research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal-structure studies of 4-phenyl­piperazin-1-ium 4-eth­­oxy­benzoate monohydrate, 4-phenyl­piperazin-1-ium 4-meth­­oxy­benzoate monohydrate, 4-phenyl­piperazin-1-ium 4-methyl­benzoate monohydrate and 4-phenyl­piperazin-1-ium tri­fluoro­acetate 0.12-hydrate

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and dDepartment of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
*Correspondence e-mail: sgg@uniovi.es

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 2 May 2022; accepted 5 June 2022; online 10 June 2022)

In this study, four new piperazinium salts, namely, 4-phenyl­piperazin-1-ium 4-eth­oxy­benzoate monohydrate, C9H9O3·C10H15N2·H2O (I); 4-phenyl­piperazin-1-ium 4-meth­oxy­benzoate monohydrate, C10H15N2·C8H7O3·H2O (II); 4-phenyl­piperazin-1-ium 4-methyl­benzoate monohydrate, C10H15N2·C8H7O2·H2O (III); and 4-phenyl­piperazin-1-ium tri­fluoro­acetate 0.12 hydrate, C10H15N2·C2F3O2·0.12H2O (IV), have been synthesized. The single-crystal structures of these compounds reveal that all of them crystallize in the triclinic P[\overline{1}] space group and the crystal packing of (I)–(III) is built up of ribbons formed by a combination of hydrogen bonds of type N—H⋯O, O—H⋯O and other weak inter­actions of type C—H⋯O and C—H⋯π, leading to a three-dimensional network. In the crystal of (IV), the cations and the anions are connected by C—H⋯O, N—H⋯O and C—H⋯F hydrogen bonds and by C—H⋯π inter­actions, forming sheets which in turn inter­act to maintain the crystal structure by linking through the oxygen atoms of water mol­ecules and van der Waals inter­actions, giving the whole structure.

1. Chemical context

Piperazines are among the most important building blocks in today's drug discovery efforts and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]; Bogatcheva et al., 2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]). For a review on the current pharmacological and toxicological information for piperazine derivative, see Elliott (2011[Elliott, S. (2011). Drug Test Anal. 3, 430-438.]). Various pharmacological properties of phenyl­piperazines and their derivatives have been discussed by several authors (Cohen et al., 1982[Cohen, M. R., Hinsch, E., Palkoski, Z., Vergona, R., Urbano, S. & Sztokalo, J. (1982). J. Pharmacol. Exp. Ther. 223, 110-119.]; Conrado et al., 2010[Conrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Dalla-Costa, T. (2010). J. Pharm. Pharmacol. 60, 699-707.]; Neves et al., 2003[Neves, G., Fenner, R., Heckler, A. P., Viana, A. F., Tasso, L., Menegatti, R., Fraga, C. A. M., Barreiro, E. J., Dalla-Costa, T. & Rates, S. M. K. (2003). Braz. J. Med. Biol. Res. 36, 625-629.]; Hanano et al., 2000[Hanano, T., Adachi, K., Aoki, Y., Morimoto, H., Naka, Y., Hisadome, M., Fukuda, T. & Sumichika, H. (2000). Bioorg. Med. Chem. Lett. 10, 875-879.]). The design and synthesis of phenyl­piperazine derivatives as potent anti­cancer agents for prostate cancer have been described (Demirci et al., 2019[Demirci, S., Hayal, T. B., Kıratlı, B., Şişli, H. B., Demirci, S., Şahin, F. & Doğan, A. (2019). Chem. Biol. Drug Des. 94, 1584-1595.]). Many pharmaceutical compounds are derived from 1-phenyl­piperazine, viz., oxypertine, trazodone, nefazodone, etc.

The crystal structures of 2-(4-methyl-2-phenyl­piperazin-4-ium-1-yl)pyridine-3-carboxyl­ate dehydrate (Li et al., 2008[Li, A.-J., Zhang, X.-H., Sun, W.-Q., Zhou, X.-Q. & Liu, D.-Z. (2008). Acta Cryst. E64, o1234.]), 1-chloro-2-(4-phenyl­piperazin-1-yl)-ethanone (Xu & Jing, 2009[Xu, Y.-J. & Jing, F. (2009). Acta Cryst. E65, o1211.]), 4-phenyl­piperazin-1-ium di­hydrogen phosphate (Essid et al., 2010[Essid, M., Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2244-o2245.]) and 1-phenyl­piperazine-1,4-diium bis­(hydrogen sulfate) (Marouani et al., 2010[Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2613.]) have been reported, as have those of 4-phenyl­piperazin-1-ium 6-chloro-5-ethyl-2,4-dioxopyrimidin-1-ide and 4-phenyl­piperazin-1-ium 6-chloro-5-isopropyl-2,4-dioxopyrimidin-1-ide (Al-Alshaikh et al., 2015[Al-Alshaikh, M. A., El-Emam, A. A., Al-Deeb, O. A., Abdelbaky, M. S. M. & Garcia-Granda, S. (2015). Acta Cryst. E71, 956-959.]). We have reported the crystal structures of some salts of 4-meth­oxy­phenyl­piperazine (Kiran Kumar et al., 2019a[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019a). Acta Cryst. E75, 1494-1506.]), six 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines (Kiran Kumar et al., 2019b[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019b). Acta Cryst. E75, 1253-1260.]), 2-meth­oxy­phenyl­piperazine (Harish Chinthal et al., 2020[Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779-1793.]) and the recreational drug N-(4-meth­oxy­phen­yl)piperazine (MeOPP) and three of its salts (Kiran Kumar et al., 2020a[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020a). Acta Cryst. E76, 488-495.]).

[Scheme 1]

In view of the importance of piperazines in general and the use of 1-phenyl­piperazine in particular, the present paper reports the crystal structure studies of some salts of 1-phenyl­piperazine with organic acids viz., 4-phenyl­piperazin-1-ium 4-eth­oxy­benzoate monohydrate, C9H9O3·C10H15N2·H2O (I); 4-phenyl­piperazin-1-ium 4-meth­oxy­benzoate monohydrate, C10H15N2·C8H7O3·H2O (II); 4-phenyl­piperazin-1-ium 4-methyl­benzoate monohydrate, C10H15N2·C8H7O2·H2O (III); and 4-phenyl­piperazin-1-ium tri­fluoro­acetate 0.12 hydrate C10H15N2·C2F3O2·0.12H2O (IV).

2. Structural commentary

The asymmetric unit of the compound (I), (Fig. 1[link]), consists of a 4-phenyl­piperazin-1-ium cation, a 4-eth­oxy­benzoate anion and one water mol­ecule. The aromatic ring of the cation is essentially planar while the protonated piperazine ring adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) QT = 0.553 (2) Å, θ = 175.0 (2)° and φ = 15 (3)°. In compound (II) the asymmetric unit (Fig. 2[link]) comprises a 4-phenyl­piperazin-1-ium cation, a 4-meth­oxy­benzoate anion and one water mol­ecule. The aromatic ring of the cation is essentially planar while the protonated piperazine ring adopts a chair conformation, with puckering parameters QT = 0.5614 (18) Å, θ = 175.89 (17)° and φ = 346 (3)°. Compound (III) presents an asymmetric unit (Fig. 3[link]) composed of a 4-phenyl­piperazin-1-ium cation, a 4-methyl­benzoate anion and one water mol­ecule. The aromatic ring of the cation is essentially planar but the protonated piperazine ring adopts a distorted chair conformation, with puckering parameters QT = 0.5486 (19) Å, θ = 9.38 (19)° and φ = 167.9 (13)°. On the other hand, the asymmetric unit of (IV) (Fig. 4[link]) contains two 4-phenyl­piperazin-1-ium cations (A1 with N1, A2 with N3) and two tri­fluoro­acetate anions (B1 with F1, B2 with F4) and a 0.12 occupancy water molecule. The aromatic rings of the cations (A1, A2) are essentially planar while the protonated piperazine rings adopt a chair conformation for cation A1, with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) QT = 0.552 (4) Å, θ = 0.0 (4)° and φ = 207 (14)°, and a distorted chair conformation for the cation A2, with puckering parameters QT = 0.559 (5) Å, θ = 6.6 (4)° and φ = 168 (4)°.

[Figure 1]
Figure 1
The independent components of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The independent components of compound (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The independent components of compound (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The independent components of compound (IV) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. (Atom splitting is omitted for clarity.)

3. Supra­molecular features

In the crystal structure of (I), the cation pairs are connected across two water mol­ecules by C—H⋯O and N—H⋯O hydrogen bonds, forming an R24(10) ring motif in which the anions and cations are linked through the water mol­ecules by O—H⋯O and N—H⋯O hydrogen bonds, forming ribbons along the a-axis direction (Table 1[link], Fig. 5[link]a). In addition, a set of C—H⋯π inter­actions, through the benzene rings of the anions and the cations, connect the mol­ecules together in ribbons along the a-axis direction (Table 1[link], Fig. 5[link]b). The C—H⋯O, N—H⋯O, O—H⋯O hydrogen bonds and C—H⋯π inter­actions together form a three-dimensional network, contributing to the stabilization of the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg3 are the centroids of the C12–C17 and C1–C6 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN1⋯OW1i 0.89 (2) 1.94 (2) 2.817 (3) 167 (2)
N2—HN2⋯O1 0.93 (2) 1.80 (2) 2.724 (3) 174 (2)
OW1—HW1⋯O2 0.88 (3) 1.75 (3) 2.630 (3) 178 (4)
OW1—HW2⋯O1ii 0.91 (3) 1.89 (3) 2.789 (3) 167 (3)
C9—H9A⋯OW1 0.97 2.52 3.308 (3) 138
C1—H1⋯Cg1iii 0.93 2.91 3.607 (3) 133
C5—H5⋯Cg1iv 0.93 2.79 3.570 (3) 142
C18—H18BCg3v 0.97 2.88 3.737 (4) 148
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) x+1, y, z; (iii) [-x, -y+2, -z+1]; (iv) [-x+1, -y+1, -z+1]; (v) [-x, -y+1, -z+1].
[Figure 5]
Figure 5
Parts of the crystal structure of compound (I) showing (a) the formation of a cyclic hydrogen-bonded R24(10) aggregate and (b) a general view of C—H⋯π inter­actions parallel to [100]. Hydrogen bonds and C—H⋯π inter­actions are drawn as dashed lines.

In the crystal structure of (II), the cations, the anions and the water mol­ecules are connected by C—H⋯O, N—H⋯O and O—H⋯O hydrogen bonds, forming ribbons along the a-axis direction (Table 2[link], Fig. 6[link]a). Furthermore, the cations inter­act via C—-H⋯π inter­actions through the benzene ring of the anion, forming ribbons along the b-axis direction (Table 2[link], Fig. 6[link]b). The C—H⋯O, N—H⋯O, O—H⋯O hydrogen bonds and C—H⋯π inter­actions together form a three-dimensional network, contributing to the stabilization of the crystal structure.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg3 is the centroid of the C12–C17 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN1⋯OW1i 0.93 (2) 1.91 (2) 2.815 (2) 166 (2)
OW1—HW1⋯O1ii 0.84 (2) 1.80 (2) 2.633 (2) 175 (2)
N2—HN2⋯O2 0.93 (2) 1.81 (2) 2.7350 (19) 176 (2)
OW1—HW2⋯O2iii 0.85 (2) 1.96 (2) 2.7876 (19) 168 (2)
C8—H8B⋯OW1ii 0.97 2.53 3.331 (2) 140
C1—H1⋯Cg3ii 0.93 2.76 3.549 (2) 144
C5—H5⋯Cg3iv 0.93 2.86 3.625 (2) 140
Symmetry codes: (i) [x, y-1, z]; (ii) [-x, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+1, -y, -z+1].
[Figure 6]
Figure 6
Parts of the crystal structure of compound (II) showing (a) the formation of hydrogen-bonded ribbons parallel to [010] and (b) a general view of the C—H⋯π inter­actions parallel to [010]. Hydrogen bonds and C—H⋯π inter­actions are drawn as dashed lines.

In the crystal structure of (III), the cations, the anions and the water mol­ecules are connected by C—H⋯O, N—H⋯O and O—H⋯O hydrogen bonds, forming ribbons along the a-axis direction (Table 3[link], Fig. 7[link]). There are no C—H⋯π inter­actions or π-π stacking inter­actions. The crystal structure is stabilized by C—H⋯O, N—H⋯O, O—H⋯O hydrogen bonds and van der Waals inter­actions between the ribbons, which run along the a-axis direction.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HW1⋯O2i 0.89 (3) 1.90 (3) 2.782 (2) 171 (4)
OW1—HW2⋯O1 0.84 (2) 1.92 (3) 2.751 (2) 172 (3)
N2—HN1⋯O1ii 0.90 (2) 1.94 (2) 2.819 (2) 164 (2)
N2—HN2⋯O2 0.92 (2) 1.80 (2) 2.7207 (19) 176 (2)
C8—H8A⋯OW1 0.97 2.33 3.116 (3) 138
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, -y+1, -z+1].
[Figure 7]
Figure 7
Part of the crystal structure of compound (III) showing the formation of a hydrogen-bonded chain of rings parallel to [001]. Hydrogen bonds are drawn as dashed lines.

In the crystal structure of (IV), the cations and the anions are connected by C—H⋯O, N—H⋯O and C—H⋯F hydrogen bonds (Table 4[link], Fig. 8[link]a) and C—H⋯π inter­actions, generating sheets parallel to the (100) plane (Table 4[link], Fig. 8[link]). These sheets further inter­act to maintain the crystal structure by linking through the oxygen atoms of water mol­ecules and by van der Waals inter­actions. As shown in Table 4[link], the main interactions in the structure of (IV) involve the oxygen atoms of carboxylate groups, while the 0.12 fraction of the water molecule contributes with one interaction of the type C—H⋯O and it is weak in comparison to the other oxygen-based ones.

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

Cg2 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1i 0.88 1.91 2.790 (4) 174
N2—H22⋯O3 0.87 2.04 2.860 (4) 157
N2—H22⋯O4 0.87 2.47 3.164 (5) 137
N4—H41⋯O4ii 0.86 1.95 2.759 (6) 156
N4—H42⋯O2iii 0.89 1.90 2.758 (4) 164
C18—H18A⋯F5′iii 0.97 2.53 3.273 (18) 134
C18—H18B⋯Ow1 0.97 2.08 2.929 (15) 145
C19—H19B⋯O3iv 0.97 2.59 3.420 (5) 144
C20—H20A⋯F5iv 0.97 2.64 3.468 (8) 144
C16—H16⋯Cg2v 0.93 2.99 3.745 (4) 140
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) [-x+1, -y+1, -z]; (iv) [-x+1, -y+2, -z]; (v) [-x+1, -y+1, -z+1].
[Figure 8]
Figure 8
Parts of the crystal structure of compound (IV) showing (a) a general view of the C—H⋯O, N—H⋯O and C—H⋯F hydrogen bonds and C—H⋯π inter­actions and (b) the mol­ecular packing of (IV) down the a-axis. Hydrogen bonds and C—H⋯π inter­actions are drawn as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Version 2020.3, last update February 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for an unsubstituted 4-phenyl­piperazin-1-ium cation and para-substituted benzoate anion involved in the reported salts (I)–(III) gave no hits. However, searching for a branched phenyl piperazinium cation and para-substituted benzoate anion gave comparable hits, namely; 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-fluoro­benzoate monohydrate, 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-chloro­benzoate monohydrate, 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-bromo­benzoate monohydrate (FOVPOY, FOVPUE, FOVQAL; Kiran Kumar et al., 2019a[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019a). Acta Cryst. E75, 1494-1506.]), 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-iodo­benzoate monohydrate (KUJPUD; Kiran Kumar et al., 2020b[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020b). CSD Communication (refcode KUJPUD). CCDC, Cambridge, England.]). They exhibit a meth­oxy group as a substituent in the 4-phenyl­piperazin-1-ium cation while the reported compounds (I)–(IV) have no substituent. They also crystallize as monohydrates, and their crystal structures are based on differently sized chains of rings formed via a combination of hydrogen bonds of the type N–H⋯O and O–H⋯O and other weak inter­actions of types C—H⋯O and C—H⋯π to form sheets. In 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-amino­benzoate monohydrate (IHIMEU; Kiran Kumar et al., 2020a[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020a). Acta Cryst. E76, 488-495.]) the presence of the amino substituent in the anion, which acts as both a donor and as an acceptor of hydrogen bonds, makes the supra­molecular assembly of this compound more complex than those reported here. A search for 4-phenyl­piperazin-1-ium and acetate derivatives involved in the reported compound (IV) gave no hits.

5. Synthesis and crystallization

For the synthesis of salts (I)–(IV), a solution of commercially available (from Sigma–Aldrich) 1-phenyl­piperazine (100 mg, 0.62 mol) in methanol (10 ml) was mixed with equimolar solutions of the appropriate organic acids in methanol (10 ml) viz., 4-eth­oxy­benzoic acid (103 mg, 0.62 mol) for (I), 4-meth­oxy­benzoic acid (94 mg, 0.62 mol) for (II), 4-methyl­benzoic acid (84 mg, 0.62 mol) for (III) and tri­fluoro­acetic acid (71 mg, 0.62 mol) for (IV). The corresponding solutions were stirred for 15 min at room temperature and allowed to stand at the same temperature. X-ray quality crystals were formed on slow evaporation in a week for all compounds, where ethanol:ethyl­acetate (1:1) was used for crystallization. The corresponding melting points were 353–355 K for (I), 368–370 K for (II), 338–340 K for (III) and 385–387 K for (IV).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All H atoms bonded to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.96 Å (meth­yl) or 0.97 Å (methyl­ene), with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). For the H atoms bonded to the N and O atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O), [for (I), N2—HN2 = 0.931 (19), N2—HN1 = 0.888 (17) Å and OW1—HW2 = 0.91 (3), OW1—HW1 = 0.88 (3) Å; for (II), N2—HN1 = 0.927 (16), N2—HN2 = 0.931 (18) Å and OW—HW1 = 0.840 (19), OW1—HW2 = 0.85 (2) Å; for (III), N2—HN1 = 0.900 (16), N2—HN2 = 0.918 (17) Å and OW1—HW1 = 0.89 (3), OW1—HW2 = 0.84 (2) Å and for (IV), N2—H22 = 0.87 (2) and N2—H21 = 0.88 (3) Å]. In (IV), the atoms of the CF3 groups of two tri­fluoro­acetate anions (B1, B2) are disordered over two sets of sites with site occupancies of 0.737 (3) and 0.263 (3). The corresponding bond distances in the disordered groups were restrained to be equal. The Uij components of these atoms were restrained to be equal and were restrained to approximate isotropic behaviour. The OW1 water molecule was refined with a resulting occupation factor of 0.245 (10) and the H atoms of the water molecule were placed geometrically.

Table 5
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C10H15N2+·C9H9O3·H2O C10H15N2+·C8H7O3·H2O C10H15N2+·C8H7O2·H2O C10H15N2+·C2F3O2·0.123H2O
Mr 346.42 332.39 316.39 278.47
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 293 293 293 293
a, b, c (Å) 6.1635 (5), 7.5946 (6), 20.458 (2) 6.2039 (4), 7.5565 (7), 18.614 (1) 6.1175 (5), 7.6225 (7), 18.452 (1) 9.6544 (6), 9.9029 (6), 15.2090 (9)
α, β, γ (°) 79.545 (7), 86.521 (7), 83.791 (7) 81.799 (7), 87.020 (7), 84.852 (7) 97.421 (9), 90.403 (8), 92.405 (8) 79.621 (6), 86.579 (6), 70.603 (6)
V3) 935.38 (14) 859.53 (11) 852.40 (12) 1349.10 (15)
Z 2 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.09 0.08 0.12
Crystal size (mm) 0.48 × 0.42 × 0.1 0.48 × 0.48 × 0.32 0.5 × 0.4 × 0.08 0.48 × 0.48 × 0.36
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur Oxford Diffraction Xcalibur
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.623, 1.000 0.520, 1.000 0.837, 1.000 0.724, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5989, 3429, 2159 5360, 3142, 2322 5354, 3126, 2248 9220, 4940, 2777
Rint 0.022 0.016 0.013 0.014
(sin θ/λ)max−1) 0.602 0.602 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.124, 1.08 0.045, 0.125, 1.06 0.046, 0.128, 1.03 0.070, 0.235, 1.07
No. of reflections 3424 3139 3118 4927
No. of parameters 244 230 226 375
No. of restraints 2 4 4 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.15 0.2, −0.17 0.16, −0.16 0.42, −0.28
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

4-Phenylpiperazin-1-ium 4-ethoxybenzoate monohydrate (I) top
Crystal data top
C10H15N2+·C9H9O3·H2OZ = 2
Mr = 346.42F(000) = 372
Triclinic, P1Dx = 1.23 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1635 (5) ÅCell parameters from 2352 reflections
b = 7.5946 (6) Åθ = 3.0–27.8°
c = 20.458 (2) ŵ = 0.09 mm1
α = 79.545 (7)°T = 293 K
β = 86.521 (7)°Plate, colourless
γ = 83.791 (7)°0.48 × 0.42 × 0.1 mm
V = 935.38 (14) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2159 reflections with I > 2σ(I)
ω scansRint = 0.022
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
θmax = 25.4°, θmin = 3.0°
Tmin = 0.623, Tmax = 1.000h = 77
5989 measured reflectionsk = 99
3429 independent reflectionsl = 2414
Refinement top
Refinement on F2Secondary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.2859P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3424 reflectionsΔρmax = 0.15 e Å3
244 parametersΔρmin = 0.15 e Å3
2 restraintsExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0058 (17)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1990 (4)0.7508 (4)0.79338 (12)0.0626 (7)
H10.0692520.8099890.7761250.075*
C20.2437 (5)0.7539 (4)0.85869 (13)0.0782 (9)
H20.1428530.8142950.8846410.094*
C30.4331 (5)0.6699 (4)0.88559 (14)0.0759 (9)
H30.4621630.6720730.9295040.091*
C40.5786 (5)0.5827 (4)0.84658 (14)0.0753 (8)
H40.7090950.5259990.8640830.09*
C50.5363 (4)0.5771 (3)0.78183 (12)0.0579 (7)
H50.6381060.5158370.7564450.069*
C60.3432 (3)0.6615 (3)0.75355 (10)0.0407 (5)
C70.1046 (3)0.7635 (3)0.66062 (11)0.0484 (6)
H7A0.1306630.8887330.6567710.058*
H7B0.019690.7421380.6913980.058*
C80.0502 (3)0.7292 (3)0.59343 (11)0.0496 (6)
H8A0.0050850.6090010.597980.059*
H8B0.070320.8144580.5761450.059*
C90.4290 (3)0.6216 (3)0.57366 (10)0.0480 (6)
H9A0.5550620.6348350.5430530.058*
H9B0.3923610.4987130.5786250.058*
C100.4839 (3)0.6594 (3)0.64012 (10)0.0447 (6)
H10A0.6026150.5729850.6579580.054*
H10B0.53330.7784580.6341860.054*
C110.2356 (4)0.7988 (3)0.37750 (13)0.0504 (6)
C120.1740 (3)0.8093 (3)0.30715 (11)0.0409 (5)
C130.0108 (3)0.7381 (3)0.29259 (11)0.0462 (6)
H130.099870.6850180.3273260.055*
C140.0669 (4)0.7436 (3)0.22762 (11)0.0496 (6)
H140.1917240.6943490.2189880.06*
C150.0633 (4)0.8223 (3)0.17610 (11)0.0480 (6)
C160.2462 (4)0.8988 (3)0.18948 (12)0.0547 (6)
H160.3322640.9550740.1546490.066*
C170.3005 (4)0.8916 (3)0.25403 (12)0.0521 (6)
H170.4241780.9426780.2624210.063*
C180.1614 (5)0.7562 (5)0.09410 (14)0.0931 (10)
H18A0.2938050.8183590.1103770.112*
H18B0.1552910.630230.1146070.112*
C190.1605 (8)0.7747 (7)0.02032 (17)0.178 (2)
H19A0.1958230.8987670.001010.268*
H19B0.2668710.7037960.0084940.268*
H19C0.0182880.733640.0039150.268*
N10.2969 (3)0.6493 (2)0.68767 (8)0.0382 (4)
N20.2420 (3)0.7474 (3)0.54621 (10)0.0452 (5)
O10.1211 (3)0.7133 (2)0.42359 (8)0.0622 (5)
O20.3970 (3)0.8727 (3)0.38724 (10)0.0885 (7)
O30.0253 (3)0.8330 (2)0.11014 (8)0.0681 (5)
OW10.7230 (4)0.8819 (2)0.46338 (9)0.0591 (5)
HN10.275 (4)0.860 (2)0.5421 (11)0.056 (7)*
HN20.208 (4)0.729 (3)0.5044 (9)0.067 (8)*
HW10.612 (5)0.879 (4)0.4385 (15)0.102 (11)*
HW20.842 (5)0.825 (4)0.4445 (15)0.102 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0719 (17)0.0673 (18)0.0465 (15)0.0151 (14)0.0066 (13)0.0156 (13)
C20.103 (2)0.079 (2)0.0522 (17)0.0150 (18)0.0020 (16)0.0248 (15)
C30.106 (2)0.076 (2)0.0510 (17)0.0055 (18)0.0223 (17)0.0207 (15)
C40.0735 (18)0.090 (2)0.0636 (18)0.0027 (16)0.0267 (15)0.0145 (17)
C50.0561 (15)0.0696 (18)0.0486 (15)0.0031 (13)0.0116 (12)0.0147 (13)
C60.0467 (12)0.0353 (13)0.0414 (13)0.0092 (10)0.0045 (10)0.0067 (10)
C70.0399 (12)0.0595 (16)0.0441 (13)0.0007 (11)0.0025 (10)0.0078 (11)
C80.0407 (12)0.0622 (16)0.0445 (14)0.0045 (11)0.0053 (10)0.0053 (11)
C90.0480 (13)0.0512 (15)0.0423 (13)0.0011 (11)0.0026 (10)0.0057 (11)
C100.0396 (12)0.0496 (14)0.0435 (13)0.0024 (10)0.0018 (10)0.0062 (11)
C110.0524 (14)0.0427 (14)0.0593 (17)0.0050 (12)0.0162 (13)0.0190 (12)
C120.0398 (12)0.0373 (13)0.0475 (13)0.0007 (10)0.0072 (10)0.0121 (10)
C130.0494 (13)0.0462 (14)0.0432 (13)0.0111 (11)0.0024 (11)0.0048 (11)
C140.0502 (13)0.0519 (15)0.0490 (14)0.0163 (11)0.0091 (11)0.0063 (12)
C150.0556 (14)0.0469 (15)0.0412 (14)0.0042 (11)0.0052 (11)0.0065 (11)
C160.0534 (14)0.0566 (16)0.0533 (16)0.0136 (12)0.0088 (12)0.0063 (12)
C170.0409 (12)0.0533 (16)0.0659 (17)0.0098 (11)0.0026 (12)0.0174 (13)
C180.111 (2)0.121 (3)0.0572 (18)0.046 (2)0.0218 (17)0.0148 (18)
C190.242 (6)0.251 (6)0.063 (2)0.137 (5)0.039 (3)0.007 (3)
N10.0374 (9)0.0419 (11)0.0350 (10)0.0028 (8)0.0021 (8)0.0062 (8)
N20.0548 (12)0.0428 (13)0.0390 (11)0.0088 (10)0.0079 (9)0.0058 (9)
O10.0706 (11)0.0703 (12)0.0465 (10)0.0048 (10)0.0127 (9)0.0108 (9)
O20.0835 (13)0.1109 (17)0.0825 (14)0.0368 (12)0.0321 (11)0.0215 (12)
O30.0816 (12)0.0792 (13)0.0450 (10)0.0182 (10)0.0052 (9)0.0080 (9)
OW10.0593 (11)0.0598 (12)0.0604 (12)0.0122 (10)0.0135 (10)0.0092 (9)
Geometric parameters (Å, º) top
C1—C61.377 (3)C11—O21.237 (3)
C1—C21.385 (3)C11—O11.267 (3)
C1—H10.93C11—C121.497 (3)
C2—C31.365 (4)C12—C131.383 (3)
C2—H20.93C12—C171.391 (3)
C3—C41.362 (4)C13—C141.386 (3)
C3—H30.93C13—H130.93
C4—C51.375 (3)C14—C151.373 (3)
C4—H40.93C14—H140.93
C5—C61.395 (3)C15—O31.370 (3)
C5—H50.93C15—C161.386 (3)
C6—N11.416 (3)C16—C171.372 (3)
C7—N11.465 (2)C16—H160.93
C7—C81.508 (3)C17—H170.93
C7—H7A0.97C18—O31.425 (3)
C7—H7B0.97C18—C191.490 (4)
C8—N21.482 (3)C18—H18A0.97
C8—H8A0.97C18—H18B0.97
C8—H8B0.97C19—H19A0.96
C9—N21.484 (3)C19—H19B0.96
C9—C101.504 (3)C19—H19C0.96
C9—H9A0.97N2—HN10.887 (16)
C9—H9B0.97N2—HN20.930 (16)
C10—N11.462 (3)OW1—HW10.88 (3)
C10—H10A0.97OW1—HW20.91 (3)
C10—H10B0.97
C6—C1—C2121.2 (2)O2—C11—C12118.0 (2)
C6—C1—H1119.4O1—C11—C12118.2 (2)
C2—C1—H1119.4C13—C12—C17117.6 (2)
C3—C2—C1121.1 (3)C13—C12—C11121.3 (2)
C3—C2—H2119.4C17—C12—C11121.1 (2)
C1—C2—H2119.4C12—C13—C14121.8 (2)
C4—C3—C2118.4 (3)C12—C13—H13119.1
C4—C3—H3120.8C14—C13—H13119.1
C2—C3—H3120.8C15—C14—C13119.4 (2)
C3—C4—C5121.3 (3)C15—C14—H14120.3
C3—C4—H4119.4C13—C14—H14120.3
C5—C4—H4119.4O3—C15—C14124.4 (2)
C4—C5—C6121.1 (2)O3—C15—C16115.8 (2)
C4—C5—H5119.4C14—C15—C16119.8 (2)
C6—C5—H5119.4C17—C16—C15120.1 (2)
C1—C6—C5116.9 (2)C17—C16—H16119.9
C1—C6—N1122.23 (19)C15—C16—H16119.9
C5—C6—N1120.8 (2)C16—C17—C12121.2 (2)
N1—C7—C8112.74 (18)C16—C17—H17119.4
N1—C7—H7A109C12—C17—H17119.4
C8—C7—H7A109O3—C18—C19107.7 (3)
N1—C7—H7B109O3—C18—H18A110.2
C8—C7—H7B109C19—C18—H18A110.2
H7A—C7—H7B107.8O3—C18—H18B110.2
N2—C8—C7110.70 (17)C19—C18—H18B110.2
N2—C8—H8A109.5H18A—C18—H18B108.5
C7—C8—H8A109.5C18—C19—H19A109.5
N2—C8—H8B109.5C18—C19—H19B109.5
C7—C8—H8B109.5H19A—C19—H19B109.5
H8A—C8—H8B108.1C18—C19—H19C109.5
N2—C9—C10110.47 (18)H19A—C19—H19C109.5
N2—C9—H9A109.6H19B—C19—H19C109.5
C10—C9—H9A109.6C6—N1—C10115.21 (16)
N2—C9—H9B109.6C6—N1—C7115.50 (17)
C10—C9—H9B109.6C10—N1—C7111.72 (16)
H9A—C9—H9B108.1C8—N2—C9109.60 (17)
N1—C10—C9112.16 (17)C8—N2—HN1106.9 (15)
N1—C10—H10A109.2C9—N2—HN1109.4 (15)
C9—C10—H10A109.2C8—N2—HN2110.8 (15)
N1—C10—H10B109.2C9—N2—HN2112.2 (15)
C9—C10—H10B109.2HN1—N2—HN2108 (2)
H10A—C10—H10B107.9C15—O3—C18117.7 (2)
O2—C11—O1123.7 (2)HW1—OW1—HW2107 (3)
C6—C1—C2—C30.6 (4)O3—C15—C16—C17178.7 (2)
C1—C2—C3—C40.2 (5)C14—C15—C16—C171.8 (4)
C2—C3—C4—C50.7 (5)C15—C16—C17—C120.4 (4)
C3—C4—C5—C60.5 (4)C13—C12—C17—C161.2 (3)
C2—C1—C6—C50.8 (4)C11—C12—C17—C16178.9 (2)
C2—C1—C6—N1177.0 (2)C1—C6—N1—C10143.0 (2)
C4—C5—C6—C10.3 (4)C5—C6—N1—C1039.3 (3)
C4—C5—C6—N1177.6 (2)C1—C6—N1—C710.3 (3)
N1—C7—C8—N254.6 (3)C5—C6—N1—C7171.9 (2)
N2—C9—C10—N156.7 (2)C9—C10—N1—C6172.59 (17)
O2—C11—C12—C13176.6 (2)C9—C10—N1—C753.0 (2)
O1—C11—C12—C134.1 (3)C8—C7—N1—C6173.71 (18)
O2—C11—C12—C173.3 (3)C8—C7—N1—C1052.0 (2)
O1—C11—C12—C17176.0 (2)C7—C8—N2—C957.2 (2)
C17—C12—C13—C141.6 (3)C10—C9—N2—C858.4 (2)
C11—C12—C13—C14178.6 (2)C14—C15—O3—C180.4 (4)
C12—C13—C14—C150.3 (3)C16—C15—O3—C18179.9 (2)
C13—C14—C15—O3179.1 (2)C19—C18—O3—C15176.7 (3)
C13—C14—C15—C161.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C12–C17 and C1–C6 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—HN1···OW1i0.89 (2)1.94 (2)2.817 (3)167 (2)
N2—HN2···O10.93 (2)1.80 (2)2.724 (3)174 (2)
OW1—HW1···O20.88 (3)1.75 (3)2.630 (3)178 (4)
OW1—HW2···O1ii0.91 (3)1.89 (3)2.789 (3)167 (3)
C9—H9A···OW10.972.523.308 (3)138
C1—H1···Cg1iii0.932.913.607 (3)133
C5—H5···Cg1iv0.932.793.570 (3)142
C18—H18B···Cg3v0.972.883.737 (4)148
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x, y+2, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z+1.
4-Phenylpiperazin-1-ium 4-methoxybenzoate monohydrate (II) top
Crystal data top
C10H15N2+·C8H7O3·H2OZ = 2
Mr = 332.39F(000) = 356
Triclinic, P1Dx = 1.284 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2039 (4) ÅCell parameters from 2855 reflections
b = 7.5565 (7) Åθ = 3.1–27.8°
c = 18.614 (1) ŵ = 0.09 mm1
α = 81.799 (7)°T = 293 K
β = 87.020 (7)°Prism, colourless
γ = 84.852 (7)°0.48 × 0.48 × 0.32 mm
V = 859.53 (11) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2322 reflections with I > 2σ(I)
ω scansRint = 0.016
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
θmax = 25.3°, θmin = 3.1°
Tmin = 0.520, Tmax = 1.000h = 75
5360 measured reflectionsk = 99
3142 independent reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.1503P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3139 reflectionsΔρmax = 0.2 e Å3
230 parametersΔρmin = 0.16 e Å3
4 restraintsExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.032 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0254 (3)0.4086 (3)0.19209 (10)0.0516 (5)
H10.1208580.4763820.2196290.062*
C20.0695 (3)0.3996 (3)0.12102 (11)0.0625 (6)
H20.1948980.460270.1015330.075*
C30.0686 (3)0.3024 (3)0.07854 (10)0.0597 (6)
H30.0399570.2984020.0302790.072*
C40.2497 (3)0.2117 (3)0.10901 (10)0.0593 (6)
H40.3437020.1439090.081020.071*
C50.2964 (3)0.2181 (3)0.18024 (9)0.0512 (5)
H50.4207320.1549120.1994330.061*
C60.1594 (2)0.3180 (2)0.22353 (8)0.0361 (4)
C70.0222 (3)0.3258 (2)0.34797 (8)0.0419 (4)
H7A0.0264610.2059150.3543190.05*
H7B0.0960840.409060.328890.05*
C80.0795 (3)0.3708 (2)0.42029 (9)0.0456 (4)
H8A0.1168890.4940940.4148580.055*
H8B0.0445310.3593570.4540530.055*
C90.4547 (3)0.2652 (3)0.39777 (9)0.0485 (5)
H9A0.5745980.1829670.4163360.058*
H9B0.4996610.3861460.3927340.058*
C100.3979 (3)0.2229 (3)0.32457 (9)0.0445 (4)
H10A0.5205810.2412830.290680.053*
H10B0.369280.0976550.3289480.053*
C110.2655 (3)0.2146 (2)0.63263 (10)0.0474 (5)
C120.3208 (3)0.2073 (2)0.71052 (9)0.0389 (4)
C130.1897 (3)0.1251 (2)0.76647 (10)0.0479 (5)
H130.0678290.0727330.7552730.057*
C140.2386 (3)0.1207 (3)0.83782 (10)0.0496 (5)
H140.1498750.0651780.8744610.06*
C150.4186 (3)0.1982 (2)0.85567 (9)0.0442 (4)
C160.5528 (3)0.2784 (2)0.80102 (9)0.0453 (4)
H160.6751830.3297130.8123490.054*
C170.5021 (3)0.2808 (2)0.72949 (9)0.0424 (4)
H170.5929940.3337660.69290.051*
C180.6395 (4)0.2628 (4)0.94845 (12)0.0858 (8)
H13A0.6438150.2483031.0004490.129*
H13B0.766630.2014650.9289510.129*
H13C0.634550.3881250.9296160.129*
N10.2079 (2)0.33487 (18)0.29565 (7)0.0359 (3)
N20.2652 (2)0.2489 (2)0.44963 (8)0.0434 (4)
O10.1058 (3)0.1395 (3)0.61995 (9)0.0873 (6)
O20.3847 (2)0.29717 (19)0.58441 (7)0.0598 (4)
O30.4517 (2)0.1895 (2)0.92816 (7)0.0620 (4)
OW10.2271 (2)0.8777 (2)0.46022 (8)0.0579 (4)
HN10.230 (3)0.131 (2)0.4565 (11)0.07*
HW10.120 (3)0.865 (3)0.4356 (11)0.07*
HN20.303 (3)0.270 (3)0.4956 (9)0.07*
HW20.336 (3)0.822 (3)0.4413 (12)0.07*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0534 (11)0.0579 (12)0.0441 (10)0.0127 (9)0.0106 (8)0.0169 (9)
C20.0654 (13)0.0739 (14)0.0491 (11)0.0143 (11)0.0228 (10)0.0166 (10)
C30.0820 (14)0.0654 (13)0.0347 (10)0.0036 (11)0.0147 (10)0.0145 (9)
C40.0717 (13)0.0660 (13)0.0411 (10)0.0070 (11)0.0022 (9)0.0202 (9)
C50.0535 (11)0.0597 (12)0.0399 (10)0.0105 (9)0.0032 (8)0.0137 (8)
C60.0405 (9)0.0344 (9)0.0346 (8)0.0042 (7)0.0035 (7)0.0071 (7)
C70.0388 (9)0.0515 (11)0.0352 (9)0.0009 (8)0.0006 (7)0.0083 (7)
C80.0518 (10)0.0495 (11)0.0354 (9)0.0016 (8)0.0004 (8)0.0104 (8)
C90.0425 (10)0.0619 (12)0.0419 (10)0.0015 (8)0.0105 (8)0.0090 (8)
C100.0385 (9)0.0569 (11)0.0381 (9)0.0049 (8)0.0053 (7)0.0113 (8)
C110.0484 (11)0.0464 (11)0.0508 (11)0.0051 (8)0.0161 (9)0.0190 (9)
C120.0387 (9)0.0356 (9)0.0443 (9)0.0023 (7)0.0086 (7)0.0131 (7)
C130.0366 (9)0.0485 (11)0.0617 (12)0.0058 (8)0.0057 (8)0.0157 (9)
C140.0437 (10)0.0551 (12)0.0500 (11)0.0060 (8)0.0047 (8)0.0079 (9)
C150.0450 (10)0.0485 (10)0.0398 (9)0.0020 (8)0.0042 (8)0.0110 (8)
C160.0461 (10)0.0501 (11)0.0430 (10)0.0103 (8)0.0101 (8)0.0112 (8)
C170.0447 (10)0.0437 (10)0.0400 (9)0.0072 (8)0.0036 (7)0.0075 (7)
C180.0785 (16)0.136 (2)0.0509 (13)0.0228 (16)0.0171 (11)0.0274 (14)
N10.0347 (7)0.0416 (8)0.0320 (7)0.0006 (6)0.0034 (5)0.0091 (6)
N20.0553 (9)0.0450 (8)0.0319 (7)0.0061 (7)0.0089 (6)0.0082 (6)
O10.0815 (11)0.1184 (15)0.0727 (11)0.0352 (10)0.0327 (9)0.0230 (10)
O20.0721 (9)0.0700 (10)0.0402 (7)0.0038 (7)0.0139 (7)0.0144 (7)
O30.0641 (9)0.0866 (11)0.0365 (7)0.0067 (8)0.0047 (6)0.0117 (7)
OW10.0595 (9)0.0631 (9)0.0544 (8)0.0097 (7)0.0177 (7)0.0108 (7)
Geometric parameters (Å, º) top
C1—C21.377 (3)C10—H10A0.97
C1—C61.393 (2)C10—H10B0.97
C1—H10.93C11—O11.234 (2)
C2—C31.371 (3)C11—O21.263 (2)
C2—H20.93C11—C121.499 (2)
C3—C41.368 (3)C12—C171.381 (2)
C3—H30.93C12—C131.396 (3)
C4—C51.380 (3)C13—C141.373 (3)
C4—H40.93C13—H130.93
C5—C61.388 (2)C14—C151.383 (3)
C5—H50.93C14—H140.93
C6—N11.4165 (19)C15—O31.367 (2)
C7—N11.469 (2)C15—C161.386 (2)
C7—C81.502 (2)C16—C171.381 (2)
C7—H7A0.97C16—H160.93
C7—H7B0.97C17—H170.93
C8—N21.485 (2)C18—O31.424 (3)
C8—H8A0.97C18—H13A0.96
C8—H8B0.97C18—H13B0.96
C9—N21.484 (2)C18—H13C0.96
C9—C101.509 (2)N2—HN10.924 (15)
C9—H9A0.97N2—HN20.938 (16)
C9—H9B0.97OW1—HW10.847 (16)
C10—N11.467 (2)OW1—HW20.850 (16)
C2—C1—C6121.26 (16)C9—C10—H10B109.1
C2—C1—H1119.4H10A—C10—H10B107.9
C6—C1—H1119.4O1—C11—O2124.33 (18)
C3—C2—C1121.01 (18)O1—C11—C12117.62 (19)
C3—C2—H2119.5O2—C11—C12118.06 (16)
C1—C2—H2119.5C17—C12—C13117.75 (16)
C4—C3—C2118.25 (17)C17—C12—C11121.49 (16)
C4—C3—H3120.9C13—C12—C11120.77 (16)
C2—C3—H3120.9C14—C13—C12120.75 (16)
C3—C4—C5121.67 (17)C14—C13—H13119.6
C3—C4—H4119.2C12—C13—H13119.6
C5—C4—H4119.2C13—C14—C15120.56 (17)
C4—C5—C6120.65 (17)C13—C14—H14119.7
C4—C5—H5119.7C15—C14—H14119.7
C6—C5—H5119.7O3—C15—C14116.20 (16)
C5—C6—C1117.15 (15)O3—C15—C16124.10 (16)
C5—C6—N1122.11 (14)C14—C15—C16119.69 (16)
C1—C6—N1120.68 (14)C17—C16—C15119.06 (16)
N1—C7—C8111.59 (14)C17—C16—H16120.5
N1—C7—H7A109.3C15—C16—H16120.5
C8—C7—H7A109.3C16—C17—C12122.16 (16)
N1—C7—H7B109.3C16—C17—H17118.9
C8—C7—H7B109.3C12—C17—H17118.9
H7A—C7—H7B108O3—C18—H13A109.5
N2—C8—C7110.40 (13)O3—C18—H13B109.5
N2—C8—H8A109.6H13A—C18—H13B109.5
C7—C8—H8A109.6O3—C18—H13C109.5
N2—C8—H8B109.6H13A—C18—H13C109.5
C7—C8—H8B109.6H13B—C18—H13C109.5
H8A—C8—H8B108.1C6—N1—C10115.62 (12)
N2—C9—C10110.34 (14)C6—N1—C7114.90 (12)
N2—C9—H9A109.6C10—N1—C7111.53 (12)
C10—C9—H9A109.6C9—N2—C8109.67 (13)
N2—C9—H9B109.6C9—N2—HN1108.7 (13)
C10—C9—H9B109.6C8—N2—HN1110.6 (13)
H9A—C9—H9B108.1C9—N2—HN2110.0 (13)
N1—C10—C9112.30 (13)C8—N2—HN2113.2 (13)
N1—C10—H10A109.1HN1—N2—HN2104.5 (18)
C9—C10—H10A109.1C15—O3—C18117.68 (16)
N1—C10—H10B109.1HW1—OW1—HW2106 (2)
C6—C1—C2—C30.7 (3)C13—C14—C15—C161.1 (3)
C1—C2—C3—C41.2 (3)O3—C15—C16—C17179.35 (16)
C2—C3—C4—C50.9 (3)C14—C15—C16—C170.7 (3)
C3—C4—C5—C60.0 (3)C15—C16—C17—C120.5 (3)
C4—C5—C6—C10.6 (3)C13—C12—C17—C161.4 (2)
C4—C5—C6—N1176.76 (18)C11—C12—C17—C16178.68 (15)
C2—C1—C6—C50.2 (3)C5—C6—N1—C107.1 (2)
C2—C1—C6—N1177.14 (18)C1—C6—N1—C10175.65 (16)
N1—C7—C8—N257.13 (19)C5—C6—N1—C7139.28 (17)
N2—C9—C10—N155.4 (2)C1—C6—N1—C743.5 (2)
O1—C11—C12—C17177.14 (17)C9—C10—N1—C6172.93 (14)
O2—C11—C12—C173.0 (2)C9—C10—N1—C753.34 (19)
O1—C11—C12—C132.8 (2)C8—C7—N1—C6171.86 (13)
O2—C11—C12—C13177.07 (16)C8—C7—N1—C1054.06 (18)
C17—C12—C13—C141.0 (2)C10—C9—N2—C857.61 (19)
C11—C12—C13—C14179.05 (15)C7—C8—N2—C958.76 (19)
C12—C13—C14—C150.2 (3)C14—C15—O3—C18178.00 (19)
C13—C14—C15—O3178.99 (15)C16—C15—O3—C181.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C12–C17 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—HN1···OW1i0.93 (2)1.91 (2)2.815 (2)166 (2)
OW1—HW1···O1ii0.84 (2)1.80 (2)2.633 (2)175 (2)
N2—HN2···O20.93 (2)1.81 (2)2.7350 (19)176 (2)
OW1—HW2···O2iii0.85 (2)1.96 (2)2.7876 (19)168 (2)
C8—H8B···OW1ii0.972.533.331 (2)140
C1—H1···Cg3ii0.932.763.549 (2)144
C5—H5···Cg3iv0.932.863.625 (2)140
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1.
4-Phenylpiperazin-1-ium 4-methylbenzoate monohydrate (III) top
Crystal data top
C10H15N2+·C8H7O2·H2OZ = 2
Mr = 316.39F(000) = 340
Triclinic, P1Dx = 1.233 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1175 (5) ÅCell parameters from 2877 reflections
b = 7.6225 (7) Åθ = 3.0–27.8°
c = 18.452 (1) ŵ = 0.08 mm1
α = 97.421 (9)°T = 293 K
β = 90.403 (8)°Plate, colourless
γ = 92.405 (8)°0.5 × 0.4 × 0.08 mm
V = 852.40 (12) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2248 reflections with I > 2σ(I)
ω scansRint = 0.013
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
θmax = 25.4°, θmin = 3.1°
Tmin = 0.837, Tmax = 1.000h = 77
5354 measured reflectionsk = 79
3126 independent reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.2086P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3118 reflectionsΔρmax = 0.16 e Å3
226 parametersΔρmin = 0.16 e Å3
4 restraintsExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.011 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5691 (4)0.8192 (4)0.17484 (12)0.0759 (7)
H10.6801560.8716490.2060320.091*
C20.5967 (5)0.8079 (4)0.10029 (13)0.0979 (9)
H20.7254990.8541120.0823480.117*
C30.4416 (5)0.7314 (4)0.05273 (13)0.0932 (8)
H30.4628790.7227110.0025610.112*
C40.2536 (5)0.6676 (4)0.08016 (13)0.0966 (9)
H40.1440140.61570.0482480.116*
C50.2219 (4)0.6782 (3)0.15497 (11)0.0776 (7)
H50.0913890.6332260.1721780.093*
C60.3793 (3)0.7539 (2)0.20421 (9)0.0472 (4)
C70.5393 (3)0.8071 (3)0.32686 (9)0.0497 (4)
H7A0.6263470.9046860.311470.06*
H7B0.6268340.7031060.3207240.06*
C80.4853 (3)0.8506 (3)0.40599 (10)0.0534 (5)
H8A0.6191960.8657460.4350070.064*
H8B0.4101390.9609430.4133350.064*
C90.1390 (3)0.6889 (3)0.38632 (10)0.0554 (5)
H9A0.0621820.7983260.3948530.067*
H9B0.045310.5949890.4015990.067*
C100.1858 (3)0.6476 (3)0.30616 (9)0.0502 (5)
H10A0.2416030.5296120.2968890.06*
H10B0.0502440.6477490.2786080.06*
C110.3129 (3)0.7088 (2)0.62385 (9)0.0445 (4)
C120.2060 (3)0.7367 (2)0.69737 (9)0.0413 (4)
C130.2989 (3)0.6749 (3)0.75734 (10)0.0535 (5)
H130.4288450.6156750.7520620.064*
C140.2008 (4)0.7003 (3)0.82503 (11)0.0656 (6)
H140.2656610.6573290.8645560.079*
C150.0081 (4)0.7885 (3)0.83492 (11)0.0611 (5)
C160.0837 (3)0.8490 (3)0.77515 (11)0.0583 (5)
H160.2140790.9076280.7805090.07*
C170.0129 (3)0.8250 (2)0.70719 (10)0.0484 (4)
H170.0521630.8685190.6678390.058*
C180.0996 (5)0.8177 (4)0.90877 (13)0.0968 (9)
H18A0.1719210.9278530.9137140.145*
H18B0.0095880.8210990.9466130.145*
H18C0.2048290.7225250.9128770.145*
N10.3441 (2)0.77371 (19)0.28025 (7)0.0434 (4)
N20.3444 (2)0.7069 (2)0.43010 (8)0.0487 (4)
O10.4844 (2)0.62506 (19)0.61816 (7)0.0632 (4)
O20.2244 (2)0.77468 (19)0.57233 (7)0.0601 (4)
OW10.7937 (3)0.7241 (4)0.52207 (11)0.1232 (9)
HW10.926 (4)0.748 (5)0.542 (2)0.177 (17)*
HW20.702 (4)0.704 (4)0.5539 (13)0.119 (11)*
HN10.415 (3)0.605 (2)0.4225 (11)0.061 (6)*
HN20.310 (3)0.731 (3)0.4786 (9)0.065 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0620 (13)0.114 (2)0.0494 (12)0.0113 (13)0.0106 (10)0.0080 (12)
C20.0883 (18)0.148 (3)0.0556 (15)0.0138 (18)0.0233 (13)0.0120 (15)
C30.123 (2)0.109 (2)0.0456 (13)0.0055 (18)0.0201 (15)0.0043 (13)
C40.130 (2)0.106 (2)0.0480 (13)0.0340 (18)0.0161 (14)0.0036 (13)
C50.0895 (16)0.0936 (17)0.0466 (12)0.0337 (13)0.0042 (11)0.0105 (11)
C60.0561 (11)0.0456 (10)0.0397 (9)0.0045 (8)0.0038 (8)0.0042 (7)
C70.0473 (10)0.0550 (11)0.0456 (10)0.0123 (8)0.0008 (8)0.0070 (8)
C80.0581 (11)0.0569 (12)0.0440 (10)0.0065 (9)0.0031 (8)0.0045 (8)
C90.0439 (10)0.0734 (13)0.0494 (11)0.0025 (9)0.0087 (8)0.0105 (9)
C100.0383 (9)0.0668 (12)0.0446 (10)0.0056 (8)0.0005 (7)0.0064 (8)
C110.0429 (10)0.0454 (10)0.0432 (10)0.0062 (8)0.0042 (7)0.0012 (7)
C120.0413 (9)0.0376 (9)0.0439 (9)0.0047 (7)0.0046 (7)0.0025 (7)
C130.0525 (11)0.0601 (12)0.0479 (11)0.0081 (9)0.0012 (8)0.0054 (9)
C140.0798 (15)0.0739 (14)0.0439 (11)0.0046 (11)0.0013 (10)0.0111 (9)
C150.0742 (14)0.0597 (12)0.0479 (11)0.0009 (10)0.0167 (10)0.0012 (9)
C160.0577 (12)0.0554 (12)0.0614 (12)0.0098 (9)0.0173 (9)0.0025 (9)
C170.0525 (10)0.0458 (10)0.0476 (10)0.0047 (8)0.0056 (8)0.0072 (8)
C180.125 (2)0.108 (2)0.0567 (14)0.0110 (17)0.0378 (15)0.0048 (13)
N10.0436 (8)0.0487 (8)0.0379 (8)0.0025 (6)0.0016 (6)0.0068 (6)
N20.0519 (9)0.0577 (10)0.0371 (8)0.0057 (8)0.0054 (7)0.0068 (7)
O10.0546 (8)0.0720 (9)0.0633 (9)0.0149 (7)0.0170 (6)0.0047 (7)
O20.0557 (8)0.0833 (10)0.0426 (7)0.0032 (7)0.0096 (6)0.0120 (7)
OW10.0607 (12)0.250 (3)0.0691 (12)0.0102 (15)0.0088 (10)0.0577 (15)
Geometric parameters (Å, º) top
C1—C21.379 (3)C10—H10A0.97
C1—C61.385 (3)C10—H10B0.97
C1—H10.93C11—O11.249 (2)
C2—C31.349 (4)C11—O21.260 (2)
C2—H20.93C11—C121.504 (2)
C3—C41.356 (4)C12—C131.385 (2)
C3—H30.93C12—C171.386 (2)
C4—C51.388 (3)C13—C141.384 (3)
C4—H40.93C13—H130.93
C5—C61.375 (3)C14—C151.383 (3)
C5—H50.93C14—H140.93
C6—N11.411 (2)C15—C161.374 (3)
C7—N11.461 (2)C15—C181.512 (3)
C7—C81.497 (2)C16—C171.384 (2)
C7—H7A0.97C16—H160.93
C7—H7B0.97C17—H170.93
C8—N21.481 (2)C18—H18A0.96
C8—H8A0.97C18—H18B0.96
C8—H8B0.97C18—H18C0.96
C9—N21.481 (2)N2—HN10.900 (15)
C9—C101.504 (2)N2—HN20.918 (15)
C9—H9A0.97OW1—HW10.886 (19)
C9—H9B0.97OW1—HW20.839 (18)
C10—N11.462 (2)
C2—C1—C6121.3 (2)C9—C10—H10B109
C2—C1—H1119.3H10A—C10—H10B107.8
C6—C1—H1119.3O1—C11—O2124.44 (16)
C3—C2—C1121.6 (2)O1—C11—C12118.17 (16)
C3—C2—H2119.2O2—C11—C12117.37 (15)
C1—C2—H2119.2C13—C12—C17118.11 (16)
C2—C3—C4118.1 (2)C13—C12—C11120.69 (15)
C2—C3—H3120.9C17—C12—C11121.19 (15)
C4—C3—H3120.9C14—C13—C12120.81 (17)
C3—C4—C5121.2 (2)C14—C13—H13119.6
C3—C4—H4119.4C12—C13—H13119.6
C5—C4—H4119.4C15—C14—C13121.14 (19)
C6—C5—C4121.4 (2)C15—C14—H14119.4
C6—C5—H5119.3C13—C14—H14119.4
C4—C5—H5119.3C16—C15—C14117.78 (17)
C5—C6—C1116.25 (18)C16—C15—C18120.7 (2)
C5—C6—N1121.84 (18)C14—C15—C18121.5 (2)
C1—C6—N1121.81 (17)C15—C16—C17121.68 (18)
N1—C7—C8112.51 (14)C15—C16—H16119.2
N1—C7—H7A109.1C17—C16—H16119.2
C8—C7—H7A109.1C16—C17—C12120.47 (17)
N1—C7—H7B109.1C16—C17—H17119.8
C8—C7—H7B109.1C12—C17—H17119.8
H7A—C7—H7B107.8C15—C18—H18A109.5
N2—C8—C7110.19 (15)C15—C18—H18B109.5
N2—C8—H8A109.6H18A—C18—H18B109.5
C7—C8—H8A109.6C15—C18—H18C109.5
N2—C8—H8B109.6H18A—C18—H18C109.5
C7—C8—H8B109.6H18B—C18—H18C109.5
H8A—C8—H8B108.1C6—N1—C7116.19 (14)
N2—C9—C10110.84 (14)C6—N1—C10116.09 (14)
N2—C9—H9A109.5C7—N1—C10113.11 (13)
C10—C9—H9A109.5C8—N2—C9108.70 (15)
N2—C9—H9B109.5C8—N2—HN1108.9 (13)
C10—C9—H9B109.5C9—N2—HN1109.5 (13)
H9A—C9—H9B108.1C8—N2—HN2111.2 (13)
N1—C10—C9112.96 (15)C9—N2—HN2108.7 (13)
N1—C10—H10A109HN1—N2—HN2109.8 (18)
C9—C10—H10A109HW1—OW1—HW2111 (3)
N1—C10—H10B109
C6—C1—C2—C30.7 (5)C13—C14—C15—C160.4 (3)
C1—C2—C3—C41.1 (5)C13—C14—C15—C18179.7 (2)
C2—C3—C4—C50.8 (5)C14—C15—C16—C170.6 (3)
C3—C4—C5—C60.1 (4)C18—C15—C16—C17179.5 (2)
C4—C5—C6—C10.4 (4)C15—C16—C17—C120.7 (3)
C4—C5—C6—N1176.6 (2)C13—C12—C17—C160.5 (3)
C2—C1—C6—C50.1 (4)C11—C12—C17—C16179.76 (17)
C2—C1—C6—N1176.3 (2)C5—C6—N1—C7162.90 (19)
N1—C7—C8—N256.4 (2)C1—C6—N1—C721.0 (3)
N2—C9—C10—N153.3 (2)C5—C6—N1—C1026.2 (3)
O1—C11—C12—C131.6 (2)C1—C6—N1—C10157.72 (19)
O2—C11—C12—C13177.16 (17)C8—C7—N1—C6172.21 (15)
O1—C11—C12—C17178.61 (16)C8—C7—N1—C1049.8 (2)
O2—C11—C12—C172.6 (2)C9—C10—N1—C6173.76 (14)
C17—C12—C13—C140.3 (3)C9—C10—N1—C748.2 (2)
C11—C12—C13—C14179.94 (18)C7—C8—N2—C960.59 (19)
C12—C13—C14—C150.3 (3)C10—C9—N2—C859.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1···O2i0.89 (3)1.90 (3)2.782 (2)171 (4)
OW1—HW2···O10.84 (2)1.92 (3)2.751 (2)172 (3)
N2—HN1···O1ii0.90 (2)1.94 (2)2.819 (2)164 (2)
N2—HN2···O20.92 (2)1.80 (2)2.7207 (19)176 (2)
C8—H8A···OW10.972.333.116 (3)138
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
4-Phenylpiperazin-1-ium trifluoroacetate 0.123-hydrate (IV) top
Crystal data top
C10H15N2+·C2F3O2·0.123H2OZ = 4
Mr = 278.47F(000) = 580.9
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6544 (6) ÅCell parameters from 3827 reflections
b = 9.9029 (6) Åθ = 2.6–27.7°
c = 15.2090 (9) ŵ = 0.12 mm1
α = 79.621 (6)°T = 293 K
β = 86.579 (6)°Prism, colourless
γ = 70.603 (6)°0.48 × 0.48 × 0.36 mm
V = 1349.10 (15) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2777 reflections with I > 2σ(I)
ω scansRint = 0.014
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
θmax = 25.3°, θmin = 2.6°
Tmin = 0.724, Tmax = 1.000h = 1111
9220 measured reflectionsk = 1111
4940 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: mixed
wR(F2) = 0.235H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1128P)2 + 0.3819P]
where P = (Fo2 + 2Fc2)/3
4927 reflections(Δ/σ)max < 0.001
375 parametersΔρmax = 0.42 e Å3
4 restraintsΔρmin = 0.28 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2559 (3)0.7294 (3)0.51366 (18)0.0565 (7)
C20.1392 (4)0.7473 (3)0.5737 (2)0.0733 (9)
H20.0437650.7757040.5523060.088*
C30.1634 (5)0.7235 (4)0.6648 (3)0.0913 (12)
H30.0839760.7371610.7038370.11*
C40.3019 (6)0.6803 (4)0.6979 (2)0.0945 (12)
H40.3174360.6643410.7592460.113*
C50.4172 (5)0.6606 (4)0.6405 (3)0.0939 (11)
H50.5122090.6302050.662990.113*
C60.3958 (4)0.6850 (4)0.5497 (2)0.0746 (9)
H60.4766390.6715530.5117240.089*
C70.3582 (4)0.7522 (4)0.3646 (2)0.0748 (9)
H7A0.4396780.6653460.3853640.09*
H7B0.3865520.8356030.3698380.09*
C80.3289 (5)0.7565 (4)0.2686 (2)0.0924 (11)
H8A0.414070.7625860.2329660.111*
H8B0.3115970.6678920.2618530.111*
C90.0709 (5)0.8815 (5)0.2926 (3)0.1078 (14)
H9A0.0448360.7966480.2875420.129*
H9B0.012110.9672250.2724410.129*
C100.1038 (4)0.8774 (5)0.3876 (2)0.0933 (12)
H10A0.1215560.9663250.3930670.112*
H10B0.0191880.8724670.4241280.112*
C110.7162 (3)0.7837 (3)0.34093 (18)0.0568 (7)
C120.6756 (3)0.9091 (3)0.3787 (2)0.0682 (8)
H120.6379950.9991790.3422890.082*
C130.6902 (4)0.9023 (4)0.4692 (2)0.0777 (9)
H130.6606530.9876870.4929380.093*
C140.7475 (4)0.7719 (5)0.5247 (2)0.0786 (10)
H140.7586720.7678910.5855290.094*
C150.7878 (4)0.6476 (4)0.4884 (2)0.0856 (10)
H150.8264680.5580960.5252590.103*
C160.7723 (4)0.6527 (4)0.3984 (2)0.0760 (9)
H160.7999690.5664710.3756250.091*
C170.8021 (5)0.6701 (4)0.2099 (2)0.0988 (13)
H17A0.8072680.5774570.2463370.119*
H17B0.8983260.6808750.210270.119*
C180.7624 (6)0.6706 (5)0.1152 (3)0.1280 (18)
H18A0.8379370.5948740.0904340.154*
H18B0.6703360.651260.1148430.154*
C190.6330 (5)0.9270 (5)0.0978 (2)0.0940 (11)
H19A0.5402150.9093150.0965670.113*
H19B0.6226681.0211690.0617050.113*
C200.6691 (4)0.9279 (4)0.1919 (2)0.0773 (9)
H20A0.7561790.956050.1918130.093*
H20B0.588820.9999960.2161840.093*
C210.2670 (4)0.2041 (4)0.1833 (2)0.0776 (9)
C220.2420 (8)0.3636 (6)0.1772 (3)0.1240 (19)0.736 (3)
C22'0.2420 (8)0.3636 (6)0.1772 (3)0.1240 (19)0.264 (3)
C230.1345 (7)0.8145 (4)0.0390 (2)0.0940 (13)
C240.1356 (7)0.7597 (5)0.0474 (3)0.1064 (14)0.736 (3)
C24'0.1356 (7)0.7597 (5)0.0474 (3)0.1064 (14)0.264 (3)
N10.2321 (3)0.7528 (2)0.42089 (15)0.0596 (6)
N20.1985 (4)0.8842 (3)0.23622 (18)0.0888 (9)
N30.6944 (3)0.7878 (3)0.24907 (15)0.0687 (7)
N40.7485 (4)0.8143 (4)0.05995 (19)0.1087 (12)
O10.2367 (4)0.1448 (3)0.25394 (17)0.1168 (10)
O20.3178 (4)0.1492 (4)0.11854 (18)0.1323 (12)
O30.2462 (4)0.8383 (4)0.05509 (19)0.1252 (11)
O40.0222 (4)0.8316 (3)0.08423 (17)0.1113 (10)
F10.3669 (7)0.3949 (7)0.1721 (5)0.202 (3)0.736 (3)
F20.1775 (9)0.4242 (5)0.2477 (4)0.184 (3)0.736 (3)
F30.1706 (8)0.4421 (5)0.1039 (4)0.179 (3)0.736 (3)
F1'0.302 (2)0.407 (2)0.0998 (15)0.202 (3)0.264 (3)
F2'0.282 (3)0.3950 (17)0.2311 (15)0.184 (3)0.264 (3)
F3'0.102 (2)0.4303 (16)0.1642 (11)0.179 (3)0.264 (3)
F40.2609 (7)0.6549 (8)0.0615 (4)0.175 (2)0.736 (3)
F50.1187 (10)0.8524 (4)0.1159 (2)0.181 (3)0.736 (3)
F60.0480 (7)0.6817 (8)0.0460 (4)0.153 (2)0.736 (3)
F4'0.238 (2)0.789 (2)0.1015 (13)0.175 (2)0.264 (3)
F5'0.157 (4)0.6370 (19)0.0412 (9)0.181 (3)0.264 (3)
F6'0.0072 (19)0.8256 (19)0.0913 (10)0.153 (2)0.264 (3)
OW10.5122 (12)0.6320 (14)0.0361 (10)0.150 (8)0.245 (10)
H210.2073180.9693760.2382270.18*
H220.1875960.8867170.1796960.18*
H410.8265980.8389530.0538350.18*
H420.7220960.8107840.0058060.18*
HW1A0.5720850.6187470.0073060.225*0.245 (10)
HW1B0.4416750.7076380.0158740.225*0.245 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (2)0.0490 (15)0.0531 (16)0.0184 (13)0.0022 (14)0.0040 (12)
C20.075 (2)0.069 (2)0.068 (2)0.0195 (16)0.0111 (17)0.0051 (15)
C30.116 (3)0.074 (2)0.075 (2)0.025 (2)0.033 (2)0.0120 (18)
C40.141 (4)0.079 (2)0.056 (2)0.028 (2)0.001 (2)0.0089 (17)
C50.107 (3)0.098 (3)0.072 (2)0.025 (2)0.026 (2)0.0087 (19)
C60.064 (2)0.089 (2)0.066 (2)0.0204 (17)0.0069 (16)0.0074 (16)
C70.073 (2)0.086 (2)0.0618 (18)0.0228 (17)0.0105 (16)0.0132 (16)
C80.122 (3)0.098 (3)0.062 (2)0.039 (2)0.010 (2)0.0215 (19)
C90.099 (3)0.139 (4)0.079 (3)0.044 (3)0.030 (2)0.017 (2)
C100.065 (2)0.128 (3)0.063 (2)0.010 (2)0.0084 (17)0.0067 (19)
C110.0597 (18)0.0649 (18)0.0512 (15)0.0254 (14)0.0087 (13)0.0168 (13)
C120.086 (2)0.0636 (18)0.0605 (17)0.0280 (16)0.0031 (15)0.0183 (14)
C130.089 (2)0.093 (2)0.066 (2)0.0390 (19)0.0122 (18)0.0374 (19)
C140.076 (2)0.119 (3)0.0513 (17)0.044 (2)0.0031 (16)0.019 (2)
C150.092 (3)0.093 (3)0.063 (2)0.024 (2)0.0075 (18)0.0006 (18)
C160.091 (2)0.065 (2)0.066 (2)0.0172 (16)0.0037 (17)0.0140 (15)
C170.167 (4)0.071 (2)0.064 (2)0.042 (2)0.028 (2)0.0283 (17)
C180.221 (6)0.115 (4)0.074 (3)0.078 (4)0.039 (3)0.050 (2)
C190.118 (3)0.118 (3)0.0538 (19)0.051 (2)0.0026 (19)0.0131 (19)
C200.094 (3)0.076 (2)0.0602 (18)0.0257 (18)0.0026 (17)0.0121 (16)
C210.102 (3)0.086 (2)0.0458 (17)0.0309 (19)0.0063 (17)0.0135 (16)
C220.194 (6)0.122 (4)0.068 (3)0.074 (4)0.044 (3)0.011 (3)
C22'0.194 (6)0.122 (4)0.068 (3)0.074 (4)0.044 (3)0.011 (3)
C230.159 (4)0.066 (2)0.052 (2)0.032 (2)0.011 (3)0.0113 (16)
C240.172 (5)0.084 (3)0.070 (2)0.047 (3)0.028 (3)0.028 (2)
C24'0.172 (5)0.084 (3)0.070 (2)0.047 (3)0.028 (3)0.028 (2)
N10.0591 (15)0.0674 (15)0.0519 (13)0.0234 (12)0.0030 (11)0.0028 (11)
N20.136 (3)0.082 (2)0.0530 (15)0.0447 (19)0.0139 (17)0.0015 (13)
N30.094 (2)0.0709 (16)0.0501 (13)0.0357 (14)0.0087 (12)0.0184 (12)
N40.162 (3)0.127 (3)0.0538 (16)0.066 (2)0.0207 (19)0.0303 (18)
O10.205 (3)0.0908 (18)0.0635 (16)0.0618 (19)0.0128 (17)0.0133 (13)
O20.163 (3)0.164 (3)0.0675 (16)0.038 (2)0.0098 (17)0.0474 (18)
O30.161 (3)0.157 (3)0.0719 (18)0.062 (3)0.0133 (19)0.0395 (18)
O40.154 (3)0.121 (2)0.0633 (15)0.0477 (19)0.0290 (17)0.0313 (14)
F10.249 (6)0.248 (6)0.198 (6)0.196 (5)0.015 (4)0.040 (4)
F20.289 (8)0.078 (3)0.159 (4)0.016 (4)0.037 (5)0.053 (2)
F30.278 (7)0.117 (3)0.142 (4)0.095 (3)0.104 (5)0.068 (3)
F1'0.249 (6)0.248 (6)0.198 (6)0.196 (5)0.015 (4)0.040 (4)
F2'0.289 (8)0.078 (3)0.159 (4)0.016 (4)0.037 (5)0.053 (2)
F3'0.278 (7)0.117 (3)0.142 (4)0.095 (3)0.104 (5)0.068 (3)
F40.227 (5)0.149 (4)0.137 (4)0.024 (4)0.046 (3)0.082 (4)
F50.411 (11)0.084 (2)0.0504 (17)0.087 (4)0.014 (3)0.0007 (16)
F60.226 (5)0.152 (4)0.118 (3)0.092 (4)0.009 (3)0.061 (3)
F4'0.227 (5)0.149 (4)0.137 (4)0.024 (4)0.046 (3)0.082 (4)
F5'0.411 (11)0.084 (2)0.0504 (17)0.087 (4)0.014 (3)0.0007 (16)
F6'0.226 (5)0.152 (4)0.118 (3)0.092 (4)0.009 (3)0.061 (3)
OW10.082 (10)0.146 (13)0.219 (18)0.019 (8)0.031 (9)0.048 (11)
Geometric parameters (Å, º) top
C1—C61.388 (4)C17—C181.512 (5)
C1—C21.392 (4)C17—H17A0.97
C1—N11.408 (3)C17—H17B0.97
C2—C31.384 (5)C18—N41.485 (6)
C2—H20.93C18—H18A0.97
C3—C41.359 (6)C18—H18B0.97
C3—H30.93C19—N41.465 (5)
C4—C51.357 (5)C19—C201.495 (4)
C4—H40.93C19—H19A0.97
C5—C61.375 (5)C19—H19B0.97
C5—H50.93C20—N31.451 (4)
C6—H60.93C20—H20A0.97
C7—N11.445 (4)C20—H20B0.97
C7—C81.494 (5)C21—O11.197 (4)
C7—H7A0.97C21—O21.211 (4)
C7—H7B0.97C21—C22'1.502 (7)
C8—N21.489 (5)C21—C221.502 (7)
C8—H8A0.97C22—F31.321 (6)
C8—H8B0.97C22—F11.337 (7)
C9—N21.464 (5)C22—F21.343 (7)
C9—C101.488 (5)C22'—F2'1.06 (2)
C9—H9A0.97C22'—F3'1.306 (19)
C9—H9B0.97C22'—F1'1.346 (19)
C10—N11.466 (4)C23—O31.224 (5)
C10—H10A0.97C23—O41.228 (5)
C10—H10B0.97C23—C24'1.506 (6)
C11—C161.386 (4)C23—C241.506 (6)
C11—C121.390 (4)C24—F51.238 (5)
C11—N31.417 (3)C24—F61.319 (7)
C12—C131.379 (4)C24—F41.342 (7)
C12—H120.93C24'—F5'1.151 (17)
C13—C141.369 (5)C24'—F4'1.32 (2)
C13—H130.93C24'—F6'1.459 (17)
C14—C151.368 (5)N2—H210.8818
C14—H140.93N2—H220.8672
C15—C161.377 (5)N4—H410.8621
C15—H150.93N4—H420.8861
C16—H160.93OW1—HW1A0.8501
C17—N31.471 (4)OW1—HW1B0.8501
C6—C1—C2116.9 (3)N4—C18—H18B109.8
C6—C1—N1122.0 (3)C17—C18—H18B109.8
C2—C1—N1121.1 (3)H18A—C18—H18B108.2
C3—C2—C1120.8 (3)N4—C19—C20110.7 (3)
C3—C2—H2119.6N4—C19—H19A109.5
C1—C2—H2119.6C20—C19—H19A109.5
C4—C3—C2120.8 (3)N4—C19—H19B109.5
C4—C3—H3119.6C20—C19—H19B109.5
C2—C3—H3119.6H19A—C19—H19B108.1
C5—C4—C3119.2 (4)N3—C20—C19112.8 (3)
C5—C4—H4120.4N3—C20—H20A109
C3—C4—H4120.4C19—C20—H20A109
C4—C5—C6121.0 (4)N3—C20—H20B109
C4—C5—H5119.5C19—C20—H20B109
C6—C5—H5119.5H20A—C20—H20B107.8
C5—C6—C1121.2 (3)O1—C21—O2127.2 (4)
C5—C6—H6119.4O1—C21—C22'115.1 (4)
C1—C6—H6119.4O2—C21—C22'117.7 (4)
N1—C7—C8112.5 (3)O1—C21—C22115.1 (4)
N1—C7—H7A109.1O2—C21—C22117.7 (4)
C8—C7—H7A109.1F3—C22—F1103.5 (5)
N1—C7—H7B109.1F3—C22—F2108.8 (6)
C8—C7—H7B109.1F1—C22—F2100.9 (6)
H7A—C7—H7B107.8F3—C22—C21112.7 (4)
N2—C8—C7110.4 (3)F1—C22—C21112.9 (6)
N2—C8—H8A109.6F2—C22—C21116.7 (4)
C7—C8—H8A109.6F2'—C22'—F3'112.1 (15)
N2—C8—H8B109.6F2'—C22'—F1'110.0 (16)
C7—C8—H8B109.6F3'—C22'—F1'103.4 (13)
H8A—C8—H8B108.1F2'—C22'—C21116.5 (11)
N2—C9—C10110.4 (3)F3'—C22'—C21106.9 (7)
N2—C9—H9A109.6F1'—C22'—C21107.0 (10)
C10—C9—H9A109.6O3—C23—O4127.7 (4)
N2—C9—H9B109.6O3—C23—C24'115.5 (5)
C10—C9—H9B109.6O4—C23—C24'116.8 (5)
H9A—C9—H9B108.1O3—C23—C24115.5 (5)
N1—C10—C9112.1 (3)O4—C23—C24116.8 (5)
N1—C10—H10A109.2F5—C24—F6111.9 (6)
C9—C10—H10A109.2F5—C24—F4104.5 (6)
N1—C10—H10B109.2F6—C24—F496.7 (5)
C9—C10—H10B109.2F5—C24—C23115.4 (4)
H10A—C10—H10B107.9F6—C24—C23113.1 (4)
C16—C11—C12116.8 (3)F4—C24—C23113.6 (5)
C16—C11—N3121.0 (2)F5'—C24'—F4'106.2 (16)
C12—C11—N3122.0 (3)F5'—C24'—F6'103.6 (18)
C13—C12—C11121.1 (3)F4'—C24'—F6'109.6 (11)
C13—C12—H12119.4F5'—C24'—C23116.0 (8)
C11—C12—H12119.4F4'—C24'—C23110.3 (9)
C14—C13—C12121.1 (3)F6'—C24'—C23110.7 (6)
C14—C13—H13119.4C1—N1—C7116.1 (2)
C12—C13—H13119.4C1—N1—C10115.0 (2)
C15—C14—C13118.3 (3)C7—N1—C10110.5 (2)
C15—C14—H14120.8C9—N2—C8110.4 (3)
C13—C14—H14120.8C9—N2—H21104.1
C14—C15—C16121.2 (3)C8—N2—H21115
C14—C15—H15119.4C9—N2—H22115.8
C16—C15—H15119.4C8—N2—H22108.2
C15—C16—C11121.4 (3)H21—N2—H22103.4
C15—C16—H16119.3C11—N3—C20115.9 (2)
C11—C16—H16119.3C11—N3—C17114.7 (3)
N3—C17—C18111.9 (4)C20—N3—C17111.7 (2)
N3—C17—H17A109.2C19—N4—C18109.0 (3)
C18—C17—H17A109.2C19—N4—H41108.2
N3—C17—H17B109.2C18—N4—H41116.5
C18—C17—H17B109.2C19—N4—H42109.5
H17A—C17—H17B107.9C18—N4—H42106.4
N4—C18—C17109.5 (3)H41—N4—H42107.1
N4—C18—H18A109.8HW1A—OW1—HW1B104.5
C17—C18—H18A109.8
C6—C1—C2—C30.8 (4)O3—C23—C24—F575.6 (8)
N1—C1—C2—C3179.7 (3)O4—C23—C24—F5103.6 (7)
C1—C2—C3—C40.8 (5)O3—C23—C24—F6153.8 (6)
C2—C3—C4—C50.1 (6)O4—C23—C24—F626.9 (7)
C3—C4—C5—C60.6 (6)O3—C23—C24—F444.9 (7)
C4—C5—C6—C10.5 (6)O4—C23—C24—F4135.8 (6)
C2—C1—C6—C50.2 (5)O3—C23—C24'—F5'102 (2)
N1—C1—C6—C5179.0 (3)O4—C23—C24'—F5'79 (2)
N1—C7—C8—N255.4 (4)O3—C23—C24'—F4'18.9 (12)
N2—C9—C10—N157.1 (5)O4—C23—C24'—F4'160.3 (11)
C16—C11—C12—C130.3 (5)O3—C23—C24'—F6'140.4 (8)
N3—C11—C12—C13176.4 (3)O4—C23—C24'—F6'38.8 (9)
C11—C12—C13—C141.1 (5)C6—C1—N1—C710.1 (4)
C12—C13—C14—C151.1 (5)C2—C1—N1—C7171.1 (3)
C13—C14—C15—C160.3 (5)C6—C1—N1—C10141.4 (3)
C14—C15—C16—C110.5 (6)C2—C1—N1—C1039.8 (4)
C12—C11—C16—C150.5 (5)C8—C7—N1—C1171.8 (3)
N3—C11—C16—C15177.2 (3)C8—C7—N1—C1054.8 (4)
N3—C17—C18—N456.6 (5)C9—C10—N1—C1170.6 (3)
N4—C19—C20—N355.9 (4)C9—C10—N1—C755.5 (4)
O1—C21—C22—F3132.4 (6)C10—C9—N2—C856.8 (4)
O2—C21—C22—F349.2 (8)C7—C8—N2—C955.8 (4)
O1—C21—C22—F1110.7 (6)C16—C11—N3—C20165.9 (3)
O2—C21—C22—F167.7 (6)C12—C11—N3—C2017.6 (4)
O1—C21—C22—F25.5 (8)C16—C11—N3—C1733.3 (4)
O2—C21—C22—F2176.1 (6)C12—C11—N3—C17150.2 (3)
O1—C21—C22'—F2'47.1 (18)C19—C20—N3—C11174.6 (3)
O2—C21—C22'—F2'131.3 (17)C19—C20—N3—C1751.5 (4)
O1—C21—C22'—F3'79.2 (9)C18—C17—N3—C11173.3 (3)
O2—C21—C22'—F3'102.4 (10)C18—C17—N3—C2052.1 (4)
O1—C21—C22'—F1'170.6 (10)C20—C19—N4—C1859.6 (4)
O2—C21—C22'—F1'7.8 (12)C17—C18—N4—C1960.0 (5)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N2—H21···O1i0.881.912.790 (4)174
N2—H22···O30.872.042.860 (4)157
N2—H22···O40.872.473.164 (5)137
N4—H41···O4ii0.861.952.759 (6)156
N4—H42···O2iii0.891.902.758 (4)164
C18—H18A···F5iii0.972.533.273 (18)134
C18—H18B···Ow10.972.082.929 (15)145
C19—H19B···O3iv0.972.593.420 (5)144
C20—H20A···F5iv0.972.643.468 (8)144
C16—H16···Cg2v0.932.993.745 (4)140
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+2, z; (v) x+1, y+1, z+1.
 

Acknowledgements

NM is grateful to the University of Mysore for research facilities. HSY thanks the UGC for a BSR Faculty fellowship for three years. SGG gratefully acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (PID2020–113558RB-C41) and Gobierno del Principado de Asturias (AYUD/2021/50997).

Funding information

Funding for this research was provided by: Ministerio de Ciencia e Innovación (grant No. PID2020-113558RB-C41 to S. Garcia-Granda, M. S. M. Abdelbaky); Gobierno del Principado de Asturias (grant No. AYUD/2021/50997 to S. Garcia-Granda, M. S. M. Abdelbaky).

References

First citationAl-Alshaikh, M. A., El-Emam, A. A., Al-Deeb, O. A., Abdelbaky, M. S. M. & Garcia-Granda, S. (2015). Acta Cryst. E71, 956–959.  CSD CrossRef IUCr Journals Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCohen, M. R., Hinsch, E., Palkoski, Z., Vergona, R., Urbano, S. & Sztokalo, J. (1982). J. Pharmacol. Exp. Ther. 223, 110–119.  CAS PubMed Web of Science Google Scholar
First citationConrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Dalla-Costa, T. (2010). J. Pharm. Pharmacol. 60, 699–707.  Web of Science CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDemirci, S., Hayal, T. B., Kıratlı, B., Şişli, H. B., Demirci, S., Şahin, F. & Doğan, A. (2019). Chem. Biol. Drug Des. 94, 1584–1595.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElliott, S. (2011). Drug Test Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEssid, M., Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2244–o2245.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHanano, T., Adachi, K., Aoki, Y., Morimoto, H., Naka, Y., Hisadome, M., Fukuda, T. & Sumichika, H. (2000). Bioorg. Med. Chem. Lett. 10, 875–879.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019a). Acta Cryst. E75, 1494–1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020a). Acta Cryst. E76, 488–495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020b). CSD Communication (refcode KUJPUD). CCDC, Cambridge, England.  Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019b). Acta Cryst. E75, 1253–1260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, A.-J., Zhang, X.-H., Sun, W.-Q., Zhou, X.-Q. & Liu, D.-Z. (2008). Acta Cryst. E64, o1234.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2613.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeves, G., Fenner, R., Heckler, A. P., Viana, A. F., Tasso, L., Menegatti, R., Fraga, C. A. M., Barreiro, E. J., Dalla-Costa, T. & Rates, S. M. K. (2003). Braz. J. Med. Biol. Res. 36, 625–629.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y.-J. & Jing, F. (2009). Acta Cryst. E65, o1211.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds