research communications
Crystal structures of methyl 3,5-dimethylbenzoate, 3,5-bis(bromomethyl)phenyl acetate and 5-hydroxybenzene-1,3-dicarbaldehyde
aTechnische Universität Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de
The crystal structures of the title compounds, methyl 3,5-dimethylbenzoate (C10H12O2; 1), 3,5-bis(bromomethyl)phenyl acetate (C10H10Br2O2; 2) and 5-hydroxybenzene-1,3-dicarbaldehyde (C8H6O3; 3) were determined by single-crystal X-ray analysis. The crystals of 1 are composed of strands of C—H⋯O=C bonded molecules, which are further arranged into layers. As a result of the presence of two bromomethyl substituents in compound 2, molecular dimers formed by crystallographically non-equivalent molecules are connected to structurally different two-dimensional aggregates in which the bromine atoms participate in Br⋯Br bonds of type I and type II. In the case of compound 3, which possesses three donor/acceptor substituents, the molecular association in the crystal creates a close three-dimensional network comprising Caryl—H⋯Ohydroxy, Cformyl—H⋯Oformyl and O—H⋯Oformyl bonds.
1. Chemical context
Studies on molecular recognition of , 2015; Amrhein et al., 2016, 2021; Amrhein & Mazik, 2021). The design of such receptor architectures was inspired by the results of our crystallographic studies on receptor–carbohydrate complexes (Mazik et al., 2005; for recent examples, see Köhler et al., 2020, 2021). For the syntheses of macrocycles consisting of benzene-based bridges, various 2- or 5-substituted benzene-1,3-dicarbaldehydes have proven to be useful starting materials. Benzene derivatives with methyl or bromomethyl groups in positions 1 and 3 are used to prepare the latter compounds. The crystal structures of three 1,3,5-substituted benzenes, serving as precursors for the syntheses of the macrocyclic compounds mentioned above, are described in this work.
by artificial receptors revealed that macrocyclic compounds bearing two flexible side-arms represent effective and selective receptors for complexation of glucopyranosides. The binding properties of these compounds depend on the nature of their building blocks, among others, the type of bridging units that connect two aromatic platforms (Lippe & Mazik, 20132. Structural commentary
The title compounds 1 and 3 crystallize in the monoclinic system (space group P21/c, Z = 4), whereas compound 2 crystallizes in the triclinic P with two independent but conformationally similar molecules (A and B) in the of the cell. In compound 1 (Fig. 1), the plane through the methyloxycarbonyl unit is tilted at an angle of 8.70 (8) ° with respect to the benzene ring. In the independent molecules of 2 (Fig. 2), the planes passing through the ester units are inclined at angles of 62.9 (1) and 81.3 (1)°, respectively, to the plane of their arene ring. The two bromine atoms of each molecule are located on opposite sides of the benzene ring. In the crystal of the 5-hydroxybenzene-1,3-dicarbaldehyde (3) (Fig. 3), the molecule deviates slightly from planarity, with the formyl groups rotated out of the benzene ring at angles of 4.43 (16) and 4.04 (16)°.
3. Supramolecular features
In the 1, the molecules are arranged into layers extending parallel to the crystallographic [101] plane (see Fig. 4). Within a given layer, the molecules are linked in strands via C—H⋯O=C bonds [d(H⋯O) 2.57 Å; Table 1], with a methyl H atom acting as the donor. No directional interactions are present between the molecular strands of a layer. With the participation of a H atom of the methyl ester unit, the linkage between the molecules of adjacent layers occurs by C—H⋯π contacts (Nishio et al., 2009) with a H⋯Cg distance of 2.77 Å. Fig. 5 shows a packing excerpt of the viewed in the direction of the layer normal.
of
|
The excerpt of the 2 shown in Fig. 6 reveals two different inversion-symmetric dimers as the smallest supramolecular entities, in which the molecules are linked in an identical manner by C—H⋯O=C and C—H⋯Br bonds (Table 2) (Desiraju & Steiner, 1999). These dimers, however, form differently structured domains within the crystal. The dimers formed by molecule A are connected via Br⋯Br bonds (Pedireddy et al., 1999) of type I [d(Br⋯Br) = 3.562 (1) Å; θ1 = 150.2°, θ2 = 158.5°] and of type II [d(Br⋯Br) = 3.859 (1) Å; θ1 = 135.0°, θ2 = 84.6°] as well as C—H⋯Br hydrogen bonds to form two-dimensional aggregates extending parallel to crystallographic [011] plane, in which the bromine atoms contribute to the formation of a cyclic four-membered synthon (Br4) and an eight-membered bonding motif (Fig. 7a). The structure of the domains created by molecule B is fundamentally different from those formed by molecule A. In them, the dimers are linked in a strand-like fashion via type I Br⋯Br interactions [d(Br⋯Br) = 3.638 (1) Å; θ1 = 152.3°, θ2 = 145.9°] (Fig. 7b), which are part of an eight-membered ring motif. In the direction of the crystallographic a-axis, the connection of the dimers occurs through π–·π (face-to-face) interactions (Tiekink & Zukerman-Schpector, 2012) with a centroid–centroid distance of 3.653 (1) Å and an offset of 1.592 Å between the interacting arene rings.
ofViewing the 3 in the direction of the a-axis reveals a stacking arrangement of molecules (Fig. 8). Along the stacking axis the centroid-centroid distance of 3.735 (1) Å between consecutive molecules indicates the presence of offset π–π interactions. As is obvious from Fig. 9, showing the mode of non-covalent bonding in the crystal, the H atom of the hydroxy group forms an intermolecular O—H⋯O bond [O1—H1⋯O3 = 1.91 (2) Å, 150 (2)°; Table 3], while its O atom forms a C—H⋯O bond [C2—H2⋯O1 = 2.43 Å, 159.6°; Table 3], thus creating a supramolecular synthon with the graph set R44(17) (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) in which four molecules take part. The OH group is also involved in formation of an inversion-symmetric ring motif of the structure R22(8). Another supramolecular motif corresponding to the R22(14) graph set is formed by the formyl groups of inversion-related molecules.
of compound4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.43, update November 2021; Groom et al., 2016) for benzene derivates containing the corresponding substituents resulted in several hits, but with relatively strong structural differences from the searched structures. The compound with the closest relation to 1 is ethyl 2,3,5,6-tetramethylbenzoate (FICVET; Pinkus et al. 2005), the of which features C—H⋯O and C—H⋯π interactions. In the case of bromomethyl-substituted benzenes, the crystal structures of 1,2,4,5-tetrakis(bromomethyl)-3,6-dimethoxybenzene, 1,2,4,5-tetrakis(bromomethyl)-3,6-bis(hexyloxy)benzene and 1,2,4,5-tetrakis(bromomethyl)-3,6-bis(2-ethylbutoxy)benzene (BASZIG, BASZOM, BASZUS; Velde et al. 2012) as well as 1,3,5-tris(bromomethyl)-2,4,6-trimethoxybenzene (IDOBAG; Koch et al. 2013) are worth mentioning. The of IDOBAG, for example, is characterized by the presence of C—H⋯O and C—H⋯Br hydrogen bonds as well as C—Br⋯Br halogen bonds of type II, as observed also in the of 2. In the of 2-hydroxyisophthalaldehyde (NEJJOB; Zondervan et al. 1997), an analogue of 3, the molecules interact via O—H⋯O hydrogen bonds, forming chains. In addition, the hydroxy group is involved in an intramolecular O—H⋯O hydrogen bond with the neighbouring carbonyl oxygen atom.
5. Synthesis and crystallization
Compounds 1–3 were prepared according to literature procedures (Kurz & Göbel, 1996; Battaini et al., 2003; Star et al., 2003).
Suitable crystals of compounds 2 and 3 for X-ray analysis were obtained by slow evaporation from a hexane solution, while crystals of 1 were grown from a subcooled melt.
6. Refinement
Crystal data, data collection and structure . Hydrogen atom H1 in 3 was located in a difference-Fourier map and freely refined. Other H atoms were positioned geometrically and refined isotropically using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989022005643/ex2057sup1.cif
contains datablocks 1, 2, 3, global. DOI:Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989022005643/ex20572sup2.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989022005643/ex20573sup3.hkl
Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989022005643/ex20571sup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022005643/ex20571sup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989022005643/ex20572sup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989022005643/ex20573sup7.cml
Data collection: X-AREA (Stoe & Cie, 2002) for (1); APEX2 (Bruker, 2014) for (2), (3). Cell
X-AREA (Stoe & Cie, 2002) for (1); SAINT (Bruker, 2014) for (2), (3). Data reduction: X-RED (Stoe & Cie, 2002) for (1); SAINT (Bruker, 2014) for (2), (3). Program(s) used to solve structure: SIR2014 (Burla et al., 2015) for (1); SHELXS97 (Sheldrick, 2008) for (2), (3). Program(s) used to refine structure: SHELXL (Sheldrick, 2015) for (1), (2); SHELXL2014/7 (Sheldrick, 2015) for (3). Molecular graphics: XP (Sheldrick, 2008) for (1); ORTEP-3 for Windows (Farrugia, 2012) for (2), (3). Software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010), ShelXle (Hübschle et al., 2011) for (1); SHELXTL (Sheldrick, 2008) for (2), (3).C10H12O2 | F(000) = 352 |
Mr = 164.20 | Dx = 1.219 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4631 (6) Å | Cell parameters from 7437 reflections |
b = 7.9793 (4) Å | θ = 2.7–27.2° |
c = 13.4042 (9) Å | µ = 0.08 mm−1 |
β = 98.835 (6)° | T = 153 K |
V = 894.44 (10) Å3 | Piece, colorless |
Z = 4 | 0.40 × 0.25 × 0.16 mm |
Stoe IPDS 2T diffractometer | 1449 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | Rint = 0.046 |
Plane graphite monochromator | θmax = 26.0°, θmin = 2.7° |
Detector resolution: 6.67 pixels mm-1 | h = −10→9 |
rotation method scans | k = −9→9 |
7437 measured reflections | l = −16→16 |
1762 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0548P)2 + 0.2723P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1762 reflections | Δρmax = 0.24 e Å−3 |
112 parameters | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.27708 (14) | 0.33954 (14) | 0.48553 (8) | 0.0433 (3) | |
O2 | 0.20755 (12) | 0.58613 (12) | 0.54594 (7) | 0.0309 (3) | |
C1 | 0.12649 (14) | 0.34326 (16) | 0.62305 (9) | 0.0244 (3) | |
C2 | 0.10405 (16) | 0.16993 (17) | 0.62357 (10) | 0.0276 (3) | |
H2 | 0.1406 | 0.1027 | 0.5733 | 0.033* | |
C3 | 0.02860 (16) | 0.09507 (16) | 0.69720 (10) | 0.0283 (3) | |
C4 | −0.02303 (16) | 0.19629 (17) | 0.77063 (10) | 0.0279 (3) | |
H4 | −0.0747 | 0.1458 | 0.8211 | 0.033* | |
C5 | −0.00096 (15) | 0.36934 (17) | 0.77210 (10) | 0.0257 (3) | |
C6 | 0.07405 (15) | 0.44202 (17) | 0.69705 (10) | 0.0249 (3) | |
H6 | 0.0894 | 0.5599 | 0.6965 | 0.030* | |
C7 | 0.21123 (15) | 0.41859 (17) | 0.54403 (10) | 0.0271 (3) | |
C8 | 0.29088 (18) | 0.6711 (2) | 0.47431 (11) | 0.0361 (4) | |
H8A | 0.2808 | 0.7926 | 0.4822 | 0.054* | |
H8B | 0.2442 | 0.6387 | 0.4056 | 0.054* | |
H8C | 0.4042 | 0.6398 | 0.4866 | 0.054* | |
C9 | 0.00480 (19) | −0.09303 (17) | 0.69749 (12) | 0.0383 (4) | |
H9A | −0.0136 | −0.1291 | 0.7647 | 0.057* | |
H9B | 0.1005 | −0.1487 | 0.6805 | 0.057* | |
H9C | −0.0879 | −0.1231 | 0.6475 | 0.057* | |
C10 | −0.05669 (18) | 0.47866 (18) | 0.85204 (11) | 0.0333 (3) | |
H10A | 0.0340 | 0.5428 | 0.8870 | 0.050* | |
H10B | −0.1010 | 0.4080 | 0.9008 | 0.050* | |
H10C | −0.1392 | 0.5560 | 0.8201 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0488 (7) | 0.0417 (6) | 0.0461 (7) | 0.0006 (5) | 0.0280 (5) | −0.0072 (5) |
O2 | 0.0345 (6) | 0.0299 (6) | 0.0308 (5) | −0.0021 (4) | 0.0126 (4) | 0.0040 (4) |
C1 | 0.0207 (6) | 0.0273 (7) | 0.0253 (7) | 0.0015 (5) | 0.0035 (5) | −0.0001 (5) |
C2 | 0.0262 (7) | 0.0260 (7) | 0.0300 (7) | 0.0039 (5) | 0.0025 (5) | −0.0042 (5) |
C3 | 0.0269 (7) | 0.0232 (7) | 0.0329 (7) | 0.0006 (5) | −0.0012 (5) | 0.0017 (5) |
C4 | 0.0283 (7) | 0.0284 (7) | 0.0265 (7) | −0.0026 (5) | 0.0023 (5) | 0.0046 (5) |
C5 | 0.0249 (7) | 0.0274 (7) | 0.0247 (6) | 0.0005 (5) | 0.0034 (5) | −0.0001 (5) |
C6 | 0.0245 (6) | 0.0221 (6) | 0.0280 (7) | 0.0004 (5) | 0.0040 (5) | 0.0004 (5) |
C7 | 0.0223 (6) | 0.0316 (7) | 0.0276 (7) | 0.0001 (5) | 0.0045 (5) | −0.0024 (5) |
C8 | 0.0320 (8) | 0.0441 (9) | 0.0337 (8) | −0.0061 (6) | 0.0098 (6) | 0.0092 (6) |
C9 | 0.0418 (9) | 0.0237 (8) | 0.0480 (9) | −0.0012 (6) | 0.0024 (7) | 0.0011 (6) |
C10 | 0.0388 (8) | 0.0339 (8) | 0.0300 (7) | −0.0009 (6) | 0.0140 (6) | −0.0028 (6) |
O1—C7 | 1.2073 (16) | C5—C6 | 1.3956 (18) |
O2—C7 | 1.3375 (17) | C5—C10 | 1.5121 (18) |
O2—C8 | 1.4448 (16) | C6—H6 | 0.9500 |
C1—C6 | 1.3917 (18) | C8—H8A | 0.9800 |
C1—C2 | 1.3961 (19) | C8—H8B | 0.9800 |
C1—C7 | 1.4936 (17) | C8—H8C | 0.9800 |
C2—C3 | 1.3900 (19) | C9—H9A | 0.9800 |
C2—H2 | 0.9500 | C9—H9B | 0.9800 |
C3—C4 | 1.3944 (19) | C9—H9C | 0.9800 |
C3—C9 | 1.5144 (19) | C10—H10A | 0.9800 |
C4—C5 | 1.3931 (19) | C10—H10B | 0.9800 |
C4—H4 | 0.9500 | C10—H10C | 0.9800 |
C7—O2—C8 | 116.20 (11) | O1—C7—C1 | 124.76 (13) |
C6—C1—C2 | 119.92 (12) | O2—C7—C1 | 111.94 (11) |
C6—C1—C7 | 121.19 (12) | O2—C8—H8A | 109.5 |
C2—C1—C7 | 118.86 (12) | O2—C8—H8B | 109.5 |
C3—C2—C1 | 120.46 (12) | H8A—C8—H8B | 109.5 |
C3—C2—H2 | 119.8 | O2—C8—H8C | 109.5 |
C1—C2—H2 | 119.8 | H8A—C8—H8C | 109.5 |
C2—C3—C4 | 118.70 (12) | H8B—C8—H8C | 109.5 |
C2—C3—C9 | 120.23 (13) | C3—C9—H9A | 109.5 |
C4—C3—C9 | 121.07 (13) | C3—C9—H9B | 109.5 |
C5—C4—C3 | 121.89 (12) | H9A—C9—H9B | 109.5 |
C5—C4—H4 | 119.1 | C3—C9—H9C | 109.5 |
C3—C4—H4 | 119.1 | H9A—C9—H9C | 109.5 |
C4—C5—C6 | 118.46 (12) | H9B—C9—H9C | 109.5 |
C4—C5—C10 | 121.74 (12) | C5—C10—H10A | 109.5 |
C6—C5—C10 | 119.80 (12) | C5—C10—H10B | 109.5 |
C1—C6—C5 | 120.57 (12) | H10A—C10—H10B | 109.5 |
C1—C6—H6 | 119.7 | C5—C10—H10C | 109.5 |
C5—C6—H6 | 119.7 | H10A—C10—H10C | 109.5 |
O1—C7—O2 | 123.30 (12) | H10B—C10—H10C | 109.5 |
C6—C1—C2—C3 | 0.43 (19) | C7—C1—C6—C5 | −178.18 (12) |
C7—C1—C2—C3 | 178.69 (11) | C4—C5—C6—C1 | −0.48 (19) |
C1—C2—C3—C4 | −0.42 (19) | C10—C5—C6—C1 | 179.82 (12) |
C1—C2—C3—C9 | −179.91 (13) | C8—O2—C7—O1 | −1.2 (2) |
C2—C3—C4—C5 | 0.0 (2) | C8—O2—C7—C1 | 178.09 (11) |
C9—C3—C4—C5 | 179.44 (13) | C6—C1—C7—O1 | 170.41 (14) |
C3—C4—C5—C6 | 0.5 (2) | C2—C1—C7—O1 | −7.8 (2) |
C3—C4—C5—C10 | −179.82 (12) | C6—C1—C7—O2 | −8.91 (17) |
C2—C1—C6—C5 | 0.03 (19) | C2—C1—C7—O2 | 172.85 (12) |
Cg1 represents the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···O1i | 0.98 | 2.57 | 3.5215 (19) | 163 |
C8—H8B···Cg1ii | 0.98 | 2.76 | 3.445 (2) | 127 |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) −x+1/2, y+3/2, −z+3/2. |
C10H10Br2O2 | Z = 4 |
Mr = 322.00 | F(000) = 624 |
Triclinic, P1 | Dx = 1.930 Mg m−3 |
a = 7.7936 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.1655 (2) Å | Cell parameters from 9654 reflections |
c = 17.2292 (4) Å | θ = 2.7–36.8° |
α = 88.1637 (12)° | µ = 7.29 mm−1 |
β = 80.9050 (12)° | T = 130 K |
γ = 65.8659 (11)° | Irregular, colourless |
V = 1108.30 (5) Å3 | 0.46 × 0.39 × 0.27 mm |
Bruker Kappa APEXII CCD area detector diffractometer | 5305 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.033 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 28.9°, θmin = 1.2° |
Tmin = 0.134, Tmax = 0.244 | h = −10→10 |
29065 measured reflections | k = −12→12 |
5842 independent reflections | l = −23→22 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0273P)2 + 2.052P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
5842 reflections | Δρmax = 1.21 e Å−3 |
255 parameters | Δρmin = −0.98 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | −0.08475 (4) | 0.81672 (3) | 0.00562 (2) | 0.02904 (7) | |
Br2 | 0.48472 (4) | 0.08778 (3) | 0.11939 (2) | 0.03302 (8) | |
O1 | 0.5485 (3) | 0.6991 (2) | 0.19580 (10) | 0.0223 (3) | |
O2 | 0.8281 (3) | 0.4838 (2) | 0.16971 (12) | 0.0300 (4) | |
C1 | 0.4550 (3) | 0.6259 (3) | 0.15806 (14) | 0.0180 (4) | |
C2 | 0.3764 (3) | 0.7009 (3) | 0.09361 (13) | 0.0177 (4) | |
H2 | 0.3906 | 0.7927 | 0.0756 | 0.021* | |
C3 | 0.2757 (3) | 0.6375 (3) | 0.05580 (13) | 0.0168 (4) | |
C4 | 0.2561 (3) | 0.5002 (3) | 0.08395 (14) | 0.0183 (4) | |
H4 | 0.1896 | 0.4570 | 0.0587 | 0.022* | |
C5 | 0.3346 (3) | 0.4268 (3) | 0.14936 (14) | 0.0189 (4) | |
C6 | 0.4351 (3) | 0.4903 (3) | 0.18721 (14) | 0.0190 (4) | |
H6 | 0.4879 | 0.4425 | 0.2312 | 0.023* | |
C7 | 0.7388 (4) | 0.6174 (3) | 0.19617 (14) | 0.0204 (4) | |
C8 | 0.8159 (4) | 0.7190 (3) | 0.23218 (15) | 0.0262 (5) | |
H8A | 0.9257 | 0.6518 | 0.2548 | 0.039* | |
H8B | 0.7203 | 0.7887 | 0.2725 | 0.039* | |
H8C | 0.8515 | 0.7817 | 0.1925 | 0.039* | |
C9 | 0.1944 (3) | 0.7141 (3) | −0.01535 (14) | 0.0221 (5) | |
H9A | 0.2349 | 0.6337 | −0.0575 | 0.026* | |
H9B | 0.2432 | 0.7937 | −0.0326 | 0.026* | |
C10 | 0.3063 (4) | 0.2828 (3) | 0.18047 (17) | 0.0258 (5) | |
H10A | 0.1767 | 0.2972 | 0.1783 | 0.031* | |
H10B | 0.3249 | 0.2712 | 0.2351 | 0.031* | |
Br1A | 0.43346 (3) | 0.44424 (3) | 0.61006 (2) | 0.02337 (6) | |
Br2A | 0.92345 (4) | −0.40729 (3) | 0.60976 (2) | 0.02744 (7) | |
O1A | 0.9262 (3) | 0.0059 (2) | 0.34359 (11) | 0.0285 (4) | |
O2A | 0.6523 (3) | 0.1522 (3) | 0.30204 (12) | 0.0443 (6) | |
C1A | 0.8337 (3) | 0.0113 (3) | 0.42092 (14) | 0.0200 (4) | |
C2A | 0.7921 (3) | 0.1409 (3) | 0.47025 (16) | 0.0219 (5) | |
H2A | 0.8118 | 0.2296 | 0.4509 | 0.026* | |
C3A | 0.7203 (3) | 0.1375 (3) | 0.54912 (15) | 0.0210 (5) | |
C4A | 0.6907 (3) | 0.0042 (3) | 0.57655 (14) | 0.0192 (4) | |
H4A | 0.6413 | 0.0022 | 0.6292 | 0.023* | |
C5A | 0.7340 (3) | −0.1266 (3) | 0.52649 (13) | 0.0171 (4) | |
C6A | 0.8055 (3) | −0.1220 (3) | 0.44763 (13) | 0.0178 (4) | |
H6A | 0.8340 | −0.2079 | 0.4133 | 0.021* | |
C7A | 0.8205 (4) | 0.0866 (3) | 0.28849 (14) | 0.0219 (5) | |
C8A | 0.9420 (4) | 0.0791 (4) | 0.21112 (16) | 0.0317 (6) | |
H8A1 | 0.9001 | 0.0369 | 0.1712 | 0.048* | |
H8A2 | 1.0722 | 0.0109 | 0.2145 | 0.048* | |
H8A3 | 0.9317 | 0.1846 | 0.1980 | 0.048* | |
C9A | 0.6879 (4) | 0.2709 (3) | 0.60537 (19) | 0.0323 (6) | |
H9A1 | 0.7829 | 0.3134 | 0.5893 | 0.039* | |
H9A2 | 0.7036 | 0.2291 | 0.6574 | 0.039* | |
C10A | 0.7074 (3) | −0.2710 (3) | 0.55685 (15) | 0.0225 (5) | |
H10C | 0.6986 | −0.3315 | 0.5136 | 0.027* | |
H10D | 0.5896 | −0.2386 | 0.5938 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02417 (13) | 0.02849 (13) | 0.03098 (14) | −0.00553 (10) | −0.01021 (10) | 0.00568 (10) |
Br2 | 0.03039 (14) | 0.01534 (12) | 0.05357 (18) | −0.00887 (10) | −0.00889 (12) | 0.00249 (11) |
O1 | 0.0273 (9) | 0.0173 (8) | 0.0254 (9) | −0.0095 (7) | −0.0116 (7) | 0.0010 (7) |
O2 | 0.0238 (9) | 0.0277 (10) | 0.0385 (11) | −0.0103 (8) | −0.0035 (8) | −0.0084 (8) |
C1 | 0.0183 (10) | 0.0160 (10) | 0.0198 (11) | −0.0063 (8) | −0.0051 (8) | −0.0011 (8) |
C2 | 0.0205 (10) | 0.0141 (10) | 0.0182 (10) | −0.0069 (8) | −0.0028 (8) | 0.0009 (8) |
C3 | 0.0170 (10) | 0.0163 (10) | 0.0139 (10) | −0.0042 (8) | −0.0005 (8) | −0.0014 (8) |
C4 | 0.0159 (10) | 0.0169 (10) | 0.0218 (11) | −0.0068 (8) | −0.0020 (8) | −0.0019 (8) |
C5 | 0.0152 (10) | 0.0162 (10) | 0.0228 (11) | −0.0055 (8) | 0.0010 (8) | 0.0012 (8) |
C6 | 0.0194 (10) | 0.0174 (10) | 0.0186 (10) | −0.0056 (8) | −0.0049 (8) | 0.0037 (8) |
C7 | 0.0248 (11) | 0.0231 (11) | 0.0166 (10) | −0.0126 (9) | −0.0045 (9) | 0.0028 (9) |
C8 | 0.0337 (13) | 0.0302 (13) | 0.0228 (12) | −0.0199 (11) | −0.0081 (10) | 0.0016 (10) |
C9 | 0.0238 (11) | 0.0252 (12) | 0.0163 (11) | −0.0088 (9) | −0.0040 (9) | 0.0007 (9) |
C10 | 0.0232 (12) | 0.0225 (12) | 0.0330 (13) | −0.0118 (10) | −0.0019 (10) | 0.0063 (10) |
Br1A | 0.02379 (12) | 0.01843 (11) | 0.01960 (11) | −0.00036 (9) | −0.00319 (9) | 0.00021 (8) |
Br2A | 0.02581 (13) | 0.02373 (13) | 0.03068 (14) | −0.00786 (10) | −0.00669 (10) | 0.00987 (10) |
O1A | 0.0182 (8) | 0.0409 (11) | 0.0200 (9) | −0.0068 (8) | −0.0022 (7) | 0.0120 (8) |
O2A | 0.0272 (10) | 0.0641 (15) | 0.0212 (10) | 0.0028 (10) | −0.0076 (8) | 0.0062 (10) |
C1A | 0.0124 (9) | 0.0250 (11) | 0.0187 (11) | −0.0037 (8) | −0.0039 (8) | 0.0067 (9) |
C2A | 0.0141 (10) | 0.0168 (10) | 0.0339 (13) | −0.0041 (8) | −0.0091 (9) | 0.0083 (9) |
C3A | 0.0131 (10) | 0.0183 (11) | 0.0285 (12) | −0.0013 (8) | −0.0081 (9) | −0.0012 (9) |
C4A | 0.0136 (10) | 0.0228 (11) | 0.0175 (10) | −0.0032 (8) | −0.0035 (8) | −0.0003 (8) |
C5A | 0.0116 (9) | 0.0193 (10) | 0.0195 (11) | −0.0048 (8) | −0.0047 (8) | 0.0027 (8) |
C6A | 0.0144 (9) | 0.0192 (10) | 0.0180 (10) | −0.0041 (8) | −0.0051 (8) | 0.0000 (8) |
C7A | 0.0280 (12) | 0.0197 (11) | 0.0194 (11) | −0.0101 (10) | −0.0076 (9) | 0.0039 (9) |
C8A | 0.0399 (15) | 0.0364 (15) | 0.0227 (13) | −0.0211 (13) | −0.0022 (11) | 0.0086 (11) |
C9A | 0.0200 (12) | 0.0241 (13) | 0.0471 (17) | −0.0002 (10) | −0.0115 (11) | −0.0131 (12) |
C10A | 0.0176 (10) | 0.0240 (12) | 0.0267 (12) | −0.0091 (9) | −0.0050 (9) | 0.0045 (9) |
Br1—C9 | 1.962 (2) | Br1A—C9A | 1.960 (3) |
Br2—C10 | 1.965 (3) | Br2A—C10A | 1.979 (2) |
O1—C7 | 1.362 (3) | O1A—C7A | 1.353 (3) |
O1—C1 | 1.407 (3) | O1A—C1A | 1.403 (3) |
O2—C7 | 1.196 (3) | O2A—C7A | 1.184 (3) |
C1—C2 | 1.379 (3) | C1A—C2A | 1.379 (4) |
C1—C6 | 1.383 (3) | C1A—C6A | 1.380 (3) |
C2—C3 | 1.392 (3) | C2A—C3A | 1.390 (4) |
C2—H2 | 0.9300 | C2A—H2A | 0.9300 |
C3—C4 | 1.392 (3) | C3A—C4A | 1.389 (3) |
C3—C9 | 1.492 (3) | C3A—C9A | 1.498 (4) |
C4—C5 | 1.389 (3) | C4A—C5A | 1.392 (3) |
C4—H4 | 0.9300 | C4A—H4A | 0.9300 |
C5—C6 | 1.391 (3) | C5A—C6A | 1.391 (3) |
C5—C10 | 1.495 (3) | C5A—C10A | 1.488 (3) |
C6—H6 | 0.9300 | C6A—H6A | 0.9300 |
C7—C8 | 1.492 (3) | C7A—C8A | 1.494 (4) |
C8—H8A | 0.9600 | C8A—H8A1 | 0.9600 |
C8—H8B | 0.9600 | C8A—H8A2 | 0.9600 |
C8—H8C | 0.9600 | C8A—H8A3 | 0.9600 |
C9—H9A | 0.9700 | C9A—H9A1 | 0.9700 |
C9—H9B | 0.9700 | C9A—H9A2 | 0.9700 |
C10—H10A | 0.9700 | C10A—H10C | 0.9700 |
C10—H10B | 0.9700 | C10A—H10D | 0.9700 |
C7—O1—C1 | 118.16 (18) | C7A—O1A—C1A | 118.43 (19) |
C2—C1—C6 | 122.2 (2) | C2A—C1A—C6A | 121.8 (2) |
C2—C1—O1 | 116.6 (2) | C2A—C1A—O1A | 119.6 (2) |
C6—C1—O1 | 121.1 (2) | C6A—C1A—O1A | 118.3 (2) |
C1—C2—C3 | 119.2 (2) | C1A—C2A—C3A | 119.3 (2) |
C1—C2—H2 | 120.4 | C1A—C2A—H2A | 120.3 |
C3—C2—H2 | 120.4 | C3A—C2A—H2A | 120.3 |
C4—C3—C2 | 119.3 (2) | C4A—C3A—C2A | 119.4 (2) |
C4—C3—C9 | 120.7 (2) | C4A—C3A—C9A | 120.0 (2) |
C2—C3—C9 | 120.0 (2) | C2A—C3A—C9A | 120.5 (2) |
C5—C4—C3 | 120.8 (2) | C3A—C4A—C5A | 121.0 (2) |
C5—C4—H4 | 119.6 | C3A—C4A—H4A | 119.5 |
C3—C4—H4 | 119.6 | C5A—C4A—H4A | 119.5 |
C4—C5—C6 | 119.9 (2) | C6A—C5A—C4A | 119.2 (2) |
C4—C5—C10 | 120.1 (2) | C6A—C5A—C10A | 120.1 (2) |
C6—C5—C10 | 120.0 (2) | C4A—C5A—C10A | 120.7 (2) |
C1—C6—C5 | 118.6 (2) | C1A—C6A—C5A | 119.3 (2) |
C1—C6—H6 | 120.7 | C1A—C6A—H6A | 120.3 |
C5—C6—H6 | 120.7 | C5A—C6A—H6A | 120.3 |
O2—C7—O1 | 123.3 (2) | O2A—C7A—O1A | 122.4 (2) |
O2—C7—C8 | 126.2 (2) | O2A—C7A—C8A | 126.0 (2) |
O1—C7—C8 | 110.5 (2) | O1A—C7A—C8A | 111.6 (2) |
C7—C8—H8A | 109.5 | C7A—C8A—H8A1 | 109.5 |
C7—C8—H8B | 109.5 | C7A—C8A—H8A2 | 109.5 |
H8A—C8—H8B | 109.5 | H8A1—C8A—H8A2 | 109.5 |
C7—C8—H8C | 109.5 | C7A—C8A—H8A3 | 109.5 |
H8A—C8—H8C | 109.5 | H8A1—C8A—H8A3 | 109.5 |
H8B—C8—H8C | 109.5 | H8A2—C8A—H8A3 | 109.5 |
C3—C9—Br1 | 111.76 (16) | C3A—C9A—Br1A | 112.24 (17) |
C3—C9—H9A | 109.3 | C3A—C9A—H9A1 | 109.2 |
Br1—C9—H9A | 109.3 | Br1A—C9A—H9A1 | 109.2 |
C3—C9—H9B | 109.3 | C3A—C9A—H9A2 | 109.2 |
Br1—C9—H9B | 109.3 | Br1A—C9A—H9A2 | 109.2 |
H9A—C9—H9B | 107.9 | H9A1—C9A—H9A2 | 107.9 |
C5—C10—Br2 | 111.29 (17) | C5A—C10A—Br2A | 110.38 (16) |
C5—C10—H10A | 109.4 | C5A—C10A—H10C | 109.6 |
Br2—C10—H10A | 109.4 | Br2A—C10A—H10C | 109.6 |
C5—C10—H10B | 109.4 | C5A—C10A—H10D | 109.6 |
Br2—C10—H10B | 109.4 | Br2A—C10A—H10D | 109.6 |
H10A—C10—H10B | 108.0 | H10C—C10A—H10D | 108.1 |
C7—O1—C1—C2 | −116.6 (2) | C7A—O1A—C1A—C2A | −81.9 (3) |
C7—O1—C1—C6 | 66.7 (3) | C7A—O1A—C1A—C6A | 104.9 (3) |
C6—C1—C2—C3 | −0.8 (4) | C6A—C1A—C2A—C3A | 0.2 (3) |
O1—C1—C2—C3 | −177.5 (2) | O1A—C1A—C2A—C3A | −172.7 (2) |
C1—C2—C3—C4 | 0.2 (3) | C1A—C2A—C3A—C4A | −0.4 (3) |
C1—C2—C3—C9 | −178.3 (2) | C1A—C2A—C3A—C9A | 175.3 (2) |
C2—C3—C4—C5 | 0.4 (3) | C2A—C3A—C4A—C5A | 0.8 (3) |
C9—C3—C4—C5 | 178.8 (2) | C9A—C3A—C4A—C5A | −175.0 (2) |
C3—C4—C5—C6 | −0.3 (3) | C3A—C4A—C5A—C6A | −0.9 (3) |
C3—C4—C5—C10 | 177.8 (2) | C3A—C4A—C5A—C10A | 178.1 (2) |
C2—C1—C6—C5 | 0.9 (4) | C2A—C1A—C6A—C5A | −0.3 (3) |
O1—C1—C6—C5 | 177.4 (2) | O1A—C1A—C6A—C5A | 172.73 (19) |
C4—C5—C6—C1 | −0.3 (3) | C4A—C5A—C6A—C1A | 0.6 (3) |
C10—C5—C6—C1 | −178.5 (2) | C10A—C5A—C6A—C1A | −178.4 (2) |
C1—O1—C7—O2 | −4.0 (3) | C1A—O1A—C7A—O2A | −5.1 (4) |
C1—O1—C7—C8 | 174.9 (2) | C1A—O1A—C7A—C8A | 175.6 (2) |
C4—C3—C9—Br1 | 70.6 (2) | C4A—C3A—C9A—Br1A | −95.8 (3) |
C2—C3—C9—Br1 | −111.0 (2) | C2A—C3A—C9A—Br1A | 88.5 (3) |
C4—C5—C10—Br2 | 80.7 (2) | C6A—C5A—C10A—Br2A | 99.1 (2) |
C6—C5—C10—Br2 | −101.1 (2) | C4A—C5A—C10A—Br2A | −79.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10A—H10D···O2Ai | 0.97 | 2.28 | 3.236 (3) | 168 |
C10A—H10C···Br1Ai | 0.97 | 2.89 | 3.836 (3) | 164 |
C8A—H8A3···O2 | 0.96 | 2.58 | 3.521 (4) | 168 |
C10—H10B···Br2Ai | 0.97 | 3.01 | 3.757 (3) | 135 |
C10—H10A···O2ii | 0.97 | 2.58 | 3.449 (3) | 150 |
C9—H9B···Br2iii | 0.97 | 2.95 | 3.854 (3) | 156 |
C9—H9A···O2iii | 0.97 | 2.45 | 3.334 (3) | 151 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z. |
C8H6O3 | F(000) = 312 |
Mr = 150.13 | Dx = 1.485 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 3.7345 (1) Å | Cell parameters from 6158 reflections |
b = 11.9549 (4) Å | θ = 2.7–30.5° |
c = 15.0846 (5) Å | µ = 0.12 mm−1 |
β = 94.212 (2)° | T = 153 K |
V = 671.64 (4) Å3 | Rod, colourless |
Z = 4 | 0.42 × 0.28 × 0.19 mm |
Bruker Kappa APEXII CCD area detector diffractometer | Rint = 0.058 |
φ and ω scans | θmax = 29.4°, θmin = 2.7° |
11533 measured reflections | h = −5→4 |
1819 independent reflections | k = −16→16 |
1519 reflections with I > 2σ(I) | l = −20→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0692P)2 + 0.2868P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1819 reflections | Δρmax = 0.33 e Å−3 |
104 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6355 (3) | 0.48950 (8) | 0.38804 (7) | 0.0332 (3) | |
O2 | 1.0631 (3) | 0.10838 (8) | 0.62211 (7) | 0.0336 (3) | |
O3 | 0.2117 (3) | 0.11521 (8) | 0.23777 (6) | 0.0291 (3) | |
C1 | 0.6468 (4) | 0.37799 (10) | 0.40378 (8) | 0.0214 (3) | |
C2 | 0.8207 (3) | 0.34507 (10) | 0.48515 (8) | 0.0207 (3) | |
H2 | 0.9189 | 0.4000 | 0.5254 | 0.025* | |
C3 | 0.8496 (3) | 0.23282 (10) | 0.50697 (7) | 0.0197 (3) | |
C4 | 0.7080 (4) | 0.15111 (10) | 0.44830 (8) | 0.0214 (3) | |
H4 | 0.7294 | 0.0740 | 0.4631 | 0.026* | |
C5 | 0.5354 (3) | 0.18440 (10) | 0.36798 (8) | 0.0206 (3) | |
C6 | 0.5036 (3) | 0.29757 (10) | 0.34512 (8) | 0.0204 (3) | |
H6 | 0.3850 | 0.3191 | 0.2899 | 0.024* | |
C7 | 1.0363 (4) | 0.20285 (11) | 0.59351 (8) | 0.0235 (3) | |
H7 | 1.1419 | 0.2615 | 0.6290 | 0.028* | |
C8 | 0.3862 (4) | 0.09684 (11) | 0.30752 (9) | 0.0253 (3) | |
H8 | 0.4289 | 0.0210 | 0.3240 | 0.030* | |
H1 | 0.519 (7) | 0.5065 (19) | 0.3394 (16) | 0.056 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0477 (7) | 0.0190 (5) | 0.0297 (5) | −0.0017 (4) | −0.0184 (5) | 0.0031 (4) |
O2 | 0.0445 (7) | 0.0281 (5) | 0.0269 (5) | 0.0034 (4) | −0.0066 (4) | 0.0052 (4) |
O3 | 0.0329 (6) | 0.0298 (5) | 0.0233 (5) | −0.0024 (4) | −0.0071 (4) | −0.0047 (4) |
C1 | 0.0228 (7) | 0.0204 (6) | 0.0203 (5) | −0.0004 (4) | −0.0036 (4) | 0.0005 (4) |
C2 | 0.0214 (7) | 0.0217 (6) | 0.0183 (5) | −0.0005 (4) | −0.0034 (4) | −0.0010 (4) |
C3 | 0.0184 (6) | 0.0228 (6) | 0.0175 (5) | 0.0005 (4) | −0.0012 (4) | 0.0005 (4) |
C4 | 0.0227 (7) | 0.0206 (5) | 0.0204 (5) | 0.0000 (4) | −0.0011 (4) | 0.0002 (4) |
C5 | 0.0193 (6) | 0.0234 (6) | 0.0187 (5) | −0.0008 (4) | −0.0011 (4) | −0.0025 (4) |
C6 | 0.0194 (6) | 0.0236 (6) | 0.0175 (5) | −0.0006 (4) | −0.0023 (4) | −0.0003 (4) |
C7 | 0.0248 (7) | 0.0257 (6) | 0.0195 (5) | 0.0022 (5) | −0.0027 (4) | 0.0006 (4) |
C8 | 0.0267 (7) | 0.0248 (6) | 0.0236 (6) | −0.0025 (5) | −0.0026 (5) | −0.0026 (5) |
O1—C1 | 1.3541 (15) | C3—C7 | 1.4781 (16) |
O1—H1 | 0.85 (2) | C4—C5 | 1.3882 (16) |
O2—C7 | 1.2105 (16) | C4—H4 | 0.9500 |
O3—C8 | 1.2163 (16) | C5—C6 | 1.3991 (17) |
C1—C6 | 1.3870 (16) | C5—C8 | 1.4709 (17) |
C1—C2 | 1.4022 (16) | C6—H6 | 0.9500 |
C2—C3 | 1.3840 (17) | C7—H7 | 0.9500 |
C2—H2 | 0.9500 | C8—H8 | 0.9500 |
C3—C4 | 1.3958 (16) | ||
C1—O1—H1 | 113.2 (16) | C4—C5—C6 | 121.19 (11) |
O1—C1—C6 | 124.40 (11) | C4—C5—C8 | 117.88 (11) |
O1—C1—C2 | 115.87 (11) | C6—C5—C8 | 120.92 (11) |
C6—C1—C2 | 119.73 (11) | C1—C6—C5 | 119.43 (11) |
C3—C2—C1 | 120.23 (11) | C1—C6—H6 | 120.3 |
C3—C2—H2 | 119.9 | C5—C6—H6 | 120.3 |
C1—C2—H2 | 119.9 | O2—C7—C3 | 124.21 (12) |
C2—C3—C4 | 120.56 (11) | O2—C7—H7 | 117.9 |
C2—C3—C7 | 117.95 (11) | C3—C7—H7 | 117.9 |
C4—C3—C7 | 121.49 (11) | O3—C8—C5 | 124.23 (12) |
C5—C4—C3 | 118.86 (11) | O3—C8—H8 | 117.9 |
C5—C4—H4 | 120.6 | C5—C8—H8 | 117.9 |
C3—C4—H4 | 120.6 | ||
O1—C1—C2—C3 | −179.31 (12) | O1—C1—C6—C5 | 179.13 (13) |
C6—C1—C2—C3 | 0.0 (2) | C2—C1—C6—C5 | −0.1 (2) |
C1—C2—C3—C4 | 0.3 (2) | C4—C5—C6—C1 | −0.1 (2) |
C1—C2—C3—C7 | 179.88 (12) | C8—C5—C6—C1 | 179.87 (12) |
C2—C3—C4—C5 | −0.5 (2) | C2—C3—C7—O2 | 176.10 (14) |
C7—C3—C4—C5 | 179.96 (12) | C4—C3—C7—O2 | −4.3 (2) |
C3—C4—C5—C6 | 0.3 (2) | C4—C5—C8—O3 | 175.61 (14) |
C3—C4—C5—C8 | −179.58 (12) | C6—C5—C8—O3 | −4.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.95 | 2.43 | 3.3354 (16) | 160 |
C8—H8···O2ii | 0.95 | 2.58 | 3.1973 (18) | 123 |
O1—H1···O3iii | 0.85 (2) | 1.91 (2) | 2.6795 (13) | 150 (2) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
Open access funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.
References
Amrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648–10659. Web of Science CrossRef CAS PubMed Google Scholar
Amrhein, F. & Mazik, M. (2021). Eur. J. Org. Chem. pp. 6282–6303. Web of Science CrossRef Google Scholar
Amrhein, F., Schwarzer, A. & Mazik, M. (2021). Acta Cryst. E77, 233–236. Web of Science CSD CrossRef IUCr Journals Google Scholar
Battaini, G., Monzani, E., Perotti, A., Para, C., Casella, L., Santagostini, L., Gullotti, M., Dillinger, R., Näther, C. & Tuczek, F. (2003). J. Am. Chem. Soc. 125, 4185–4198. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker, (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals Google Scholar
Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Koch, N., Seichter, W. & Mazik, M. (2013). Acta Cryst. E69, o679. CSD CrossRef IUCr Journals Google Scholar
Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034. Google Scholar
Köhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221–22229. Web of Science PubMed Google Scholar
Kurz, K. & Göbel, M. W. (1996). Helv. Chim. Acta, 79, 1967–1979. CrossRef CAS Web of Science Google Scholar
Lippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013–9020. Web of Science CrossRef CAS PubMed Google Scholar
Lippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427–1439. Web of Science CrossRef CAS PubMed Google Scholar
Mazik, M., Cavga, H. & Jones, P. G. (2005). J. Am. Chem. Soc. 127, 9045–9052. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788. Web of Science CrossRef CAS Google Scholar
Pedireddy, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360. Google Scholar
Pinkus, A. G., Klausmeyer, K. K., Feazell, R. P. & Lin, E. C. H. Y. (2005). Acta Cryst. E61, o662–o663. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Star, A., Liu, Y., Grant, K., Ridvan, L., Stoddart, J. F., Steuerman, D. W., Diehl, M. R., Boukai, A. & Heath, J. R. (2003). Macromolecules, 36, 553–560. Web of Science CrossRef CAS Google Scholar
Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tiekink, E. R. T. & Zukerman-Schpector, J. (2012). In The Importance of Pi-Interactions in Crystal Engineering. Frontiers in Crystal Engineering. Chichester: Wiley. Google Scholar
Velde, C. M. L. V., Zeller, M. & Azov, V. A. (2012). J. Mol. Struct. 1016, 109–117. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zondervan, C., van den Beuken, E. K., Kooijman, H., Spek, A. L. & Feringa, B. L. (1997). Tetrahedron Lett. 38, 3111–3114. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.