research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses, crystal structures and properties of tetra­kis­(3-methyl­pyridine-κN)bis­­(iso­thio­cyanato-κN)manganese(II) and tetra­kis­(3-methyl­pyridine-κN)bis­­(iso­thio­cyanato-κN)iron(II)

crossmark logo

aInstitute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Kraków, Poland, and bInstitute of Inorganic Chemistry, University of Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 May 2022; accepted 23 June 2022; online 30 June 2022)

The reaction of Mn(NCS)2 or Fe(NCS)2 with 3-methyl­pyridine (C6H7N) leads to the formation of two isostructural compounds with compositions [Mn(NCS)2(C6H7N)4] (1) and [Fe(NCS)2(C6H7N)4] (2). IR spectroscopic investigations indicate that only terminally coordinated thio­cyanate anions are present. This is confirmed by single-crystal structure analysis, which shows that their crystal structures consist of discrete centrosymmetric complexes, in which the metal cations are octa­hedrally coordinated by two N-bonded thio­cyanate anions and four 3-methyl­pyridine ligands. X-ray powder diffraction (XRPD) proves that pure samples have been obtained. Thermogravimetric measurements show that decomposition starts at about 90°C and that the two coligands are removed in one step for 1 whereas for 2 no clearly resolved steps are visible. XRPD measurements of the residue obtained after the first mass loss of 1 show that a new and unknown crystalline compound has been formed.

1. Chemical context

For many years we and others have been inter­ested in the synthesis of coordination compounds based on thio­cyanate anions. In this context, we are especially inter­ested in compounds where paramagnetic metal cations are linked by the anionic ligands into networks, because they can show inter­esting magnetic properties (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]; Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]). Unfortunately, the synthesis of such compounds is sometimes difficult to achieve, because metal cations such as, for example MnII, FeII, CoII or NiII are not very chalcophilic and prefer to coordinate only to the terminal thio­cyanate N atom. With mono-coordinating ligands this leads to the formation of discrete complexes instead of the desired networks. In several cases, this problem can be solved by using discrete complexes as precursors that on heating lose their coligands stepwise, which can lead to the desired compounds with bridging coordination (Werner et al., 2015a[Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3236-3245.]; Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]).

[Scheme 1]

In the past, many such compounds were prepared following this route, using predominantly pyridine-based ligands that are substituted at the 4-position. In the course of our systematic work, we became inter­ested in 3-methyl­pyridine (3-picoline; C6H7N) as a coligand. Some compounds have already been reported with this ligand, but bridging coordination of the anionic ligands is observed in only a very few of them (see Database survey). This includes compounds with chalcophilic metal cations like CuII, HgII or CdII (see Database survey). Some time ago we tried to prepare compounds based on cobalt and 3-methyl­pyridine as a coligand, but only octa­hedral discrete complexes were observed (Boeckmann et al., 2011a[Boeckmann, J., Reimer, B. & Näther, C. (2011a). Z. Naturforsch. Teil B, 66, 819-827.]). When the compound Co(NCS)2(3-methyl­pyridine)4 is investigated by thermogravimetry, the removal of two 3-methyl­pyridine mol­ecules can be detected but, instead of the desired compounds with bridging thio­cyanate anions, only a mononuclear tetra­hedral complex is obtained in which the CoII cations are coordinated by two terminal N-bonded thio­cyanate anions and two 3-methyl­pyridine coligands. With Ni(NCS)2, many compounds are known, but all of them consist of discrete complexes with the composition Ni(NCS)2(3-methyl­pyridine)4 that form channels in which additional solvate mol­ecules are embedded. Two compounds are reported in the Cambridge Structural Database with Mn(NCS)2 and Fe(NCS)2 and 3-methyl­pyridine as ligand, except for one mixed-metal compound based on manganese and mercury (Małecki, 2017a[Małecki, J. G. (2017a). Private communication (refcode NAQYOW). CCDC, Cambridge, England.]) and therefore, we tried to prepare compounds based on these metal cations. From the reaction of Mn(NCS)2 and Fe(NCS)2 with 3-methyl­pyridine, two compounds with the composition Mn(NCS)2(3-methyl­pyridine)4 (1) and Fe(NCS)2(3-methyl­pyridine)4 (2) where obtained. IR spectroscopic investigations reveal that the CN stretching vibration of the anionic ligands is observed at 2048 cm−1 for 1 and 2046 cm−1 for 2, indicating that only terminal N-bonded thio­cyanate anions are present (Figures S1 and S2 in the supporting information), which was confirmed by structural analysis. Comparison of the experimental X-ray powder diffraction pattern with that calculated from the structure analysis using lattice parameters obtained by measurements performed at room-temperature proves that pure samples have been obtained (Figs. 1[link] and 2[link]). Measurements simultaneously using thermogravimetry and differential thermoanalysis (TG–DTA) reveal that decomposition already starts at about 90°C for both compounds (Figures S3 and S4). Compound 1 shows a mass loss of 34.8%, which is in reasonable agreement with that calculated for the removal of two 3-methyl­pyridine ligands. For compound 2, a poorly resolved TG curve is observed where the sample mass decreases continuously. The residue of 1 isolated after this mass loss was investigated by XRPD, but the pattern could neither be indexed nor assigned to the possibly isotypic phase Cd(NCS)2(3-methyl­pyridine)2 (Figure S5; Taniguchi et al., 1987[Taniguchi, M., Sugita, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1321-1326.]).

[Figure 1]
Figure 1
Experimental (top) and calculated (bottom) X-ray powder patterns of compound 1 measured with Cu Kα radiation.
[Figure 2]
Figure 2
Experimental (top) and calculated (bottom) X-ray powder patterns of compound 2 measured with Cu Kα radiation.

2. Structural commentary

Mn(NCS)2(3-methyl­pyridine)4 (1) and Fe(NCS)2(3-methyl­pyridine)4 (2) are isotypic to Co(NCS)2(3-methyl­pyridine)4 reported in the literature (Boeckmann et al., 2011a[Boeckmann, J., Reimer, B. & Näther, C. (2011a). Z. Naturforsch. Teil B, 66, 819-827.]) and form discrete complexes, in which the metal cations are octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions and two 3-methyl­pyridine coligands (Figs. 3[link] and 4[link]). The asymmetric unit consists of one metal cation that is located on a crystallographic center of inversion as well as one thio­cyanate anion and two 3-methyl­pyridine ligands in general positions. As expected, the M—N bond lengths to the negatively charged thio­cyanate anions are shorter than those to the 3-methyl­pyridine coligands and all M—N bond lengths are shorter for the Fe compound 2 than for the Mn compound 1 (Tables 1[link] and 2[link]). From the N—M—N bonding angles, it is obvious that both octa­hedra are slightly distorted, which can also be seen from the mean octa­hedral quadratic elongation (1.0018 for 1 and 1.0023 for 2) and the octa­hedral angle variance (1.259°2 for 1 and 1.096°2 for 2) calculated by the method of Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]).

Table 1
Selected geometric parameters (Å, °) for 1[link]

Mn1—N1 2.1830 (11) Mn1—N21 2.2866 (11)
Mn1—N11 2.3306 (11)    
       
N1—Mn1—N11i 91.56 (4) N21—Mn1—N11 89.06 (4)
N1—Mn1—N11 88.44 (4) N21i—Mn1—N11 90.94 (4)
N1i—Mn1—N21 90.37 (4) C1—N1—Mn1 153.96 (10)
N1—Mn1—N21 89.63 (4)    
Symmetry code: (i) [-x+1, -y+1, -z+1].

Table 2
Selected geometric parameters (Å, °) for 2[link]

Fe1—N1 2.1103 (10) Fe1—N21 2.2253 (10)
Fe1—N11 2.2779 (10)    
       
N1—Fe1—N11i 91.23 (4) N21—Fe1—N11 89.03 (4)
N1—Fe1—N11 88.77 (4) N21i—Fe1—N11 90.97 (4)
N1i—Fe1—N21 90.75 (4) C1—N1—Fe1 157.12 (10)
N1—Fe1—N21 89.25 (4)    
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
The mol­ecular structure of compound 1 with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (A) 1 − x, 1 − y, 1 − z.]
[Figure 4]
Figure 4
The mol­ecular structure of compound 2 with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (A) 1 − x, 1 − y, 1 − z.]

3. Supra­molecular features

In the extended structures of both compounds, the discrete complexes are arranged into columns that propagate along the crystallographic b-axis direction (Fig. 5[link]). Between these columns, neighboring 3-methyl­pyridine ligands overlap but their ring planes are not parallel, which would be indicative of ππ stacking inter­actions (Fig. 5[link]). There are some contacts between the C—H hydrogen atoms and the thio­cyanate N and S atoms, but at distances and angles far from those expected for hydrogen bonding (Tables 3[link] and 4[link]).

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N1i 0.95 2.60 3.2484 (17) 126
C15—H15⋯S1ii 0.95 3.00 3.5588 (14) 119
C15—H15⋯N1 0.95 2.52 3.1535 (17) 125
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, y, -z+{\script{3\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N1i 0.95 2.54 3.1668 (16) 124
C15—H15⋯S1ii 0.95 3.00 3.5523 (13) 119
C15—H15⋯N1 0.95 2.48 3.0961 (16) 123
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 5]
Figure 5
The packing of compound 1 viewed along the crystallographic b-axis.

4. Database survey

In the Cambridge Structure Database (CSD, version 5.43, last update November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) no Fe(NCS)2-based compounds with 3-methyl­pyridine as a coligand are reported. With Mn(NCS)2 there is only the mixed-metal compound catena-[tetra­kis­(thio­cyanato)­bis­(3-methyl­pyri­dine)­manganesemercury] (refcode NAQYOW), in which the MnII cations are octa­hedrally coordinated by two 3-methyl­pyridine-N-oxide ligands and two N-bonding μ-1,3-bridging thio­cyanate anions and are linked to HgII cations via the thio­cyanate S-atoms (Małecki, 2017a[Małecki, J. G. (2017a). Private communication (refcode NAQYOW). CCDC, Cambridge, England.]). The HgII cations act as tetra­hedral nodes, connecting the MnII cations into a three-dimensional network.

However, several thio­cyanate compounds with other transition-metal cations and 3-methyl­pyridine as coligand are found in the CSD. With cobalt, three different discrete complexes with the composition Co(NCS)2(3-methyl­pyri­dine)2(H2O)2 (EYAREC), Co(NCS)2(3-methyl­pyridine)4, isotypic to the title compounds (EYAROM and EYAROM01) as well as Co(NCS)2(3-methyl­pyridine)2 (EYARIG) are reported, in which the CoII cations are octa­hedrally or tetra­hedrally coordinated (Boeckmann et al., 2011a[Boeckmann, J., Reimer, B. & Näther, C. (2011a). Z. Naturforsch. Teil B, 66, 819-827.]; Małecki et al., 2012[Małecki, J. G., Bałanda, M., Groń, T. & Kruszyński, R. (2012). Struct. Chem. 23, 1219-1232.]). Discrete complexes, in which NiII cations are octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions and two 3-methyl­pyridine coligands are also known (CIVJEW, CIVJEW10, JICMIR, LAYLAY, LAYLEC, LAYLIG, LAYLOM and LAYLUS) but in their structures cavities are formed, in which additional solvent mol­ecules are embedded (Nassimbeni et al., 1984[Nassimbeni, L. R., Bond, D. R., Moore, M. & Papanicolaou, S. (1984). Acta Cryst. A40, C111.], 1986[Nassimbeni, L. R., Papanicolaou, S. & Moore, M. H. (1986). J. Inclusion Phenom. 4, 31-42.]; Pang et al., 1990[Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1990). J. Am. Chem. Soc. 112, 8754-8764.], 1992[Pang, L., Lucken, E. A. C. & Bernardinelli, G. (1992). J. Incl Phenom. Macrocycl Chem. 13, 63-76.]). Moreover, one compound with the composition Ni(NCS)2(3-methyl­pyridine)2(H2O)2 is also reported (MEGCEH; Tan et al., 2006[Tan, X. N., Che, Y. X. & Zheng, J. M. (2006). Chin. J. Struct. Chem. 25, 358-362.]).

With CuII, the discrete complexes Cu(NCS)2(3-methyl­pyridine)2 (ABOTET) and Cu(NCS)2(3-methyl­pyridine)3 (VEPBAT) with fourfold and fivefold coordinations, respectively, and the chain compound Cu(NCS)(3-methyl­pyridine)2 (CUHBEM) are reported (Handy et al., 2017[Handy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64-75.]; Healy et al., 1984[Healy, P. C., Pakawatchai, C., Papasergio, R. I., Patrick, V. A. & White, A. H. (1984). Inorg. Chem. 23, 3769-3776.]; Kabešová & Kožíšková, 1989[Kabešová, M. & Kožíšková, Z. (1989). Collect. Czech. Chem. Commun. 54, 1800-1807.]). With Zn(NCS)2, the discrete tetra­hedral complex Zn(NCS)2(3-methyl­pyridine)2 (ETUSAO) is reported (Boeckmann & Näther, 2011b[Boeckmann, J. & Näther, C. (2011b). Acta Cryst. E67, m994.]), which is isotypic to the corresponding Co(NCS)2 compound.

With Cd(NCS)2, one compound with the composition Cd(NCS)2(3-methyl­pyridine)2 (FIYGUP) is observed in which the CdII cations are linked by pairs of thio­cyanate anions into chains (Taniguchi et al., 1987[Taniguchi, M., Sugita, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1321-1326.]). This corresponds exactly to the structural motif in which we are inter­ested and for which many paramagnetic compounds are known with pyridine-based ligands (Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.], 2015b[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149-14158.]). Finally, two compounds with mercury are also found, viz. catena-[tetra­kis­(thio­cyanato)­bis­(3-methyl­pyridine)­manganesemer­cury] (NAQYOW; Małecki, 2017a[Małecki, J. G. (2017a). Private communication (refcode NAQYOW). CCDC, Cambridge, England.]) mentioned above and the isotypic compound where MnII is replaced by ZnII (QAMSIJ; Małecki, 2017b[Małecki, J. G. (2017b). Private communication (refcode QAMSIJ). CCDC, Cambridge, England.]).

5. Synthesis and crystallization

Synthesis

Ba(SCN)2·3H2O and 3-picoline were purchased from Alfa Aesar. MnSO4·H2O was purchased from Merck. A reaction of equimolar amounts of Ba(SCN)2·3H2O with MnSO4·H2O in deionized water was performed. After that, the precipitate of BaSO4 was filtered off. The filtrate was dried in a rotary evaporator and as a result, a powder of Mn(NCS)2 was obtained.

Mn(NCS)2(3-methyl­pyridine)4: 0.25 mmol of Mn(NCS)2 (42.8 mg) were dissolved in 0.5 ml of water and then 1.0 mmol of 3-methyl­pyridine (97.3 µl) were added. The mixture was then heated to 333 K and left at this temperature for 2 d. Afterwards, some colorless crystals were obtained that were suitable for single-crystal X-ray analysis. To obtain powder samples, 0.5 mmol of Mn(NCS)2 (85.6 mg) were dissolved in 1.0 ml of ethanol and then 2.0 mmol of 3-methyl­pyridine (194.6 µl) were added. The reaction mixture was stirred for 1 d and the colorless powder was filtered off and dried in the air.

Fe(NCS)2(3-methyl­pyridine)4: A mixture of 0.25 mmol of FeCl2·4H2O (49.7 mg) and 0.5 mmol of KSCN (48.6 mg) was dissolved in a mixture of 0.5 ml of water and 0.5 ml of ether. Afterwards, 1.25 mmol of 3-methyl­pyridine (121.6 µl) were added. The mixture was left for 3 d at room temperature, leading to some yellow crystals suitable for single-crystal X-ray diffraction measurements. To obtain powder samples, a mixture of 0.5 mmol of FeCl2·4H2O (98.6 mg) and 1.0 mmol of KSCN (97.2 mg) was dissolved in 0.5 ml of water. Afterwards, 2.0 mmol of 3-methyl­pyridine (194.6 µl) were added and the reaction mixture was stirred for 1 d. The yellow-colored powder was filtered off and dried in the air.

Experimental details

The data collection for single-crystal structure analysis was performed using an XtaLAB Synergy, Dualflex, HyPix diffractometer from Rigaku with Cu Kα radiation.

The IR spectrum was measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson.

The PXRD measurement was performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe Transmission Powder Diffraction System (STADI P) that is equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator.

Thermogravimetry and differential thermoanalysis (TG–DTA) measurements were performed in a dynamic nitro­gen atmosphere in Al2O3 crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The C-bound H atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model.

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [Mn(NCS)2(C6H7N)4] [Fe(NCS)2(C6H7N)4]
Mr 543.60 544.51
Crystal system, space group Orthorhombic, Pbcn Orthorhombic, Pbcn
Temperature (K) 100 100
a, b, c (Å) 17.47811 (10), 8.93570 (6), 17.36177 (10) 17.3733 (1), 8.94119 (5), 17.24862 (10)
V3) 2711.55 (3) 2679.37 (3)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 5.60 6.17
Crystal size (mm) 0.18 × 0.15 × 0.1 0.16 × 0.15 × 0.15
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.])
Tmin, Tmax 0.786, 1.000 0.555, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23041, 2918, 2841 22225, 2875, 2804
Rint 0.021 0.020
(sin θ/λ)max−1) 0.638 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.078, 1.07 0.026, 0.073, 1.06
No. of reflections 2918 2875
No. of parameters 162 163
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.35 0.39, −0.28
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetrakis(3-methylpyridine-κN)bis(isothiocyanato-κN)manganese(II) (1) top
Crystal data top
[Mn(NCS)2(C6H7N)4]Dx = 1.332 Mg m3
Mr = 543.60Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcnCell parameters from 12231 reflections
a = 17.47811 (10) Åθ = 5.1–79.2°
b = 8.93570 (6) ŵ = 5.60 mm1
c = 17.36177 (10) ÅT = 100 K
V = 2711.55 (3) Å3Block, intense colourless
Z = 40.18 × 0.15 × 0.1 mm
F(000) = 1132
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2918 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2841 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.0000 pixels mm-1θmax = 79.8°, θmin = 5.1°
ω scansh = 1622
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2021)
k = 1011
Tmin = 0.786, Tmax = 1.000l = 2222
23041 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0428P)2 + 1.4595P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2918 reflectionsΔρmax = 0.45 e Å3
162 parametersΔρmin = 0.35 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.5000000.5000000.5000000.01493 (10)
S10.37925 (2)0.28776 (4)0.72629 (2)0.02871 (11)
C10.43007 (7)0.32513 (14)0.65000 (8)0.0197 (3)
N10.46439 (6)0.35374 (13)0.59412 (6)0.0213 (2)
N110.62368 (6)0.40622 (13)0.51371 (6)0.0187 (2)
C110.68099 (7)0.45625 (15)0.46930 (8)0.0211 (3)
H110.6687770.5235690.4287770.025*
C120.75732 (8)0.41561 (15)0.47890 (8)0.0230 (3)
C130.77419 (8)0.31480 (16)0.53720 (9)0.0260 (3)
H130.8254380.2832100.5454200.031*
C140.71595 (8)0.26057 (16)0.58327 (8)0.0262 (3)
H140.7265600.1910370.6232640.031*
C150.64179 (8)0.30937 (15)0.57014 (8)0.0210 (3)
H150.6020550.2728090.6023820.025*
C160.81796 (9)0.48323 (18)0.42866 (10)0.0328 (3)
H16A0.8053880.4650650.3744530.049*
H16B0.8675270.4375480.4406540.049*
H16C0.8206020.5912510.4380450.049*
N210.52897 (6)0.68274 (12)0.58746 (6)0.0188 (2)
C210.56837 (7)0.65317 (14)0.65216 (7)0.0198 (3)
H210.5799300.5516680.6635320.024*
C220.59328 (8)0.76267 (16)0.70361 (8)0.0228 (3)
C230.57305 (8)0.91022 (16)0.68741 (8)0.0264 (3)
H230.5882770.9886170.7210380.032*
C240.53065 (8)0.94200 (15)0.62205 (9)0.0260 (3)
H240.5155231.0417910.6109190.031*
C250.51069 (8)0.82605 (15)0.57323 (8)0.0220 (3)
H250.4828640.8487800.5277060.026*
C260.63924 (10)0.72132 (18)0.77362 (9)0.0320 (3)
H26A0.6888610.7722650.7718410.048*
H26B0.6472770.6127940.7745560.048*
H26C0.6115460.7519350.8201000.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01338 (16)0.01517 (16)0.01624 (17)0.00031 (10)0.00030 (9)0.00049 (9)
S10.0353 (2)0.02628 (19)0.02457 (18)0.00033 (14)0.00961 (14)0.00401 (13)
C10.0195 (6)0.0158 (6)0.0238 (6)0.0011 (5)0.0029 (5)0.0002 (5)
N10.0202 (5)0.0216 (5)0.0220 (5)0.0006 (4)0.0010 (4)0.0034 (4)
N110.0166 (5)0.0185 (5)0.0209 (5)0.0003 (4)0.0011 (4)0.0022 (4)
C110.0194 (6)0.0201 (6)0.0238 (6)0.0004 (5)0.0000 (5)0.0003 (5)
C120.0177 (6)0.0220 (6)0.0292 (6)0.0003 (5)0.0015 (5)0.0028 (5)
C130.0166 (6)0.0272 (7)0.0341 (8)0.0029 (5)0.0045 (5)0.0007 (6)
C140.0235 (7)0.0268 (7)0.0282 (7)0.0034 (5)0.0050 (5)0.0044 (6)
C150.0203 (6)0.0205 (6)0.0222 (6)0.0002 (5)0.0016 (5)0.0000 (5)
C160.0231 (7)0.0369 (8)0.0384 (9)0.0003 (6)0.0074 (6)0.0014 (6)
N210.0168 (5)0.0180 (5)0.0217 (5)0.0006 (4)0.0008 (4)0.0008 (4)
C210.0199 (6)0.0190 (6)0.0206 (6)0.0009 (5)0.0006 (5)0.0012 (5)
C220.0241 (6)0.0235 (6)0.0209 (6)0.0037 (5)0.0024 (5)0.0031 (5)
C230.0296 (7)0.0215 (6)0.0279 (7)0.0059 (5)0.0049 (5)0.0073 (5)
C240.0272 (7)0.0163 (6)0.0343 (7)0.0002 (5)0.0054 (6)0.0008 (5)
C250.0196 (6)0.0198 (6)0.0266 (7)0.0007 (5)0.0008 (5)0.0018 (5)
C260.0387 (8)0.0329 (8)0.0243 (7)0.0053 (7)0.0066 (6)0.0055 (6)
Geometric parameters (Å, º) top
Mn1—N1i2.1830 (11)C15—H150.9500
Mn1—N12.1830 (11)C16—H16A0.9800
Mn1—N11i2.3307 (11)C16—H16B0.9800
Mn1—N112.3306 (11)C16—H16C0.9800
Mn1—N212.2866 (11)N21—C211.3439 (17)
Mn1—N21i2.2866 (11)N21—C251.3427 (17)
S1—C11.6293 (14)C21—H210.9500
C1—N11.1690 (18)C21—C221.3945 (18)
N11—C111.3408 (17)C22—C231.394 (2)
N11—C151.3450 (17)C22—C261.503 (2)
C11—H110.9500C23—H230.9500
C11—C121.3926 (18)C23—C241.385 (2)
C12—C131.387 (2)C24—H240.9500
C12—C161.500 (2)C24—C251.383 (2)
C13—H130.9500C25—H250.9500
C13—C141.382 (2)C26—H26A0.9800
C14—H140.9500C26—H26B0.9800
C14—C151.3864 (19)C26—H26C0.9800
N1i—Mn1—N1180.0N11—C15—H15118.6
N1—Mn1—N11i91.56 (4)C14—C15—H15118.6
N1—Mn1—N1188.44 (4)C12—C16—H16A109.5
N1i—Mn1—N11i88.44 (4)C12—C16—H16B109.5
N1i—Mn1—N1191.56 (4)C12—C16—H16C109.5
N1i—Mn1—N2190.37 (4)H16A—C16—H16B109.5
N1—Mn1—N21i90.37 (4)H16A—C16—H16C109.5
N1i—Mn1—N21i89.63 (4)H16B—C16—H16C109.5
N1—Mn1—N2189.63 (4)C21—N21—Mn1121.88 (8)
N11—Mn1—N11i180.00 (5)C25—N21—Mn1120.41 (9)
N21—Mn1—N1189.06 (4)C25—N21—C21117.59 (11)
N21i—Mn1—N1190.94 (4)N21—C21—H21118.1
N21—Mn1—N11i90.94 (4)N21—C21—C22123.88 (12)
N21i—Mn1—N11i89.06 (4)C22—C21—H21118.1
N21—Mn1—N21i180.0C21—C22—C26120.82 (13)
N1—C1—S1177.78 (12)C23—C22—C21117.08 (13)
C1—N1—Mn1153.96 (10)C23—C22—C26122.10 (13)
C11—N11—Mn1120.95 (9)C22—C23—H23120.2
C11—N11—C15117.23 (11)C24—C23—C22119.68 (12)
C15—N11—Mn1121.61 (9)C24—C23—H23120.2
N11—C11—H11118.0C23—C24—H24120.5
N11—C11—C12124.05 (13)C25—C24—C23118.92 (13)
C12—C11—H11118.0C25—C24—H24120.5
C11—C12—C16120.16 (13)N21—C25—C24122.79 (13)
C13—C12—C11117.41 (13)N21—C25—H25118.6
C13—C12—C16122.41 (13)C24—C25—H25118.6
C12—C13—H13120.2C22—C26—H26A109.5
C14—C13—C12119.58 (12)C22—C26—H26B109.5
C14—C13—H13120.2C22—C26—H26C109.5
C13—C14—H14120.6H26A—C26—H26B109.5
C13—C14—C15118.88 (13)H26A—C26—H26C109.5
C15—C14—H14120.6H26B—C26—H26C109.5
N11—C15—C14122.84 (13)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N1i0.952.603.2484 (17)126
C15—H15···S1ii0.953.003.5588 (14)119
C15—H15···N10.952.523.1535 (17)125
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2.
Tetrakis(3-methylpyridine-κN)bis(isothiocyanato-κN)iron(II) (2) top
Crystal data top
[Fe(NCS)2(C6H7N)4]Dx = 1.350 Mg m3
Mr = 544.51Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcnCell parameters from 17643 reflections
a = 17.3733 (1) Åθ = 2.6–79.3°
b = 8.94119 (5) ŵ = 6.17 mm1
c = 17.24862 (10) ÅT = 100 K
V = 2679.37 (3) Å3Prism, intense colourless
Z = 40.16 × 0.15 × 0.15 mm
F(000) = 1136
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2875 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2804 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.0000 pixels mm-1θmax = 79.8°, θmin = 5.1°
ω scansh = 2222
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2021)
k = 117
Tmin = 0.555, Tmax = 1.000l = 2220
22225 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0401P)2 + 1.5203P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.39 e Å3
2875 reflectionsΔρmin = 0.28 e Å3
163 parametersExtinction correction: SHELXL2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00049 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.5000000.5000000.5000000.01130 (10)
S10.38206 (2)0.28452 (4)0.72572 (2)0.02425 (11)
C10.43143 (7)0.32807 (13)0.64874 (7)0.0156 (2)
N10.46454 (6)0.36130 (12)0.59232 (6)0.0167 (2)
N110.62142 (6)0.40757 (12)0.51376 (6)0.0149 (2)
C110.67967 (7)0.45813 (14)0.46972 (7)0.0177 (2)
H110.6678250.5269860.4295110.021*
C120.75625 (7)0.41613 (15)0.47922 (8)0.0191 (3)
C130.77283 (7)0.31360 (15)0.53734 (8)0.0219 (3)
H130.8242650.2812110.5455880.026*
C140.71377 (8)0.25904 (15)0.58315 (8)0.0220 (3)
H140.7240780.1886580.6230790.026*
C150.63926 (7)0.30874 (14)0.56985 (7)0.0175 (2)
H150.5990470.2713690.6017430.021*
C160.81754 (8)0.48373 (17)0.42911 (10)0.0285 (3)
H16A0.8064390.4618860.3745660.043*
H16B0.8676630.4412420.4430560.043*
H16C0.8186060.5922720.4369350.043*
N210.52872 (6)0.67812 (12)0.58534 (6)0.0151 (2)
C210.56858 (7)0.64878 (14)0.65039 (7)0.0162 (2)
H210.5806760.5474670.6616510.019*
C220.59325 (8)0.75852 (15)0.70240 (7)0.0188 (3)
C230.57244 (8)0.90588 (15)0.68632 (8)0.0222 (3)
H230.5875590.9842870.7202230.027*
C240.52958 (8)0.93723 (14)0.62059 (8)0.0215 (3)
H240.5140301.0368110.6094760.026*
C250.50971 (7)0.82099 (14)0.57126 (8)0.0182 (3)
H250.4814400.8434810.5255820.022*
C260.63958 (9)0.71736 (17)0.77282 (8)0.0274 (3)
H26A0.6890420.7699940.7715100.041*
H26B0.6486400.6091780.7732210.041*
H26C0.6112730.7460640.8196610.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01186 (15)0.01149 (16)0.01054 (16)0.00048 (9)0.00004 (9)0.00100 (9)
S10.03164 (19)0.02224 (18)0.01886 (17)0.00132 (13)0.00886 (13)0.00403 (12)
C10.0169 (6)0.0121 (5)0.0178 (6)0.0006 (4)0.0026 (4)0.0002 (4)
N10.0174 (5)0.0168 (5)0.0159 (5)0.0005 (4)0.0002 (4)0.0032 (4)
N110.0149 (5)0.0147 (5)0.0151 (5)0.0006 (4)0.0013 (4)0.0015 (4)
C110.0176 (6)0.0168 (6)0.0185 (6)0.0003 (5)0.0004 (5)0.0002 (5)
C120.0157 (6)0.0190 (6)0.0227 (6)0.0008 (5)0.0006 (5)0.0026 (5)
C130.0153 (6)0.0228 (6)0.0276 (7)0.0027 (5)0.0050 (5)0.0014 (5)
C140.0217 (6)0.0218 (6)0.0224 (6)0.0039 (5)0.0045 (5)0.0036 (5)
C150.0185 (6)0.0171 (6)0.0168 (6)0.0001 (5)0.0012 (5)0.0003 (5)
C160.0209 (7)0.0325 (8)0.0319 (8)0.0001 (6)0.0060 (6)0.0019 (6)
N210.0153 (5)0.0147 (5)0.0155 (5)0.0007 (4)0.0012 (4)0.0012 (4)
C210.0174 (6)0.0160 (6)0.0151 (6)0.0011 (5)0.0006 (4)0.0010 (4)
C220.0209 (6)0.0194 (6)0.0161 (6)0.0036 (5)0.0019 (5)0.0031 (5)
C230.0265 (6)0.0178 (6)0.0222 (6)0.0051 (5)0.0041 (5)0.0060 (5)
C240.0241 (6)0.0130 (6)0.0275 (7)0.0004 (5)0.0042 (5)0.0008 (5)
C250.0174 (6)0.0166 (6)0.0205 (6)0.0008 (5)0.0008 (5)0.0013 (5)
C260.0352 (8)0.0273 (8)0.0198 (7)0.0040 (6)0.0065 (6)0.0044 (5)
Geometric parameters (Å, º) top
Fe1—N1i2.1103 (10)C15—H150.9500
Fe1—N12.1103 (10)C16—H16A0.9800
Fe1—N11i2.2780 (10)C16—H16B0.9800
Fe1—N112.2779 (10)C16—H16C0.9800
Fe1—N212.2253 (10)N21—C211.3444 (16)
Fe1—N21i2.2253 (10)N21—C251.3416 (16)
S1—C11.6279 (13)C21—H210.9500
C1—N11.1688 (17)C21—C221.3968 (17)
N11—C111.3436 (16)C22—C231.3942 (19)
N11—C151.3464 (16)C22—C261.5030 (19)
C11—H110.9500C23—H230.9500
C11—C121.3922 (18)C23—C241.385 (2)
C12—C131.3887 (19)C24—H240.9500
C12—C161.4987 (19)C24—C251.3868 (18)
C13—H130.9500C25—H250.9500
C13—C141.3838 (19)C26—H26A0.9800
C14—H140.9500C26—H26B0.9800
C14—C151.3878 (18)C26—H26C0.9800
N1i—Fe1—N1180.0N11—C15—H15118.5
N1—Fe1—N11i91.23 (4)C14—C15—H15118.5
N1—Fe1—N1188.77 (4)C12—C16—H16A109.5
N1i—Fe1—N11i88.77 (4)C12—C16—H16B109.5
N1i—Fe1—N1191.23 (4)C12—C16—H16C109.5
N1i—Fe1—N2190.75 (4)H16A—C16—H16B109.5
N1—Fe1—N21i90.75 (4)H16A—C16—H16C109.5
N1i—Fe1—N21i89.25 (4)H16B—C16—H16C109.5
N1—Fe1—N2189.25 (4)C21—N21—Fe1121.87 (8)
N11—Fe1—N11i180.00 (5)C25—N21—Fe1120.44 (9)
N21—Fe1—N1189.03 (4)C25—N21—C21117.62 (11)
N21i—Fe1—N1190.97 (4)N21—C21—H21118.1
N21—Fe1—N11i90.97 (4)N21—C21—C22123.85 (12)
N21i—Fe1—N11i89.03 (4)C22—C21—H21118.1
N21—Fe1—N21i180.00 (4)C21—C22—C26120.76 (12)
N1—C1—S1177.62 (12)C23—C22—C21117.16 (12)
C1—N1—Fe1157.12 (10)C23—C22—C26122.08 (12)
C11—N11—Fe1121.10 (8)C22—C23—H23120.2
C11—N11—C15116.97 (11)C24—C23—C22119.58 (12)
C15—N11—Fe1121.75 (8)C24—C23—H23120.2
N11—C11—H11117.9C23—C24—H24120.5
N11—C11—C12124.24 (12)C23—C24—C25118.97 (12)
C12—C11—H11117.9C25—C24—H24120.5
C11—C12—C16120.16 (12)N21—C25—C24122.77 (12)
C13—C12—C11117.46 (12)N21—C25—H25118.6
C13—C12—C16122.36 (12)C24—C25—H25118.6
C12—C13—H13120.3C22—C26—H26A109.5
C14—C13—C12119.41 (12)C22—C26—H26B109.5
C14—C13—H13120.3C22—C26—H26C109.5
C13—C14—H14120.5H26A—C26—H26B109.5
C13—C14—C15118.97 (12)H26A—C26—H26C109.5
C15—C14—H14120.5H26B—C26—H26C109.5
N11—C15—C14122.94 (12)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N1i0.952.543.1668 (16)124
C15—H15···S1ii0.953.003.5523 (13)119
C15—H15···N10.952.483.0961 (16)123
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2.
 

Funding information

Financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

First citationBoeckmann, J. & Näther, C. (2011b). Acta Cryst. E67, m994.  CrossRef IUCr Journals Google Scholar
First citationBoeckmann, J., Reimer, B. & Näther, C. (2011a). Z. Naturforsch. Teil B, 66, 819–827.  CrossRef CAS Google Scholar
First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHandy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationHealy, P. C., Pakawatchai, C., Papasergio, R. I., Patrick, V. A. & White, A. H. (1984). Inorg. Chem. 23, 3769–3776.  CSD CrossRef CAS Web of Science Google Scholar
First citationKabešová, M. & Kožíšková, Z. (1989). Collect. Czech. Chem. Commun. 54, 1800–1807.  Google Scholar
First citationMałecki, J. G. (2017a). Private communication (refcode NAQYOW). CCDC, Cambridge, England.  Google Scholar
First citationMałecki, J. G. (2017b). Private communication (refcode QAMSIJ). CCDC, Cambridge, England.  Google Scholar
First citationMałecki, J. G., Bałanda, M., Groń, T. & Kruszyński, R. (2012). Struct. Chem. 23, 1219–1232.  Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationNassimbeni, L. R., Bond, D. R., Moore, M. & Papanicolaou, S. (1984). Acta Cryst. A40, C111.  CrossRef IUCr Journals Google Scholar
First citationNassimbeni, L. R., Papanicolaou, S. & Moore, M. H. (1986). J. Inclusion Phenom. 4, 31–42.  CSD CrossRef CAS Web of Science Google Scholar
First citationPang, L., Lucken, E. A. C. & Bernardinelli, G. (1990). J. Am. Chem. Soc. 112, 8754–8764.  CSD CrossRef CAS Web of Science Google Scholar
First citationPang, L., Lucken, E. A. C. & Bernardinelli, G. (1992). J. Incl Phenom. Macrocycl Chem. 13, 63–76.  CrossRef CAS Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTan, X. N., Che, Y. X. & Zheng, J. M. (2006). Chin. J. Struct. Chem. 25, 358–362.  CAS Google Scholar
First citationTaniguchi, M., Sugita, Y. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 1321–1326.  CSD CrossRef CAS Web of Science Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. pp. 3236–3245.  CrossRef Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds