6
C9—Fe1—C4119.1 (2)N1—C12—H12A109.5
C2—Fe1—C469.31 (16)N1—C12—H12B109.5
C1—Fe1—C369.09 (15)H12A—C12—H12B109.5
C6—Fe1—C3155.3 (2)N1—C12—H12C109.5
C7—Fe1—C3162.3 (2)H12A—C12—H12C109.5
C8—Fe1—C3125.5 (2)H12B—C12—H12C109.5
C5—Fe1—C368.75 (18)N1—C13—H13A109.5
C10—Fe1—C3120.5 (2)N1—C13—H13B109.5
C9—Fe1—C3107.8 (2)H13A—C13—H13B109.5
C2—Fe1—C340.99 (14)N1—C13—H13C109.5
C4—Fe1—C340.88 (19)H13A—C13—H13C109.5
C12—N1—C13108.7 (4)H13B—C13—H13C109.5
C12—N1—C14110.2 (4)N1—C14—H14A109.5
C13—N1—C14108.1 (4)N1—C14—H14B109.5
C12—N1—C11110.9 (3)H14A—C14—H14B109.5
C13—N1—C11111.6 (3)N1—C14—H14C109.5
C14—N1—C11107.2 (3)H14A—C14—H14C109.5
C5—C1—C2108.2 (3)H14B—C14—H14C109.5
C5—C1—C11124.2 (3)C26—C21—C22118.3 (4)
C2—C1—C11127.5 (3)C26—C21—C2123.4 (3)
C5—C1—Fe169.8 (2)C22—C21—C2118.3 (4)
C2—C1—Fe169.78 (19)C21—C22—C23119.8 (4)
C11—C1—Fe1123.7 (2)C21—C22—H22120.1
C3—C2—C1106.7 (3)C23—C22—H22120.1
C3—C2—C21125.2 (3)C24—C23—C22121.6 (5)
C1—C2—C21127.9 (3)C24—C23—H23119.2
C3—C2—Fe170.0 (2)C22—C23—H23119.2
C1—C2—Fe168.47 (19)C23—C24—C25119.0 (4)
C21—C2—Fe1129.6 (3)C23—C24—H24120.5
C4—C3—C2108.4 (4)C25—C24—H24120.5
C4—C3—Fe169.3 (2)C26—C25—C24120.3 (4)
C2—C3—Fe169.0 (2)C26—C25—H25119.9
C4—C3—H3125.8C24—C25—H25119.9
C2—C3—H3125.8C21—C26—C25121.1 (4)
Fe1—C3—H3127.5C21—C26—H26119.5
C5—C4—C3108.6 (3)C25—C26—H26119.5
C5—C4—Fe169.4 (2)Cl2B—C30A—Cl1A110.2 (5)
C3—C4—Fe169.8 (2)Cl2B—C30A—H30C109.6
C5—C4—H4125.7Cl1A—C30A—H30C109.6
C3—C4—H4125.7Cl2B—C30A—H30A109.6
Fe1—C4—H4126.7Cl1A—C30A—H30A109.6
C4—C5—C1108.1 (4)H30C—C30A—H30A108.1
C4—C5—Fe170.2 (2)Cl2C—C30B—Cl1B114.9 (7)
C1—C5—Fe168.9 (2)Cl2C—C30B—H30D113.2
C4—C5—H5126.0Cl1B—C30B—H30D109.6
C1—C5—H5126.0Cl2C—C30B—H30B108.5
Fe1—C5—H5126.5Cl1B—C30B—H30B108.5
C10—C6—C7108.7 (5)H30D—C30B—H30B101.0
C10—C6—Fe170.2 (3)
N1—C11—C1—C292.4 (4)N1—C11—C1—C591.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···I1i0.993.173.988 (4)140
C12—H12C···I10.983.214.117 (5)154
C12—H12B···Cl2C0.983.513.787 (7)99
C13—H13A···I10.983.274.158 (5)151
C14—H14A···I10.983.144.057 (5)157
C14—H14B···I1i0.983.254.077 (5)143
C30A—H30A···I1ii1.002.893.867 (7)166
C13—H13B···CT2iii0.982.983.901 (6)158
C23—H23···CT1iv0.952.693.600 (7)160
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x, y+1/2, z+1; (iii) x+2, y1/2, z+2; (iv) x+1, y+1/2, z+1.
Comparison of the geometry (Å, °) within the methylamine C–CH2–N fragment for the title compound with related structures. top
C1—C11C11—N1Cp1/C1>N1
Title compound1.493 (5)1.531 (4)89.7 (2)
BECKUQ1.5091.53485.6
LIFWUS1.4651.54469.8
LIFWUS1.5091.53678.6
LIFXAZ1.4941.52570.4
PIJLEB1.4941.51986.9
VIKZIA1.4851.53886.0
XEQKIN1.4971.53184.2
References: BECKUQ (Hitchcock et al., 2002); LIFWUS (Malezieux et al., 1994); LIFXAZ (Malezieux et al., 1994); PIJLEB (Butler et al., 2002); VIKZIA (Butler et al., 2002); XEKQIN (Deck et al., 2000).
 

Acknowledgements

The authors thank the Centre National de la Recherche Scientifique (CNRS), the Institut Universitaire de Technologie (IUT) Paul Sabatier and the Chemistry Department of the IUT Castres for offering access to laboratories and analytical equipment.

Funding information

Funding for this research was provided by: Centre National de la Recherche Scientifique (CNRS), Midi-Pyrénnées region, Institut Universitaire de Technologie (IUT) Paul Sabatier and the Syndicat Mixte de Castres Maza­met (PhD grant ALDOCT000431.

References

First citationAudin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2010). CR Chimie 13, 890-899.  Web of Science CSD CrossRef CAS Google Scholar
First citationBayda, S., Cassen, A., Daran, J.-C., Audin, C., Poli, R., Manoury, E. & Deydier, E. (2014). J. Organomet. Chem. 772–773, 258–264.  Web of Science CSD CrossRef CAS Google Scholar
First citationBörner, A. (2008). Editor. Phosphorus Ligands in Asymmetric Catalysis, Vols. 1–3. Weinheim: Wiley-VCH.  Google Scholar
First citationBruker (2015). APEX2. and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuergler, J. F., Niedermann, K. & Togni, A. (2012). Chem. Eur. J. 18, 632–640.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationButler, I. R., Horton, P. N. & Hursthouse, M. B. (2002). University of Southampton, Crystal Structure Report Archive, 908.  Google Scholar
First citationDaran, J.-C., Audin, C., Deydier, E., Manoury, E. & Poli, R. (2010). Acta Cryst. E66, m1417–m1418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDeck, P. A., Lane, M. J., Montgomery, J. L., Slebodnick, C. & Fronczek, F. R. (2000). Organometallics, 19, 1013–1024.  Web of Science CSD CrossRef CAS Google Scholar
First citationDiab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186–5189.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, D.-W., Shi, Y.-C., Gu, Q., Zhao, Z.-L. & You, S.-L. (2013). J. Am. Chem. Soc. 135, 86–89.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGómez Arrayás, R., Adrio, J. & Carretero, J. C. (2006). Angew. Chem. Int. Ed. 45, 7674–7715.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHitchcock, P. B., Leigh, G. J. & Togrou, M. (2002). J. Organomet. Chem. 664, 245–257.  Web of Science CSD CrossRef CAS Google Scholar
First citationJacobsen, E. N., Pfalz, A. & Yamamoto, H. (1999). Editors. Comprehensive Asymmetric Catalysis, Vols. 1–3. Berlin: Springer.  Google Scholar
First citationKozinets, E. M., Koniev, O., Filippov, O. A., Daran, J.-C., Poli, R., Shubina, E. S., Belkova, N. V. & Manoury, E. (2012). Dalton Trans. 41, 11849–11859.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLabande, A., Daran, J.-C., Manoury, E. & Poli, R. (2007). Eur. J. Inorg. Chem. pp. 1205–1209.  Web of Science CSD CrossRef Google Scholar
First citationLe Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, A. (2007). Adv. Synth. Catal. 349, 309–313.  Web of Science CrossRef CAS Google Scholar
First citationLin, Y., Ong, Y. C., Keller, S., Karges, J., Bouchene, R., Manoury, E., Blacque, O., Müller, J., Anghel, N., Hemphill, A., Häberli, C., Taki, A. C., Gasser, R. B., Cariou, K., Keiser, J. & Gasser, G. (2020). Dalton Trans. 49, 6616–6626.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLoxq, P., Debono, N., Gülcemal, S., Daran, J.-C., Manoury, E., Poli, R., Çetinkaya, B. & Labande, A. (2014). New J. Chem. 38, 338–347.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalezieux, B., Gruselle, M., Troitskaya, L. L., Sokolov, V. I. & Vaissermann, J. (1994). Organometallics, 13, 2979–2986.  CSD CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRoutaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685–2690.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationToma, Š., Csizmadiová, J., Mečiarová, M. & Šebesta, R. (2014). Dalton Trans. 43, 16557–16579.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWei, M.-M., Audin, C., Manoury, E., Deydier, E. & Daran, J.-C. (2014). Acta Cryst. C70, 281–284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, M.-M., García-Melchor, M., Daran, J.-C., Audin, C., Lledós, A., Poli, R., Deydier, E. & Manoury, E. (2012). Organometallics, 31, 6669–6680.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds