research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of a nitro–anthracene–isoxazole and its oxidation product

crossmark logo

aDepartment of Chemistry, Ithaca College, 953 Danby Road, Ithaca, NY 14850, USA, and bDepartment of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
*Correspondence e-mail: nicholas.natale@umontana.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 April 2022; accepted 25 May 2022; online 10 June 2022)

The syntheses and structures of an unexpected by-product from an iodination reaction, namely, ethyl 5-methyl-3-(10-nitro­anthracen-9-yl)isoxazole-4-carb­oxy­l­ate, C21H16N2O5, (I), and its oxidation product, ethyl 3-(9-hy­droxy-10-oxo-9,10-di­hydro­anthracen-9-yl)-5-methyl­isoxazole-4-carboxyl­ate, C21H17NO5 (V) are described. Compound (I) crystallizes with two mol­ecules in the asymmetric unit in which the dihedral angles between the anthracene fused-ring systems and isoxazole ring mean planes are 88.67 (16) and 85.64 (16)°; both mol­ecules feature a disordered nitro group. In (V), which crystallizes with one mol­ecule in the asymmetric unit, the equivalent dihedral angle between the almost planar anthrone ring system (r.m.s. deviation = 0.029 Å) and the pendant isoxazole ring is 89.65 (5)°. In the crystal of (I), the mol­ecules are linked by weak C—H⋯O inter­actions into a three-dimensional network and in the extended structure of (V), inversion dimers linked by pairwise O—H⋯O hydrogen bonds generate R22(14) loops.

1. Chemical context

In the course of our study of aryl-isoxazole amide (AIM) anti-tumor agents, we have a standard operating procedure to identify by-products of the synthesis (Weaver, Campbell et al., 2020[Weaver, M. J., Campbell, M. J., Li, C. & Natale, N. R. (2020). Acta Cryst. E76, 1818-1822.]), and have used the mechanistic insights gained in order to optimize and improve subsequent syntheses.

[Scheme 1]

During recent structure–activity relationship studies, we encountered complications in constructing sterically hindered examples, which we desired for their calculated pharmacokinetic properties. After obtaining mediocre results with bromine as a leaving group in Suzuki couplings, we pursued a fairly routine alternative of moving to the next halogen down in the periodic table. We have encountered more complications in this study than in the previous twenty papers we have published in this area (e.g. Weaver, Stump et al., 2020[Weaver, M. J., Stump, S., Campbell, M. J., Backos, D. S., Li, C., Reigan, P., Adams, E., Beall, H. D. & Natale, N. R. (2020). Bioorg. Med. Chem. 28, 115781.] and Weaver et al., 2015[Weaver, M. J., Kearns, A. K., Stump, S., Li, C., Gajewski, M. P., Rider, K. C., Backos, D. S., Reigan, P. R., Beall, H. D. & Natale, N. R. (2015). Bioorg. Med. Chem. Lett. 25, 1765-1770.]), and herein report the crystal structures of two compounds observed.

Using conditions usually reported for iodination, the main product observed for reaction of (II) was the nitro ester (I)[link] rather than the expected iodo product (III), which was obtained in small amounts (Fig. 1[link]). The nitro product so obtained exhibits most of the stereoelectronic properties of previously studied analogues that we have considered to be essential for their biological activity (Han et al., 2009[Han, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671-1680.]). The nitro group is disordered and found in two distinct conformations in the unit cell. We attribute this to an extreme peri-effect, which substanti­ally raises the energy of the co-planar conformer.

[Figure 1]
Figure 1
Preparation and mol­ecular structures of the title compounds.

In order to improve on the accuracy of the crystal structure of (I)[link] we attempted numerous recrystallizations; however, what was observed was the addition of oxygen to compound (I)[link], which we attribute to cyclo­addition of di­oxy­gen to an endo-peroxide (IV) (Klaper et al., 2016[Klaper, M., Wessig, P. & Linker, T. (2016). Chem. Commun. 52, 1210-1213.]), and ring opening with loss of a leaving group to the oxidation product anthra­quinone (V)[link]. Usually, anthracenes are oxidized in vivo predominantly by cytochrome P450, leading to a potentially toxic arene oxide (Silverman et al., 2014[Silverman, R. B. & Holladay, M. W. (2014). Organic Chemistry of Drug Design and Drug Action, pp. 368-373. San Diego: Academic Press.]). The rationale for the isoxazole series is that the C-5 isoxazole methyl group represents an opportunity for safer metabolism (Natale et al., 2010[Natale, N. R., Rider, K. C., Burkhart, D. J., Li, C., McKenzie, A. R. & Nelson, J. K. (2010). ARKIVOC, part (viii), pp. 97-107.]). The observation in this manuscript suggests that intra­molecular di­oxy­genation, which would likely be mediated in vivo by mono amine oxidase (MAO), is another plausible route (Silverman, 2002[Silverman, R. B. (2002). Organic Chemistry of Enzyme-catalyzed Reactions, 2nd ed, pp. 227-239. San Diego: Academic Press.]). The observation of a possible endo-peroxide pathway in this study suggests that the metabolism of these 10-substituted anthracenyl isoxazole analogues could go through di­oxy­genation catalysed by COX (cyclo­oxygenase) and other prostaglandin synthases in vivo (Silverman, 2002[Silverman, R. B. (2002). Organic Chemistry of Enzyme-catalyzed Reactions, 2nd ed, pp. 227-239. San Diego: Academic Press.]).

2. Structural commentary

The first title compound (I)[link], C21H16N2O5, crystallizes in the monoclinic Cc space group with two independent mol­ecules in the asymmetric unit (Fig. 2[link]). The dihedral angle between the anthracene ring mean plane and the isoxazole ring mean plane indicate near orthogonality: 88.67 (16) and 85.64 (16)° for mol­ecules A (containing C1) and B (containing C22), respectively. Each independent anthryl ring contains a 10-nitro group with the O atoms disordered over two orientations. The isoxazole group and its attached ethyl ester moiety are virtually co-planar, with the twist angles found to be 3.1 (2)° between the C15–C17/O1/N1 and O2/C19/O3/C20 planes in mol­ecule A, and 4.2 (2)° between the C36–C38/O6/N3 and O7/C40/O8/C41 planes in mol­ecule B. The ester ethyl group is exo- with respect to the anthryl ring in the solid state but this conformation is not completely retained in solution as the proton NMR indicates significant anisotropy at the methyl group of the ethyl ester (δ = 0.41), which indicates at the very least a significant population of the endo- orientation. In addition, many of our other reported anthracenyl isoxazole esters have shown the ester ethyl group in an endo- orientation (Weaver, Stump et al., 2020[Weaver, M. J., Stump, S., Campbell, M. J., Backos, D. S., Li, C., Reigan, P., Adams, E., Beall, H. D. & Natale, N. R. (2020). Bioorg. Med. Chem. 28, 115781.]; Weaver et al., 2015[Weaver, M. J., Kearns, A. K., Stump, S., Li, C., Gajewski, M. P., Rider, K. C., Backos, D. S., Reigan, P. R., Beall, H. D. & Natale, N. R. (2015). Bioorg. Med. Chem. Lett. 25, 1765-1770.]; Li et al., 2013[Li, C., Campbell, M. J., Weaver, M. J., Duncan, N. S., Hunting, J. L. & Natale, N. R. (2013). Acta Cryst. E69, o1804-o1805.]; Li et al., 2006[Li, C., Twamley, B. & Natale, N. R. (2006). Acta Cryst. E62, o854-o856.]; Han et al., 2003[Han, X., Twamley, B. & Natale, N. R. (2003). J. Heterocycl. Chem. 40, 539-545.]; Mosher et al., 1996[Mosher, M. D., Natale, N. R. & Vij, A. (1996). Acta Cryst. C52, 2513-2515.]).

[Figure 2]
Figure 2
The asymmetric unit of compound (I)[link] showing displacement ellipsoids drawn at the 50% probability level. The structure on the left is mol­ecule A and that on the right is mol­ecule B.

The second title compound (V)[link], C21H17NO5, crystallizes in the monoclinic P21/c space group with one independent mol­ecule in the asymmetric unit (Fig. 3[link]). The anthrone ring system is virtually planar with an r.m.s. deviation of 0.029 Å. Like the other anthracenyl isoxazole structures we have reported (vide supra), the isoxazole ring is orthogonal to the anthracene ring, with a dihedral angle of 89.65 (5)°. The ester ethyl group is in endo- orientation and the C19—O3—C20—C21 grouping is twisted [torsion angle = 86.7 (2)°].

[Figure 3]
Figure 3
The asymmetric unit of compound (V)[link] with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In compound (I)[link], weak C—H⋯O hydrogen bonds between adjacent A mol­ecules (C7—H7⋯O4 and C1—H1⋯O5) form a column running perpendicular to the [101] direction. Mol­ecule B lies between the columns and its O7 atom accepts a hydrogen bond from H3 of mol­ecule A (Table 1[link], Fig. 4[link]). There is an aromatic ππ stacking inter­action with a centroid–centroid separation of 3.537 (5) Å between the planes of the C22–C25/C32/C33 and C1–C4/C11/C12 rings. A σπ inter­action is observed at a distance of 3.774 Å from atom C42 to the plane centroid.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O5i 0.95 2.46 3.366 (12) 159
C3—H3⋯O7ii 0.95 2.44 3.339 (6) 158
C7—H7⋯O4iii 0.95 2.40 3.24 (4) 147
C7—H7⋯O4Aiii 0.95 2.46 3.34 (6) 154
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
The partial packing of compound (I)[link]. For clarity, only hydrogen bonds C1—H1⋯O5i and C3—H3⋯O7ii are shown as dashed lines, and H atoms not involved in these hydrogen bonds are removed.

In the crystal of compound (V)[link], inversion dimers linked by pairwise O2—H2⋯O1 hydrogen bonds occur (Table 2[link], Fig. 5[link]). A short contact distance between the isoxazole ring of one mol­ecule (ring mean plane C15–C17/O5N1) and the carbonyl oxygen (O4) of another mol­ecule [3.1486 (16) Å] may contribute to the head-to-head, tail-to-tail arrangement in the crystal structure, also shown in Fig. 8[link]b.

Table 2
Hydrogen-bond geometry (Å, °) for (V)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.91 (3) 1.93 (3) 2.8359 (19) 176 (2)
Symmetry code: (i) [-x+1, -y+1, -z+2].
[Figure 5]
Figure 5
The packing of compound (V)[link]. Inversion dimers linked by pairwise O2—H2⋯O1 hydrogen bonds are shown in dashed lines.
[Figure 8]
Figure 8
(a) The Hirshfeld surface of (V)[link] mapped over dnorm. Short and long contacts are indicated as red and blue spots, respectively. Contacts with distances approximately equal to the sum of the van der Waals radii are colored white. Hydroxyl and carbonyl groups on the anthrone ring contributed major short contacts. (b) ππ inter­actions (anthrone to anthrone and carbonyl to isoxazole ring) and σπ inter­action (C—H bond to carbon­yl) are shown as orange–red spots with green dashed lines in the shape-index map.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed, and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated to qu­antify the inter­molecular inter­actions using Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface of (I)[link] is mapped over dnorm in a fixed color scale of −0.31 (red) to 1.26 (blue) arbitrary units (Fig. 6[link]). The delineated two-dimensional fingerprint plots shown in Fig. 7[link] indicate that two main contributions to the overall Hirshfeld surface area arise from H⋯H contacts (35.3%) and O⋯H/H⋯O contacts (29.0%) with C⋯H/H⋯C inter­actions contributing 17.5% of the Hirshfeld surface.

[Figure 6]
Figure 6
(a) The Hirshfeld surface of (I)[link] mapped over dnorm. Short and long contacts are indicated as red and blue spots, respectively. Contacts with distances approximately equal to the sum of the van der Waals radii are colored white. (b) Weak ππ inter­actions are shown as green dashed lines on a surface mapped over curvedness. The ππ stacking is indicated by the green flat regions surrounded by dark blue edges.
[Figure 7]
Figure 7
The two-dimensional fingerprint plots for (I)[link] delineated into (a) H⋯H contacts, (b) O⋯H/H⋯O contacts, (c) C⋯H/H⋯C contacts, and (d) N⋯H/H⋯N contacts. Other contact contributions less than 5% are omitted.

The Hirshfeld surface of compound V is mapped over dnorm in a fixed color scale of −0.58 (red) to 1.31 (blue) arbitrary units (Fig. 8[link]a), showing two short contacts from O⋯H hydrogen bonds in red spots. The delineated two-dimensional fingerprint plots (Fig. 9[link]) indicate that H⋯H contacts contribute 47.7% of the Hirshfeld surface. Aromatic ππ stacking is also identifiable from the Hirshfeld surface mapped over the shape-index property (Fig. 8[link]b).

[Figure 9]
Figure 9
The two-dimensional fingerprint plots for (V)[link] delineated into (a) H⋯H contacts, (b) O⋯H/H⋯O contacts, (c) C⋯H/H⋯C contacts, and (d) N⋯H/H⋯N contacts. Other contact contributions less than 5% are omitted.

5. Database survey

A search for the 9-nitro­anthracenyl moiety in the Cambridge Structural Database (CSD version 5.43, November 2021 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in 14 hits, of which two crystal structures of 9-nitro­anthracene itself were reported, namely refcodes NTRANT (Trotter, 1959[Trotter, J. (1959). Acta Cryst. 12, 237-242.]) and NTRANT01 (Glagovich et al., 2004[Glagovich, N. M., Foss, P. C. D., Michalewski, O., Reed, E. M., Strathearn, K. E., Weiner, Y. F., Crundwell, G., Updegraff, J. B., Zeller, M. & Hunter, A. D. (2004). Acta Cryst. E60, o2125-o2126.]). The reported angles between the NO2 plane and the anthracene plane are 84.78 and 69.40°, respectively, which agree with our observation of the disordered NO2 group in (I)[link].

A search in the same database for the 10-hy­droxy anthrone fragment resulted in 59 hits, of which 10 structures had an aromatic ring at the 10-position, namely refcodes COBWEY (Barker et al., 2019[Barker, N. M., Krause, J. A. & Zhang, P. (2019). CSD Communication (refcode COBWEY). CCDC, Cambridge, England.]), DULVUB (Skrzat & Roszak, 1986[Skrzat, Z. & Roszak, A. (1986). Acta Cryst. C42, 1194-1196.]), ELULII (Stepovik et al., 2015[Stepovik, L. P., Malysheva, Y. B. & Fukin, G. K. (2015). Russ. J. Gen. Chem. 85, 1401-1411.]), EVETIL (Mao et al., 2021[Mao, X., Zhang, J., Wang, X., Zhang, H., Wei, P., Sung, H. H. Y., Williams, I. D., Feng, X., Ni, X.-L., Redshaw, C., Elsegood, M. R. J., Lam, J. W. Y. & Tang, B. Z. (2021). J. Org. Chem. 86, 7359-7369.]), JAYPAA (Roszak et al., 1990[Roszak, A. & Engelen, B. (1990). Acta Cryst. C46, 240-243.]), MOTJIQ (Chen et al., 2015[Chen, Y.-J., Yang, S.-C., Tsai, C.-C., Chang, K.-C., Chuang, W.-H., Chu, W.-L., Kovalev, V. & Chung, W.-S. (2015). Chem. Asian J. 10, 1025-1034.]), MOTKEN (Chen et al., 2015[Chen, Y.-J., Yang, S.-C., Tsai, C.-C., Chang, K.-C., Chuang, W.-H., Chu, W.-L., Kovalev, V. & Chung, W.-S. (2015). Chem. Asian J. 10, 1025-1034.]), QAJPUQ (Forensi et al., 2020[Forensi, S., Stopin, A., de Leo, F., Wouters, J. & Bonifazi, D. (2020). Tetrahedron, 76, 131299.]), SAMNEC (Hoffend et al., 2013[Hoffend, C., Schickedanz, K., Bolte, M., Lerner, H.-W. & Wagner, M. (2013). Tetrahedron, 69, 7073-7081.]) and WOKYIH (Pullella et al., 2019[Pullella, G. A., Wdowiak, A. P., Sykes, M. L., Lucantoni, L., Sukhoverkov, K. V., Zulfiqar, B., Sobolev, A. N., West, N. P., Mylne, J. S., Avery, V. M. & Piggott, M. J. (2019). Org. Lett. 21, 5519-5523.]). The anthrone unit in these 10 structures are either essentially planar or in a shallow boat conformation. The aromatic rings at the 10-position in these compounds are all at a vertical orientation relative to the anthrone ring. It may be noted that an anthrone isoxazole ester we reported in 2014, refcode TIYZEI, also shares similar structural features (Duncan et al., 2014[Duncan, N. S., Beall, H. D., Kearns, A. K., Li, C. & Natale, N. R. (2014). Acta Cryst. E70, o315-o316.]).

6. Synthesis and crystallization

Iodination of aromatic hydro­carbons with mol­ecular iodine has been accomplished by several methods, typically using an oxidizing agent to generate the iodo­nium cation electrophile. Among the conditions we surveyed, fuming nitric acid in particular (Bansal et al., 1987[Bansal, R. C., Eisenbraun, E. J. & Ryba, R. J. (1987). Org. Prep. Proced. Int. 19, 258-260.]) with the anthracene isoxazole (II), appears to consistently produce the nitrated anthryl (I)[link] rather than the desired iodo product (III). The anthryl isoxazole ester (II) was prepared as previously described (Mosher et al., 1996[Mosher, M. D., Natale, N. R. & Vij, A. (1996). Acta Cryst. C52, 2513-2515.]), and recrystallized before use. The ester (II) (67 mg, 0.19 mmol) was dissolved in acetic acid (1 ml), and iodine (24.1 mg) was added. To this solution was added concentrated sulfuric acid (1 ml) and sodium nitrite (13.1 mg, 0.19 mmol). The resulting solution was warmed to reflux for 30 minutes, after which it was poured over ice (3 g) and the precipitate collected by filtration. Silica gel chromatography using ethyl acetate in hexane provided the product, which was recrystallized from solutions in methyl­ene chloride, ethyl acetate and hexane by slow evaporation, whereby the product was obtained as dull dark-yellow prisms (15 mg, 21%). 1H NMR: (CDCl3) δppm 7.95 (d, 2H, J = 8Hz); 7.69 (m, 4H); 7.6 (m, 2H); 3.735 (q, 2H, J = 4Hz); 2.94 (s, 3H); 0.41 (t, 3H, J = 4Hz). 13C NMR: (CDCl3) δppm 176.66, 161.03, 159.45, 145.97, 133.59, 130.34, 128.68, 127.11, 125.67, 121.81, 121.57, 111.45, 60.41, 13.47, 12.94. HPLC–MS: calculated for [C21H16N2O5+H]+ 377.1137, observed m/z 377 ([M + 1]+, 100% rel. intensity).

During the re-crystallization of compound (I)[link], different solvent combinations of hexane, methanol, di­chloro­methane, and ethyl acetate were used. Instead of better crystals of compound (I)[link], compound (V)[link] was formed as translucent light-yellow prisms from the slow evaporation of the solvent mixture composed of hexane and methanol at room temperature over a period of two months. 1H NMR: (CDCl3) δppm 8.29 (dd, 2H, J = 1.37 and 7.79 Hz); 7.67 (d, 2H, J = 7.79 Hz); 7.60 (ddd, 2H, J = 1.37, 7.33, and 7.79 Hz); 7.50 (ddd, 2H, J = 1.37, 7.33, and 7.79 Hz); 4.06 (q, 2H, J = 6.87 Hz); 2.60 (s, 3H); 1.06 (t, 3H, J = 6.87 Hz). 13C NMR: (CDCl3) δppm 183.86, 177.58, 167.05, 162.74, 143.92, 133.68, 130.96, 128.86, 127.29, 126.72, 71.26, 61.71, 14.16, 13.96.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In compound (I)[link], the nitro group is disordered in each of the two independent mol­ecules in the asymmetric unit. The occupancies of each disordered part were refined, converging to 0.572 (13) and 0.428 (13) for mol­ecule A, and 0.64 (3) and 0.36 (3) for mol­ecule B. EADP constraints were applied (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) to each nitro group. The C-bound hydrogen atoms on both compounds were fixed geometrically and treated as riding with C—H = 0.95–0.98 Å and refined with Uiso(H) = 1.2Ueq(CH, CH2) or 1.5Ueq(CH3). The O-bound H atom in (V)[link] was found in a difference-Fourier map and refined freely. Four reflections ([\overline{1}]10, 110, [\overline{1}]11 and 11[\overline{1}]) in compound (I)[link] and four reflections (100, [\overline{10}] 4 5, 110 and 011) in compound (V)[link] affected by the beam stop were omitted from the final cycles of refinement because of poor agreement between the observed and calculated intensities. The absolute structure of (I)[link] was indetermin­ate in the present refinement.

Table 3
Experimental details

  (I) (V)
Crystal data
Chemical formula C21H16N2O5 C21H17NO5
Mr 376.36 363.36
Crystal system, space group Monoclinic, Cc Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 16.4968 (10), 14.8697 (9), 16.1836 (9) 8.2862 (4), 23.5895 (11), 8.6219 (4)
β (°) 114.879 (3) 97.728 (2)
V3) 3601.5 (4) 1669.99 (14)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 0.10
Crystal size (mm) 0.29 × 0.24 × 0.22 0.28 × 0.20 × 0.19
 
Data collection
Diffractometer Bruker SMART Breeze CCD Bruker SMART Breeze CCD
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.945, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 45790, 7615, 5596 44252, 4112, 3252
Rint 0.054 0.051
(sin θ/λ)max−1) 0.633 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.158, 1.02 0.051, 0.114, 1.13
No. of reflections 7615 4112
No. of parameters 546 250
No. of restraints 2 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.55, −0.19 0.37, −0.21
Absolute structure Flack x determined using 2257 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.5 (4)
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2018[Bruker (2018). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Ethyl 5-methyl-3-(10-nitroanthracen-9-yl)isoxazole-4-carboxylate (I) top
Crystal data top
C21H16N2O5F(000) = 1568
Mr = 376.36Dx = 1.388 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 16.4968 (10) ÅCell parameters from 7597 reflections
b = 14.8697 (9) Åθ = 2.7–21.0°
c = 16.1836 (9) ŵ = 0.10 mm1
β = 114.879 (3)°T = 100 K
V = 3601.5 (4) Å3Prism, yellow
Z = 80.29 × 0.24 × 0.22 mm
Data collection top
Bruker SMART Breeze CCD
diffractometer
Rint = 0.054
Radiation source: 2 kW sealed X-ray tubeθmax = 26.7°, θmin = 2.7°
φ and ω scansh = 2020
45790 measured reflectionsk = 1818
7615 independent reflectionsl = 2020
5596 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0864P)2 + 2.331P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.158(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.55 e Å3
7615 reflectionsΔρmin = 0.19 e Å3
546 parametersAbsolute structure: Flack x determined using 2257 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.5 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3319 (3)0.2201 (3)0.5466 (2)0.0487 (9)
O20.3808 (2)0.0465 (3)0.3397 (2)0.0459 (9)
O30.4880 (2)0.0385 (3)0.4815 (2)0.0471 (9)
N10.2636 (3)0.2332 (3)0.4569 (3)0.0440 (10)
C10.3269 (3)0.2892 (3)0.2833 (4)0.0392 (11)
H10.3636690.2904940.3469040.047*
C20.3469 (4)0.3427 (4)0.2259 (4)0.0519 (14)
H20.3978510.3807600.2500730.062*
C30.2934 (4)0.3424 (4)0.1320 (4)0.0548 (15)
H30.3080160.3806240.0932100.066*
C40.2203 (4)0.2876 (4)0.0955 (4)0.0471 (13)
H40.1846440.2881560.0316510.056*
C50.0334 (3)0.0476 (3)0.1397 (3)0.0375 (11)
H50.001 (4)0.040 (3)0.083 (4)0.045 (15)*
C60.0166 (4)0.0086 (4)0.1956 (4)0.0447 (13)
H60.030 (4)0.042 (4)0.171 (4)0.042 (15)*
C70.0677 (3)0.0057 (4)0.2910 (3)0.0433 (12)
H70.0545400.0455270.3295700.052*
C80.1361 (3)0.0548 (3)0.3273 (3)0.0363 (11)
H80.1700890.0565810.3914480.044*
C90.2294 (3)0.1746 (3)0.3054 (3)0.0335 (10)
C100.1272 (3)0.1697 (3)0.1202 (3)0.0359 (11)
C110.1972 (3)0.2301 (3)0.1519 (3)0.0354 (11)
C120.2511 (3)0.2315 (3)0.2482 (3)0.0326 (10)
C130.1573 (3)0.1148 (3)0.2714 (3)0.0295 (10)
C140.1042 (3)0.1105 (3)0.1749 (3)0.0325 (10)
C150.2857 (3)0.1785 (3)0.4056 (3)0.0330 (10)
C160.3647 (3)0.1298 (3)0.4562 (3)0.0353 (10)
C170.3904 (3)0.1590 (4)0.5441 (3)0.0404 (12)
C180.4659 (4)0.1363 (4)0.6323 (3)0.0537 (15)
H18A0.5161860.1768660.6427740.081*
H18B0.4845870.0740580.6305030.081*
H18C0.4468940.1431200.6816950.081*
C190.4107 (3)0.0671 (4)0.4186 (3)0.0402 (12)
C200.5375 (4)0.0214 (4)0.4483 (4)0.0517 (14)
H20A0.5565630.0110730.4060870.062*
H20B0.4995760.0728710.4153560.062*
C210.6175 (4)0.0541 (4)0.5297 (4)0.0585 (15)
H21A0.6511420.0967110.5099470.088*
H21B0.5978640.0839940.5720360.088*
H21C0.6558040.0028550.5601460.088*
O40.1027 (18)0.111 (3)0.022 (3)0.072 (6)0.572 (13)
O50.0003 (7)0.1959 (10)0.0102 (7)0.068 (3)0.572 (13)
N20.076 (3)0.156 (2)0.025 (3)0.039 (4)0.572 (13)
O4A0.073 (3)0.105 (4)0.022 (4)0.072 (6)0.428 (13)
O5A0.0259 (10)0.2395 (14)0.0113 (10)0.068 (3)0.428 (13)
N2A0.066 (4)0.178 (3)0.017 (4)0.039 (4)0.428 (13)
O60.4350 (3)0.7239 (3)0.2788 (2)0.0553 (11)
O70.3756 (2)0.5736 (2)0.4917 (2)0.0424 (8)
O80.2920 (2)0.5316 (2)0.3474 (2)0.0422 (8)
N30.4850 (3)0.7577 (3)0.3678 (3)0.0561 (13)
N40.6061 (3)0.7796 (3)0.8043 (3)0.0495 (12)
C220.3713 (4)0.8310 (4)0.4975 (4)0.0506 (14)
H220.3475730.8219070.4335520.061*
C230.3270 (4)0.8841 (4)0.5326 (4)0.0600 (16)
H230.2723920.9114500.4929410.072*
C240.3606 (4)0.8994 (4)0.6269 (4)0.0568 (15)
H240.3284760.9365890.6506090.068*
C250.4393 (4)0.8609 (3)0.6845 (4)0.0506 (14)
H250.4617600.8720320.7480950.061*
C260.6969 (3)0.6606 (4)0.7304 (3)0.0471 (13)
H260.7218910.6695510.7944800.057*
C270.7377 (4)0.6055 (5)0.6938 (5)0.0650 (17)
H270.7920630.5770590.7324520.078*
C280.7018 (4)0.5891 (5)0.6000 (4)0.0635 (17)
H280.7319670.5499900.5758340.076*
C290.6250 (4)0.6284 (4)0.5438 (4)0.0481 (13)
H290.6005290.6154290.4804990.058*
C300.4988 (4)0.7306 (4)0.5209 (3)0.0405 (12)
C310.5696 (3)0.7629 (3)0.7055 (3)0.0364 (11)
C320.4875 (3)0.8051 (3)0.6514 (3)0.0381 (11)
C330.4527 (3)0.7886 (3)0.5551 (3)0.0400 (12)
C340.5802 (3)0.6883 (3)0.5776 (3)0.0349 (11)
C350.6165 (3)0.7057 (3)0.6735 (3)0.0369 (11)
C360.4597 (4)0.7112 (3)0.4208 (3)0.0413 (12)
C370.3956 (3)0.6454 (3)0.3713 (3)0.0370 (11)
C380.3817 (3)0.6569 (4)0.2828 (3)0.0429 (12)
C390.3211 (4)0.6178 (4)0.1946 (3)0.0478 (13)
H39A0.3164850.5527620.2014310.072*
H39B0.3447980.6294730.1493460.072*
H39C0.2618280.6451840.1744530.072*
C400.3545 (3)0.5804 (3)0.4101 (3)0.0365 (11)
C410.2435 (4)0.4683 (4)0.3801 (4)0.0487 (13)
H41A0.2261010.4984710.4247690.058*
H41B0.2822520.4164770.4104790.058*
C420.1625 (4)0.4370 (4)0.3006 (4)0.0563 (15)
H42A0.1801190.4107410.2550140.084*
H42B0.1224590.4880510.2737560.084*
H42C0.1316230.3915080.3205590.084*
O90.5612 (9)0.7525 (10)0.8442 (5)0.075 (5)0.64 (3)
O100.6744 (11)0.8219 (11)0.8389 (6)0.076 (4)0.64 (3)
O9A0.6187 (17)0.7124 (9)0.8578 (8)0.060 (6)0.36 (3)
O10A0.6276 (15)0.8540 (10)0.8356 (9)0.054 (5)0.36 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.052 (2)0.056 (2)0.0267 (19)0.0025 (19)0.0058 (17)0.0110 (15)
O20.045 (2)0.058 (2)0.0280 (19)0.0043 (17)0.0083 (16)0.0063 (15)
O30.037 (2)0.066 (2)0.0312 (19)0.0086 (18)0.0079 (16)0.0030 (17)
N10.044 (2)0.049 (3)0.029 (2)0.006 (2)0.0054 (19)0.0002 (19)
C10.031 (3)0.041 (3)0.038 (3)0.006 (2)0.008 (2)0.003 (2)
C20.044 (3)0.057 (3)0.055 (4)0.015 (3)0.021 (3)0.001 (3)
C30.050 (3)0.069 (4)0.048 (3)0.011 (3)0.023 (3)0.018 (3)
C40.048 (3)0.060 (3)0.031 (3)0.003 (3)0.015 (2)0.006 (2)
C50.031 (3)0.050 (3)0.026 (2)0.009 (2)0.007 (2)0.008 (2)
C60.035 (3)0.053 (3)0.044 (3)0.019 (3)0.015 (2)0.009 (2)
C70.044 (3)0.050 (3)0.039 (3)0.012 (2)0.020 (2)0.001 (2)
C80.037 (3)0.046 (3)0.027 (2)0.004 (2)0.014 (2)0.003 (2)
C90.029 (2)0.040 (3)0.029 (2)0.001 (2)0.0097 (19)0.002 (2)
C100.032 (2)0.049 (3)0.022 (2)0.000 (2)0.0062 (19)0.001 (2)
C110.031 (2)0.042 (3)0.032 (2)0.002 (2)0.012 (2)0.006 (2)
C120.028 (2)0.038 (2)0.030 (2)0.0012 (19)0.0099 (19)0.0026 (19)
C130.029 (2)0.033 (2)0.025 (2)0.0011 (18)0.0104 (19)0.0022 (18)
C140.026 (2)0.043 (3)0.029 (2)0.001 (2)0.0112 (19)0.005 (2)
C150.037 (3)0.035 (3)0.024 (2)0.007 (2)0.011 (2)0.0030 (19)
C160.033 (2)0.043 (3)0.023 (2)0.006 (2)0.0047 (19)0.004 (2)
C170.038 (3)0.047 (3)0.026 (2)0.005 (2)0.004 (2)0.004 (2)
C180.053 (3)0.073 (4)0.019 (2)0.000 (3)0.001 (2)0.007 (2)
C190.041 (3)0.048 (3)0.028 (3)0.008 (2)0.011 (2)0.003 (2)
C200.051 (3)0.060 (4)0.045 (3)0.010 (3)0.021 (3)0.002 (3)
C210.049 (3)0.069 (4)0.050 (4)0.009 (3)0.014 (3)0.009 (3)
O40.100 (19)0.068 (6)0.035 (2)0.004 (14)0.015 (12)0.010 (3)
O50.031 (6)0.118 (10)0.044 (3)0.013 (5)0.007 (4)0.017 (5)
N20.037 (10)0.044 (15)0.025 (7)0.008 (10)0.003 (7)0.018 (9)
O4A0.100 (19)0.068 (6)0.035 (2)0.004 (14)0.015 (12)0.010 (3)
O5A0.031 (6)0.118 (10)0.044 (3)0.013 (5)0.007 (4)0.017 (5)
N2A0.037 (10)0.044 (15)0.025 (7)0.008 (10)0.003 (7)0.018 (9)
O60.065 (3)0.058 (2)0.031 (2)0.017 (2)0.0094 (19)0.0037 (16)
O70.047 (2)0.052 (2)0.0246 (17)0.0098 (17)0.0108 (15)0.0032 (14)
O80.050 (2)0.0442 (19)0.0293 (18)0.0018 (17)0.0132 (16)0.0044 (15)
N30.063 (3)0.058 (3)0.034 (2)0.016 (2)0.008 (2)0.003 (2)
N40.052 (3)0.050 (3)0.032 (2)0.015 (2)0.003 (2)0.006 (2)
C220.045 (3)0.056 (3)0.038 (3)0.005 (3)0.005 (2)0.002 (3)
C230.055 (4)0.053 (3)0.057 (4)0.017 (3)0.010 (3)0.003 (3)
C240.064 (4)0.045 (3)0.060 (4)0.014 (3)0.024 (3)0.002 (3)
C250.061 (4)0.039 (3)0.045 (3)0.005 (3)0.015 (3)0.008 (2)
C260.041 (3)0.059 (3)0.030 (3)0.002 (3)0.004 (2)0.014 (2)
C270.047 (3)0.085 (5)0.058 (4)0.024 (3)0.016 (3)0.016 (3)
C280.058 (4)0.085 (5)0.047 (3)0.026 (3)0.021 (3)0.008 (3)
C290.044 (3)0.067 (4)0.032 (3)0.007 (3)0.014 (2)0.007 (3)
C300.045 (3)0.041 (3)0.029 (3)0.004 (2)0.010 (2)0.000 (2)
C310.042 (3)0.037 (2)0.023 (2)0.008 (2)0.007 (2)0.0019 (19)
C320.042 (3)0.033 (2)0.034 (3)0.005 (2)0.012 (2)0.001 (2)
C330.041 (3)0.038 (3)0.030 (3)0.003 (2)0.004 (2)0.003 (2)
C340.035 (3)0.037 (2)0.027 (2)0.006 (2)0.007 (2)0.0038 (19)
C350.035 (3)0.040 (3)0.028 (2)0.009 (2)0.005 (2)0.005 (2)
C360.048 (3)0.041 (3)0.025 (2)0.004 (2)0.006 (2)0.006 (2)
C370.039 (3)0.039 (3)0.023 (2)0.005 (2)0.003 (2)0.0026 (19)
C380.043 (3)0.043 (3)0.032 (3)0.002 (2)0.006 (2)0.002 (2)
C390.052 (3)0.056 (3)0.028 (3)0.007 (3)0.009 (2)0.002 (2)
C400.038 (3)0.035 (3)0.034 (3)0.010 (2)0.012 (2)0.002 (2)
C410.051 (3)0.057 (3)0.042 (3)0.004 (3)0.024 (3)0.001 (2)
C420.050 (3)0.066 (4)0.054 (4)0.002 (3)0.023 (3)0.010 (3)
O90.093 (9)0.100 (9)0.038 (4)0.031 (8)0.032 (5)0.006 (4)
O100.065 (7)0.104 (8)0.044 (4)0.036 (7)0.008 (5)0.009 (5)
O9A0.100 (16)0.045 (7)0.032 (6)0.009 (7)0.023 (7)0.007 (5)
O10A0.048 (10)0.047 (8)0.048 (7)0.023 (7)0.003 (7)0.014 (5)
Geometric parameters (Å, º) top
O1—N11.428 (5)O6—N31.418 (6)
O1—C171.338 (7)O6—C381.349 (7)
O2—C191.199 (6)O7—C401.219 (6)
O3—C191.324 (6)O8—C401.319 (6)
O3—C201.455 (7)O8—C411.470 (6)
N1—C151.318 (6)N3—C361.301 (7)
C1—H10.9500N4—C311.474 (6)
C1—C21.365 (7)N4—O91.237 (9)
C1—C121.423 (7)N4—O101.203 (11)
C2—H20.9500N4—O9A1.281 (13)
C2—C31.401 (8)N4—O10A1.206 (14)
C3—H30.9500C22—H220.9500
C3—C41.366 (8)C22—C231.352 (8)
C4—H40.9500C22—C331.420 (8)
C4—C111.416 (7)C23—H230.9500
C5—H50.86 (6)C23—C241.406 (9)
C5—C61.343 (7)C24—H240.9500
C5—C141.416 (7)C24—C251.366 (9)
C6—H60.85 (6)C25—H250.9500
C6—C71.415 (7)C25—C321.403 (8)
C7—H70.9500C26—H260.9500
C7—C81.367 (7)C26—C271.346 (9)
C8—H80.9500C26—C351.425 (7)
C8—C131.415 (6)C27—H270.9500
C9—C121.408 (7)C27—C281.399 (9)
C9—C131.399 (6)C28—H280.9500
C9—C151.493 (6)C28—C291.343 (8)
C10—C111.380 (7)C29—H290.9500
C10—C141.407 (7)C29—C341.406 (7)
C10—N21.43 (5)C30—C331.408 (8)
C10—N2A1.55 (6)C30—C341.416 (7)
C11—C121.433 (6)C30—C361.498 (7)
C13—C141.436 (6)C31—C321.413 (7)
C15—C161.413 (7)C31—C351.388 (7)
C16—C171.373 (7)C32—C331.438 (7)
C16—C191.485 (7)C34—C351.433 (7)
C17—C181.485 (7)C36—C371.415 (7)
C18—H18A0.9800C37—C381.362 (7)
C18—H18B0.9800C37—C401.465 (7)
C18—H18C0.9800C38—C391.474 (7)
C20—H20A0.9900C39—H39A0.9800
C20—H20B0.9900C39—H39B0.9800
C20—C211.500 (8)C39—H39C0.9800
C21—H21A0.9800C41—H41A0.9900
C21—H21B0.9800C41—H41B0.9900
C21—H21C0.9800C41—C421.488 (8)
O4—N21.22 (6)C42—H42A0.9800
O5—N21.29 (4)C42—H42B0.9800
O4A—N2A1.27 (9)C42—H42C0.9800
O5A—N2A1.11 (4)
C17—O1—N1109.5 (3)O5A—N2A—O4A131 (6)
C19—O3—C20114.9 (4)C38—O6—N3109.0 (4)
C15—N1—O1104.3 (4)C40—O8—C41116.3 (4)
C2—C1—H1119.9C36—N3—O6105.7 (4)
C2—C1—C12120.2 (5)O9—N4—C31116.7 (5)
C12—C1—H1119.9O10—N4—C31118.0 (6)
C1—C2—H2119.5O10—N4—O9125.2 (7)
C1—C2—C3120.9 (5)O9A—N4—C31118.6 (6)
C3—C2—H2119.5O10A—N4—C31121.6 (8)
C2—C3—H3119.7O10A—N4—O9A119.7 (9)
C4—C3—C2120.6 (5)C23—C22—H22119.6
C4—C3—H3119.7C23—C22—C33120.9 (5)
C3—C4—H4119.7C33—C22—H22119.6
C3—C4—C11120.7 (5)C22—C23—H23119.5
C11—C4—H4119.7C22—C23—C24121.0 (5)
C6—C5—H5115 (4)C24—C23—H23119.5
C6—C5—C14120.7 (5)C23—C24—H24120.0
C14—C5—H5124 (4)C25—C24—C23120.0 (6)
C5—C6—H6116 (4)C25—C24—H24120.0
C5—C6—C7121.2 (5)C24—C25—H25119.4
C7—C6—H6122 (4)C24—C25—C32121.1 (5)
C6—C7—H7120.2C32—C25—H25119.4
C8—C7—C6119.6 (5)C27—C26—H26119.9
C8—C7—H7120.2C27—C26—C35120.2 (5)
C7—C8—H8119.3C35—C26—H26119.9
C7—C8—C13121.4 (4)C26—C27—H27119.3
C13—C8—H8119.3C26—C27—C28121.5 (5)
C12—C9—C15118.5 (4)C28—C27—H27119.3
C13—C9—C12122.2 (4)C27—C28—H28119.8
C13—C9—C15119.3 (4)C29—C28—C27120.4 (6)
C11—C10—C14125.3 (4)C29—C28—H28119.8
C11—C10—N2121.3 (18)C28—C29—H29119.6
C11—C10—N2A115 (2)C28—C29—C34120.9 (5)
C14—C10—N2113.2 (17)C34—C29—H29119.6
C14—C10—N2A120 (2)C33—C30—C34122.7 (4)
C4—C11—C12118.7 (4)C33—C30—C36119.0 (5)
C10—C11—C4124.3 (4)C34—C30—C36118.3 (5)
C10—C11—C12117.0 (4)C32—C31—N4116.4 (4)
C1—C12—C11118.9 (4)C35—C31—N4118.1 (4)
C9—C12—C1121.6 (4)C35—C31—C32125.5 (4)
C9—C12—C11119.5 (4)C25—C32—C31125.2 (5)
C8—C13—C14117.8 (4)C25—C32—C33118.9 (5)
C9—C13—C8123.2 (4)C31—C32—C33115.9 (5)
C9—C13—C14119.0 (4)C22—C33—C32118.1 (5)
C5—C14—C13119.3 (4)C30—C33—C22122.2 (5)
C10—C14—C5123.7 (4)C30—C33—C32119.7 (5)
C10—C14—C13117.0 (4)C29—C34—C30122.7 (4)
N1—C15—C9119.8 (4)C29—C34—C35119.1 (4)
N1—C15—C16112.6 (4)C30—C34—C35118.2 (5)
C16—C15—C9127.6 (4)C26—C35—C34117.8 (5)
C15—C16—C19126.2 (4)C31—C35—C26124.1 (4)
C17—C16—C15104.2 (4)C31—C35—C34118.0 (4)
C17—C16—C19129.4 (4)N3—C36—C30119.9 (5)
O1—C17—C16109.5 (4)N3—C36—C37111.5 (4)
O1—C17—C18116.7 (4)C37—C36—C30128.6 (5)
C16—C17—C18133.8 (5)C36—C37—C40125.7 (4)
C17—C18—H18A109.5C38—C37—C36105.3 (5)
C17—C18—H18B109.5C38—C37—C40129.0 (5)
C17—C18—H18C109.5O6—C38—C37108.6 (4)
H18A—C18—H18B109.5O6—C38—C39115.7 (4)
H18A—C18—H18C109.5C37—C38—C39135.6 (5)
H18B—C18—H18C109.5C38—C39—H39A109.5
O2—C19—O3124.6 (5)C38—C39—H39B109.5
O2—C19—C16123.0 (5)C38—C39—H39C109.5
O3—C19—C16112.3 (4)H39A—C39—H39B109.5
O3—C20—H20A110.3H39A—C39—H39C109.5
O3—C20—H20B110.3H39B—C39—H39C109.5
O3—C20—C21107.3 (5)O7—C40—O8124.2 (5)
H20A—C20—H20B108.5O7—C40—C37123.0 (5)
C21—C20—H20A110.3O8—C40—C37112.7 (4)
C21—C20—H20B110.3O8—C41—H41A110.0
C20—C21—H21A109.5O8—C41—H41B110.0
C20—C21—H21B109.5O8—C41—C42108.4 (5)
C20—C21—H21C109.5H41A—C41—H41B108.4
H21A—C21—H21B109.5C42—C41—H41A110.0
H21A—C21—H21C109.5C42—C41—H41B110.0
H21B—C21—H21C109.5C41—C42—H42A109.5
O4—N2—C10123 (3)C41—C42—H42B109.5
O4—N2—O5122 (4)C41—C42—H42C109.5
O5—N2—C10116 (3)H42A—C42—H42B109.5
O4A—N2A—C10108 (3)H42A—C42—H42C109.5
O5A—N2A—C10121 (5)H42B—C42—H42C109.5
O1—N1—C15—C9179.2 (4)N2A—C10—C14—C59 (3)
O1—N1—C15—C160.1 (5)N2A—C10—C14—C13172 (2)
N1—O1—C17—C160.1 (6)O6—N3—C36—C30179.1 (5)
N1—O1—C17—C18179.4 (5)O6—N3—C36—C371.3 (6)
N1—C15—C16—C170.1 (6)N3—O6—C38—C370.5 (6)
N1—C15—C16—C19176.0 (5)N3—O6—C38—C39176.6 (5)
C1—C2—C3—C40.7 (9)N3—C36—C37—C381.6 (6)
C2—C1—C12—C9179.1 (5)N3—C36—C37—C40178.6 (5)
C2—C1—C12—C110.6 (7)N4—C31—C32—C250.1 (7)
C2—C3—C4—C110.0 (9)N4—C31—C32—C33179.7 (4)
C3—C4—C11—C10176.7 (5)N4—C31—C35—C261.3 (7)
C3—C4—C11—C121.0 (8)N4—C31—C35—C34179.0 (4)
C4—C11—C12—C11.2 (7)C22—C23—C24—C250.4 (10)
C4—C11—C12—C9179.8 (5)C23—C22—C33—C30177.8 (6)
C5—C6—C7—C80.6 (8)C23—C22—C33—C321.1 (8)
C6—C5—C14—C10178.2 (5)C23—C24—C25—C320.6 (9)
C6—C5—C14—C131.0 (7)C24—C25—C32—C31179.5 (5)
C6—C7—C8—C130.2 (8)C24—C25—C32—C330.1 (8)
C7—C8—C13—C9176.8 (5)C25—C32—C33—C220.9 (7)
C7—C8—C13—C140.3 (7)C25—C32—C33—C30178.0 (5)
C8—C13—C14—C50.2 (6)C26—C27—C28—C290.1 (11)
C8—C13—C14—C10179.0 (4)C27—C26—C35—C31179.3 (5)
C9—C13—C14—C5177.5 (4)C27—C26—C35—C341.6 (8)
C9—C13—C14—C101.7 (6)C27—C28—C29—C341.6 (10)
C9—C15—C16—C17179.1 (5)C28—C29—C34—C30179.5 (5)
C9—C15—C16—C193.2 (8)C28—C29—C34—C351.5 (8)
C10—C11—C12—C1176.6 (5)C29—C34—C35—C260.1 (7)
C10—C11—C12—C92.0 (7)C29—C34—C35—C31177.9 (4)
C11—C10—C14—C5178.2 (5)C30—C34—C35—C26178.0 (4)
C11—C10—C14—C131.0 (7)C30—C34—C35—C310.1 (6)
C11—C10—N2—O477 (4)C30—C36—C37—C38178.9 (5)
C11—C10—N2—O5101 (3)C30—C36—C37—C400.9 (9)
C11—C10—N2A—O4A115 (4)C31—C32—C33—C22178.7 (5)
C11—C10—N2A—O5A64 (6)C31—C32—C33—C302.3 (7)
C12—C1—C2—C30.4 (9)C32—C31—C35—C26176.7 (5)
C12—C9—C13—C8177.7 (4)C32—C31—C35—C340.9 (7)
C12—C9—C13—C140.7 (7)C33—C22—C23—C240.5 (10)
C12—C9—C15—N191.6 (6)C33—C30—C34—C29178.1 (5)
C12—C9—C15—C1687.6 (6)C33—C30—C34—C350.1 (7)
C13—C9—C12—C1177.3 (5)C33—C30—C36—N395.1 (7)
C13—C9—C12—C111.3 (7)C33—C30—C36—C3785.4 (7)
C13—C9—C15—N188.6 (6)C34—C30—C33—C22179.7 (5)
C13—C9—C15—C1692.3 (6)C34—C30—C33—C321.4 (8)
C14—C5—C6—C71.2 (8)C34—C30—C36—N385.9 (6)
C14—C10—C11—C4178.5 (5)C34—C30—C36—C3793.6 (7)
C14—C10—C11—C120.8 (7)C35—C26—C27—C281.5 (10)
C14—C10—N2—O497 (4)C35—C31—C32—C25178.2 (5)
C14—C10—N2—O585 (3)C35—C31—C32—C332.2 (7)
C14—C10—N2A—O4A71 (5)C36—C30—C33—C221.4 (8)
C14—C10—N2A—O5A110 (5)C36—C30—C33—C32177.5 (4)
C15—C9—C12—C12.6 (7)C36—C30—C34—C290.8 (7)
C15—C9—C12—C11178.9 (4)C36—C30—C34—C35178.8 (4)
C15—C9—C13—C82.1 (7)C36—C37—C38—O61.2 (6)
C15—C9—C13—C14179.2 (4)C36—C37—C38—C39175.0 (6)
C15—C16—C17—O10.1 (5)C36—C37—C40—O73.9 (8)
C15—C16—C17—C18179.3 (6)C36—C37—C40—O8175.1 (5)
C15—C16—C19—O25.4 (8)C38—O6—N3—C360.5 (6)
C15—C16—C19—O3173.5 (4)C38—C37—C40—O7176.3 (5)
C17—O1—N1—C150.0 (5)C38—C37—C40—O84.6 (7)
C17—C16—C19—O2179.8 (5)C40—O8—C41—C42166.0 (4)
C17—C16—C19—O31.2 (7)C40—C37—C38—O6179.0 (5)
C19—O3—C20—C21174.3 (5)C40—C37—C38—C394.7 (10)
C19—C16—C17—O1175.8 (5)C41—O8—C40—O72.6 (7)
C19—C16—C17—C185.1 (10)C41—O8—C40—C37176.5 (4)
C20—O3—C19—O20.5 (7)O9—N4—C31—C3263.2 (11)
C20—O3—C19—C16178.4 (4)O9—N4—C31—C35115.0 (11)
N2—C10—C11—C44.9 (18)O10—N4—C31—C32113.3 (12)
N2—C10—C11—C12172.8 (17)O10—N4—C31—C3568.5 (13)
N2—C10—C14—C54.1 (18)O9A—N4—C31—C32120.0 (14)
N2—C10—C14—C13175.1 (17)O9A—N4—C31—C3558.2 (15)
N2A—C10—C11—C48 (3)O10A—N4—C31—C3263.1 (16)
N2A—C10—C11—C12174 (2)O10A—N4—C31—C35118.7 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5i0.952.463.366 (12)159
C3—H3···O7ii0.952.443.339 (6)158
C7—H7···O4iii0.952.403.24 (4)147
C7—H7···O4Aiii0.952.463.34 (6)154
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z1/2; (iii) x, y, z+1/2.
Ethyl 3-(9-hydroxy-10-oxo-9,10-dihydroanthracen-9-yl)-5-methylisoxazole-4-carboxylate (V) top
Crystal data top
C21H17NO5F(000) = 760
Mr = 363.36Dx = 1.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2862 (4) ÅCell parameters from 9893 reflections
b = 23.5895 (11) Åθ = 2.5–28.3°
c = 8.6219 (4) ŵ = 0.10 mm1
β = 97.728 (2)°T = 100 K
V = 1669.99 (14) Å3Prism, yellow
Z = 40.28 × 0.20 × 0.19 mm
Data collection top
Bruker SMART Breeze CCD
diffractometer
3252 reflections with I > 2σ(I)
Radiation source: 2 kW sealed X-ray tubeRint = 0.051
φ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 1011
Tmin = 0.945, Tmax = 1.000k = 3131
44252 measured reflectionsl = 1111
4112 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0241P)2 + 1.7289P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
4112 reflectionsΔρmax = 0.37 e Å3
250 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65863 (16)0.55415 (6)0.82793 (16)0.0252 (3)
O20.18140 (16)0.55228 (6)1.16490 (15)0.0203 (3)
O30.44673 (16)0.68686 (5)0.90343 (16)0.0217 (3)
O40.37570 (18)0.77723 (6)0.93929 (18)0.0306 (3)
O50.03664 (16)0.70944 (5)1.19895 (16)0.0226 (3)
N10.08101 (19)0.65146 (6)1.19429 (19)0.0212 (3)
C10.0870 (2)0.57205 (7)0.8333 (2)0.0203 (4)
H10.0016640.5786260.8903990.024*
C20.0569 (2)0.55858 (8)0.6759 (2)0.0228 (4)
H2A0.0521820.5557880.6257510.027*
C30.1853 (2)0.54909 (8)0.5906 (2)0.0240 (4)
H30.1646990.5411770.4817040.029*
C40.3430 (2)0.55131 (7)0.6659 (2)0.0218 (4)
H40.4311050.5437960.6088190.026*
C50.7367 (2)0.57793 (8)1.1470 (2)0.0220 (4)
H50.8235470.5684791.0902620.026*
C60.7694 (2)0.59175 (8)1.3033 (2)0.0247 (4)
H60.8785860.5921101.3538770.030*
C70.6426 (2)0.60514 (8)1.3866 (2)0.0243 (4)
H70.6652190.6144431.4945050.029*
C80.4833 (2)0.60507 (8)1.3136 (2)0.0205 (4)
H80.3972130.6143881.3715340.025*
C90.2716 (2)0.59122 (7)1.0817 (2)0.0165 (3)
C100.5456 (2)0.56479 (7)0.9026 (2)0.0189 (4)
C110.5762 (2)0.57770 (7)1.0712 (2)0.0183 (4)
C120.4490 (2)0.59136 (7)1.1556 (2)0.0172 (4)
C130.2460 (2)0.57606 (7)0.9088 (2)0.0172 (4)
C140.3747 (2)0.56448 (7)0.8250 (2)0.0182 (4)
C150.1976 (2)0.64929 (7)1.1067 (2)0.0170 (4)
C160.2349 (2)0.70473 (7)1.0516 (2)0.0181 (4)
C170.1296 (2)0.73971 (8)1.1146 (2)0.0199 (4)
C180.0996 (2)0.80170 (8)1.1084 (2)0.0253 (4)
H18A0.0086450.8107451.1659950.038*
H18B0.0726910.8136530.9991470.038*
H18C0.1975930.8216741.1560780.038*
C190.3576 (2)0.72714 (8)0.9602 (2)0.0194 (4)
C200.5726 (2)0.70681 (9)0.8136 (2)0.0263 (4)
H20A0.5344680.7415490.7554840.032*
H20B0.5935540.6775310.7365460.032*
C210.7273 (3)0.71933 (11)0.9198 (3)0.0365 (5)
H21A0.8120880.7306030.8569130.055*
H21B0.7625030.6853660.9805180.055*
H21C0.7083310.7502130.9911840.055*
H20.232 (3)0.5184 (12)1.162 (3)0.043 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0224 (7)0.0278 (7)0.0271 (7)0.0023 (6)0.0097 (6)0.0023 (6)
O20.0205 (7)0.0183 (6)0.0235 (7)0.0023 (5)0.0081 (5)0.0017 (5)
O30.0199 (7)0.0209 (6)0.0256 (7)0.0025 (5)0.0070 (5)0.0004 (5)
O40.0339 (8)0.0194 (7)0.0397 (9)0.0005 (6)0.0090 (7)0.0073 (6)
O50.0204 (7)0.0214 (7)0.0264 (7)0.0033 (5)0.0049 (5)0.0018 (5)
N10.0187 (8)0.0192 (8)0.0262 (8)0.0018 (6)0.0047 (6)0.0021 (6)
C10.0212 (9)0.0180 (8)0.0222 (9)0.0024 (7)0.0043 (7)0.0000 (7)
C20.0231 (10)0.0196 (9)0.0242 (10)0.0046 (7)0.0021 (8)0.0008 (7)
C30.0342 (11)0.0183 (9)0.0190 (9)0.0041 (8)0.0017 (8)0.0016 (7)
C40.0285 (10)0.0162 (9)0.0216 (9)0.0018 (7)0.0073 (8)0.0011 (7)
C50.0169 (9)0.0218 (9)0.0279 (10)0.0000 (7)0.0047 (7)0.0079 (7)
C60.0172 (9)0.0256 (10)0.0300 (11)0.0034 (7)0.0021 (8)0.0088 (8)
C70.0262 (10)0.0244 (9)0.0212 (9)0.0020 (8)0.0009 (8)0.0029 (7)
C80.0206 (9)0.0199 (9)0.0215 (9)0.0005 (7)0.0045 (7)0.0012 (7)
C90.0156 (8)0.0162 (8)0.0185 (9)0.0022 (6)0.0050 (7)0.0007 (6)
C100.0200 (9)0.0147 (8)0.0229 (9)0.0002 (7)0.0057 (7)0.0030 (7)
C110.0178 (9)0.0158 (8)0.0214 (9)0.0011 (7)0.0034 (7)0.0037 (7)
C120.0168 (9)0.0135 (8)0.0210 (9)0.0002 (6)0.0020 (7)0.0027 (6)
C130.0200 (9)0.0130 (8)0.0190 (9)0.0020 (6)0.0040 (7)0.0002 (6)
C140.0213 (9)0.0135 (8)0.0202 (9)0.0011 (7)0.0047 (7)0.0008 (6)
C150.0143 (8)0.0196 (8)0.0168 (8)0.0013 (7)0.0004 (7)0.0002 (7)
C160.0161 (9)0.0186 (8)0.0187 (9)0.0005 (7)0.0012 (7)0.0004 (7)
C170.0182 (9)0.0216 (9)0.0184 (9)0.0000 (7)0.0028 (7)0.0008 (7)
C180.0282 (10)0.0208 (9)0.0259 (10)0.0047 (8)0.0002 (8)0.0016 (8)
C190.0187 (9)0.0205 (9)0.0178 (9)0.0010 (7)0.0025 (7)0.0014 (7)
C200.0250 (10)0.0303 (10)0.0253 (10)0.0049 (8)0.0094 (8)0.0022 (8)
C210.0219 (11)0.0466 (13)0.0410 (13)0.0056 (9)0.0040 (9)0.0122 (10)
Geometric parameters (Å, º) top
O1—C101.231 (2)C7—C81.383 (3)
O2—C91.436 (2)C8—H80.9500
O2—H20.91 (3)C8—C121.392 (3)
O3—C191.336 (2)C9—C121.521 (2)
O3—C201.458 (2)C9—C131.520 (2)
O4—C191.208 (2)C9—C151.528 (2)
O5—N11.418 (2)C10—C111.474 (3)
O5—C171.336 (2)C10—C141.483 (3)
N1—C151.304 (2)C11—C121.397 (3)
C1—H10.9500C13—C141.393 (3)
C1—C21.384 (3)C15—C161.439 (2)
C1—C131.392 (3)C16—C171.365 (3)
C2—H2A0.9500C16—C191.466 (3)
C2—C31.391 (3)C17—C181.483 (3)
C3—H30.9500C18—H18A0.9800
C3—C41.380 (3)C18—H18B0.9800
C4—H40.9500C18—H18C0.9800
C4—C141.397 (3)C20—H20A0.9900
C5—H50.9500C20—H20B0.9900
C5—C61.377 (3)C20—C211.501 (3)
C5—C111.401 (3)C21—H21A0.9800
C6—H60.9500C21—H21B0.9800
C6—C71.387 (3)C21—H21C0.9800
C7—H70.9500
C9—O2—H2106.1 (16)C8—C12—C9118.00 (16)
C19—O3—C20115.78 (15)C8—C12—C11119.62 (17)
C17—O5—N1109.24 (14)C11—C12—C9122.37 (16)
C15—N1—O5105.61 (14)C1—C13—C9118.24 (16)
C2—C1—H1119.7C1—C13—C14119.11 (17)
C2—C1—C13120.57 (18)C14—C13—C9122.62 (16)
C13—C1—H1119.7C4—C14—C10119.05 (17)
C1—C2—H2A119.8C13—C14—C4119.83 (17)
C1—C2—C3120.38 (18)C13—C14—C10121.11 (16)
C3—C2—H2A119.8N1—C15—C9117.35 (15)
C2—C3—H3120.4N1—C15—C16111.38 (16)
C4—C3—C2119.28 (18)C16—C15—C9131.27 (16)
C4—C3—H3120.4C15—C16—C19134.48 (17)
C3—C4—H4119.6C17—C16—C15103.91 (16)
C3—C4—C14120.74 (18)C17—C16—C19121.48 (16)
C14—C4—H4119.6O5—C17—C16109.86 (16)
C6—C5—H5119.8O5—C17—C18116.12 (17)
C6—C5—C11120.49 (18)C16—C17—C18134.02 (18)
C11—C5—H5119.8C17—C18—H18A109.5
C5—C6—H6120.1C17—C18—H18B109.5
C5—C6—C7119.80 (18)C17—C18—H18C109.5
C7—C6—H6120.1H18A—C18—H18B109.5
C6—C7—H7119.8H18A—C18—H18C109.5
C8—C7—C6120.49 (18)H18B—C18—H18C109.5
C8—C7—H7119.8O3—C19—C16113.44 (15)
C7—C8—H8119.9O4—C19—O3123.74 (18)
C7—C8—C12120.15 (18)O4—C19—C16122.82 (18)
C12—C8—H8119.9O3—C20—H20A109.5
O2—C9—C12109.31 (14)O3—C20—H20B109.5
O2—C9—C13109.03 (14)O3—C20—C21110.68 (17)
O2—C9—C15104.91 (14)H20A—C20—H20B108.1
C12—C9—C15108.81 (14)C21—C20—H20A109.5
C13—C9—C12114.27 (15)C21—C20—H20B109.5
C13—C9—C15110.09 (14)C20—C21—H21A109.5
O1—C10—C11121.06 (17)C20—C21—H21B109.5
O1—C10—C14120.73 (17)C20—C21—H21C109.5
C11—C10—C14118.21 (16)H21A—C21—H21B109.5
C5—C11—C10119.19 (17)H21A—C21—H21C109.5
C12—C11—C5119.44 (17)H21B—C21—H21C109.5
C12—C11—C10121.35 (16)
O1—C10—C11—C50.1 (3)C9—C15—C16—C17179.04 (17)
O1—C10—C11—C12178.18 (16)C9—C15—C16—C193.3 (3)
O1—C10—C14—C40.7 (3)C10—C11—C12—C8177.95 (16)
O1—C10—C14—C13179.53 (16)C10—C11—C12—C92.8 (3)
O2—C9—C12—C857.8 (2)C11—C5—C6—C70.5 (3)
O2—C9—C12—C11121.43 (17)C11—C10—C14—C4178.84 (16)
O2—C9—C13—C154.2 (2)C11—C10—C14—C130.0 (2)
O2—C9—C13—C14123.89 (17)C12—C9—C13—C1176.78 (15)
O2—C9—C15—N11.7 (2)C12—C9—C13—C141.3 (2)
O2—C9—C15—C16179.40 (17)C12—C9—C15—N1115.21 (17)
O5—N1—C15—C9179.43 (14)C12—C9—C15—C1663.7 (2)
O5—N1—C15—C160.30 (19)C13—C1—C2—C30.3 (3)
N1—O5—C17—C160.41 (19)C13—C9—C12—C8179.71 (15)
N1—O5—C17—C18179.49 (15)C13—C9—C12—C111.0 (2)
N1—C15—C16—C170.1 (2)C13—C9—C15—N1118.84 (17)
N1—C15—C16—C19175.66 (19)C13—C9—C15—C1662.2 (2)
C1—C2—C3—C42.3 (3)C14—C10—C11—C5179.66 (16)
C1—C13—C14—C42.6 (3)C14—C10—C11—C122.3 (2)
C1—C13—C14—C10176.28 (16)C15—C9—C12—C856.2 (2)
C2—C1—C13—C9179.77 (16)C15—C9—C12—C11124.52 (17)
C2—C1—C13—C142.1 (3)C15—C9—C13—C160.4 (2)
C2—C3—C4—C141.8 (3)C15—C9—C13—C14121.53 (17)
C3—C4—C14—C10178.25 (17)C15—C16—C17—O50.22 (19)
C3—C4—C14—C130.6 (3)C15—C16—C17—C18179.7 (2)
C5—C6—C7—C80.4 (3)C15—C16—C19—O36.9 (3)
C5—C11—C12—C80.1 (3)C15—C16—C19—O4172.96 (19)
C5—C11—C12—C9179.15 (16)C17—O5—N1—C150.44 (19)
C6—C5—C11—C10177.76 (17)C17—C16—C19—O3178.00 (16)
C6—C5—C11—C120.3 (3)C17—C16—C19—O42.2 (3)
C6—C7—C8—C120.2 (3)C19—O3—C20—C2186.7 (2)
C7—C8—C12—C9179.26 (16)C19—C16—C17—O5176.64 (15)
C7—C8—C12—C110.0 (3)C19—C16—C17—C183.2 (3)
C9—C13—C14—C4179.41 (16)C20—O3—C19—O40.8 (3)
C9—C13—C14—C101.7 (3)C20—O3—C19—C16179.03 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.91 (3)1.93 (3)2.8359 (19)176 (2)
Symmetry code: (i) x+1, y+1, z+2.
 

Footnotes

Current address: Elite Source One Nutritional Services, Missoula, MT 59801, USA.

Funding information

The authors thank the University of Montana for grant No. 325490.

References

First citationBansal, R. C., Eisenbraun, E. J. & Ryba, R. J. (1987). Org. Prep. Proced. Int. 19, 258–260.  CrossRef CAS Web of Science Google Scholar
First citationBarker, N. M., Krause, J. A. & Zhang, P. (2019). CSD Communication (refcode COBWEY). CCDC, Cambridge, England.  Google Scholar
First citationBruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-J., Yang, S.-C., Tsai, C.-C., Chang, K.-C., Chuang, W.-H., Chu, W.-L., Kovalev, V. & Chung, W.-S. (2015). Chem. Asian J. 10, 1025–1034.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuncan, N. S., Beall, H. D., Kearns, A. K., Li, C. & Natale, N. R. (2014). Acta Cryst. E70, o315–o316.  CSD CrossRef IUCr Journals Google Scholar
First citationForensi, S., Stopin, A., de Leo, F., Wouters, J. & Bonifazi, D. (2020). Tetrahedron, 76, 131299.  Web of Science CSD CrossRef Google Scholar
First citationGlagovich, N. M., Foss, P. C. D., Michalewski, O., Reed, E. M., Strathearn, K. E., Weiner, Y. F., Crundwell, G., Updegraff, J. B., Zeller, M. & Hunter, A. D. (2004). Acta Cryst. E60, o2125–o2126.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671–1680.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHan, X., Twamley, B. & Natale, N. R. (2003). J. Heterocycl. Chem. 40, 539–545.  Web of Science CSD CrossRef CAS Google Scholar
First citationHoffend, C., Schickedanz, K., Bolte, M., Lerner, H.-W. & Wagner, M. (2013). Tetrahedron, 69, 7073–7081.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlaper, M., Wessig, P. & Linker, T. (2016). Chem. Commun. 52, 1210–1213.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, C., Campbell, M. J., Weaver, M. J., Duncan, N. S., Hunting, J. L. & Natale, N. R. (2013). Acta Cryst. E69, o1804–o1805.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, C., Twamley, B. & Natale, N. R. (2006). Acta Cryst. E62, o854–o856.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMao, X., Zhang, J., Wang, X., Zhang, H., Wei, P., Sung, H. H. Y., Williams, I. D., Feng, X., Ni, X.-L., Redshaw, C., Elsegood, M. R. J., Lam, J. W. Y. & Tang, B. Z. (2021). J. Org. Chem. 86, 7359–7369.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMosher, M. D., Natale, N. R. & Vij, A. (1996). Acta Cryst. C52, 2513–2515.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNatale, N. R., Rider, K. C., Burkhart, D. J., Li, C., McKenzie, A. R. & Nelson, J. K. (2010). ARKIVOC, part (viii), pp. 97–107.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPullella, G. A., Wdowiak, A. P., Sykes, M. L., Lucantoni, L., Sukhoverkov, K. V., Zulfiqar, B., Sobolev, A. N., West, N. P., Mylne, J. S., Avery, V. M. & Piggott, M. J. (2019). Org. Lett. 21, 5519–5523.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRoszak, A. & Engelen, B. (1990). Acta Cryst. C46, 240–243.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilverman, R. B. (2002). Organic Chemistry of Enzyme-catalyzed Reactions, 2nd ed, pp. 227–239. San Diego: Academic Press.  Google Scholar
First citationSilverman, R. B. & Holladay, M. W. (2014). Organic Chemistry of Drug Design and Drug Action, pp. 368–373. San Diego: Academic Press.  Google Scholar
First citationSkrzat, Z. & Roszak, A. (1986). Acta Cryst. C42, 1194–1196.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStepovik, L. P., Malysheva, Y. B. & Fukin, G. K. (2015). Russ. J. Gen. Chem. 85, 1401–1411.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrotter, J. (1959). Acta Cryst. 12, 237–242.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWeaver, M. J., Campbell, M. J., Li, C. & Natale, N. R. (2020). Acta Cryst. E76, 1818–1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWeaver, M. J., Kearns, A. K., Stump, S., Li, C., Gajewski, M. P., Rider, K. C., Backos, D. S., Reigan, P. R., Beall, H. D. & Natale, N. R. (2015). Bioorg. Med. Chem. Lett. 25, 1765–1770.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWeaver, M. J., Stump, S., Campbell, M. J., Backos, D. S., Li, C., Reigan, P., Adams, E., Beall, H. D. & Natale, N. R. (2020). Bioorg. Med. Chem. 28, 115781.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds