research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 2-(2-hy­dr­oxy­phen­yl)-1,3-bis­­(4-meth­­oxy­benz­yl)-1,3-diazinan-5-ol

crossmark logo

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 25 March 2022; accepted 23 June 2022; online 28 June 2022)

The redetermined structure of 2-(2-hy­droxy­phen­yl)-1,3-bis­(4-meth­oxy­benz­yl)-1,3-diazinan-5-ol, C26H30N2O4, at 173 K has ortho­rhom­bic (Pbca) symmetry. It was previously described by Bolte et al. [ Private Communication (refcode EWICEV). CCDC, Cambridge, England]. The title compound resulted from the condensation reaction between 1,3-bis­{[(4-meth­oxy­phen­yl)meth­yl]amino}­propan-2-ol and 2-hy­droxy­benzaldehyde in CH3OH. The structure exhibits disorder. One of the 4-meth­oxy­benzyl groups, the hy­droxy group bonded to the 1,3-diazinan ring, and the methyl group of the meth­oxy residue are disordered over two orientations, with occupancies of 0.807 (3)/0.193 (3), 0.642 (5)/0.358 (5), and 0.82 (4)/0.18 (4), respectively. The dihedral angles between the mean planes of the central 1,3-diazinan-5-ol and the 4-meth­oxy­phenyl rings (both occupancy components of the disordered ring) are 88.65 (13), 85.79 (14) and 83.4 (7)°. The crystal packing is sustained by C—H⋯O and O—H⋯π inter­actions, giving rise to infinite chains running along the b-axis direction.

1. Chemical context

Within the framework of a program intended to develop 1,2,3-tris­ubstituted 1,3-diazinan-5-ol derivatives with conformational properties, we were inter­ested in probing the relation between intra­molecular hydrogen bonding and the final conformations of the title compound, which was synthesized by reacting 1,3-bis­{[(4-meth­oxy­phen­yl)meth­yl]amino}­propan-2-ol, easily obtained following the reported method (Rivera, Miranda-Carvajal & Ríos-Motta, 2016[Rivera, A., Miranda-Carvajal, I. & Ríos-Motta, J. (2016). Int. J. Chem. 8, 62-68.]), with 2-hy­droxy­benzaldehyde. Most six-membered heterocycles prefer to adopt chair conformations with equatorially situated substituent groups where the bulky groups attached to the heterocycles generally have a greater preference for the equatorial position than in the case of substituted cyclo­hexane (Wiberg et al., 2018[Wiberg, K. B., Bailey, W. F., Lambert, K. M. & Stempel, Z. D. (2018). J. Org. Chem. 83, 5242-5255.]). Consequently, the 1H NMR spectrum (CDCl3) of the title compound showed well-resolved signals for the axial and equatorial protons. It is noteworthy that the coupling constants with magnitudes between 2.9 and 3.1 Hz provide a strong evidence of the presence of an axial OH group. In this regard, it has been reported that the presence of an intra­molecular hydrogen bond may stabilize the hydroxyl group in the otherwise non-preferred axial position (Koll et al., 2006[Koll, A., Karpfen, A. & Wolschann, P. (2006). J. Mol. Struct. 790, 55-64.]). Therefore, the proton of the OH group in the 5 position of the 1,3-diazinan-5-ol ring might form an intra­molecular hydrogen bond to either one or both endocyclic nitro­gen atoms to stabilize its axial position; however, no such inter­actions were formed. Instead, the crystallographic analysis showed that the intra­molecular hydrogen bonds are observed between the proton of the phenolic OH group and the nitro­gen atoms of the 1,3-diazinan-5-ol ring.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The 1,3-diazinan-5-ol ring (N1/C1/N2/C4/C3/C2) adopts a chair form with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) Q = 0.562 (3) Å, θ = 3.1 (3)°, φ = 250 (4)°, Q(2) = 0.035 (3) Å and Q(3) = −0.561 (3) Å. Atoms C2 and C3 deviate from the mean plane of the other four atoms by −0.242 (3) and 0.249 (3) Å, respectively. Atoms N1 and N2 are essentially tetra­hedral (bond-angle sums are 331.8° for N1 and 330.1° for N2), while the usual ΣH–N–H angle in an ammonia mol­ecule is 321° (Makkos et al., 2021[Makkos, E., Bodrogi, D. & Szieberth, D. (2021). Phys. Chem. Chem. Phys. 23, 24738-24749.]), with their benzyl substituents in the equatorial positions and axial lone pairs. The dihedral angle between the mean planes of the phenyl rings (C21–C26) and (C31–C36) is 40.41 (19)°. The phenyl ring of the benzyl group bonded to N2 is disordered over two positions (Fig. 2[link]), with site occupancies refining to 0.807 (3) and 0.193 (3). The aromatic rings of the major (C31–C36) and minor (C31′–C36′) components are roughly parallel, subtending a dihedral angle of 13.5 (7)°. Inter­estingly, the hydroxyl group bonded to the 1,3-diazinan-5-ol ring and the other meth­oxy group are also disordered over two positions with 0.642 (5):0.358 (5) and 0.82 (4):0.18 (4) occupancy ratio, respectively. The C3—O4 and C3—O4′ bond lengths at 1.402 (4) and 1.387 (6) Å are slightly short compared to the normal range (1.421–1.433 Å) for a C2—CH—OH group (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1-19.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular hydrogen bond is shown as a dashed line and, for clarity, only the major disorder components are included.
[Figure 2]
Figure 2
Overlay image of the mol­ecular disorder of the title compound. The major occupancy sites are drawn with full bonds, while the minor occupancy sites with open bonds

The dihedral angles between the mean plane of the 1,3-diazinan-5-ol ring [maximum deviation = 0.236 (3) Å] and the C21–C26, C31–C36 and C31′–C36′ phenyl rings of the 1,3- benzyl groups are 88.65 (13), 85.79 (19) and 83.4 (7)°, respectively, whereas the mean plane is rotated by 81.22 (13)° towards the C11–C16 phenyl ring of the 2-hy­droxy­phenyl substituent. The dihedral angles between this phenyl ring and the other two phenyl rings are 55.54 (13)° (C21–C26), 84.27 (19)° (C31–C36) and 77.9 (7)° (C31′–C36′), respectively.

As mentioned above, an intra­mol­ecular O—H⋯N hydrogen bonds is formed between the N1 atom of the 1,3-diazinan-5-ol ring and the OH group of the hy­droxy­phenyl substit­uent, resulting in an S(6) graph-set motif (Table1). The N⋯O distance [2.740 (3) Å] is long in comparison with the values observed in related structures [ranging from 2.671 to 2.702 Å; Rivera, Miranda-Carvajal, Ríos-Motta & Bolte, 2016[Rivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2016). Acta Cryst. E72, 1353-1355.]; Rivera et al. 2014[Rivera, A., Miranda-Carvajal, I., Osorio, H. J., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o687-o688.]], indicating that the introduction of the hy­droxy­phenyl group in the 2-position of the 1,3-diazinan-5-ol ring decreased the strength of the intra­molecular hydrogen bonds in these compounds.

3. Supra­molecular features

In contrast to the supra­molecular structures observed in the previously reported related 1,3-diazinan-5-ol hydrates (Rivera, Miranda-Carvajal, Ríos-Motta & Bolte, 2016[Rivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2016). Acta Cryst. E72, 1353-1355.]; Rivera et al. 2014[Rivera, A., Miranda-Carvajal, I., Osorio, H. J., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o687-o688.]), where the water mol­ecules play a significant role in assembling the three-dimensional supra­mol­ecular architecture, the mol­ecular structure of the title compound contains only the unsolvated main mol­ecule.

In the crystal structure, the mol­ecules are inter­linked via C27—H27⋯O3(1 − x, [{3\over 2}] + y, [{1\over 2}] − z) non-conventional hydrogen bonds (Fig. 3[link], Table 1[link]) into chains propagating along the b-axis direction. Adjacent chains are connected by O—H⋯π inter­actions (Table 1[link]) [O4—H4⋯Cg4 = 2.96 Å O4—H4⋯Cg4 = 151°; symmetry code: 1 − x, [{1\over 2}] + y, [{1\over 2}] − z] involving the major occupancy position of the disordered ring (C31–C36). As a result of the disorder of the aromatic ring, the geometric parameters are less precise than they would be if the ring were not disordered. Although the structure contains three different phenyl rings, only the CgCg distance between two symmetry-related positions (1 − x, −y, 1 − z) of the minor component (C31′–C36′; less than 20% occupancy) of the disordered phenyl ring [3.59 (1) Å] is shorter than 4 Å. It is noteworthy that the inter­planar distance between the symmetry-related main parts of the C31–C36 ring is only 3.66 Å; however, the corresponding CgCg distance is too long at 4.619 (3) Å, indicating a significant horizontal shift of the rings precluding ππ stacking.

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C31–C36 ring (major occupancy component).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.92 (4) 2.01 (4) 2.740 (3) 135 (3)
C27—H27B⋯O3i 0.98 2.58 3.342 (10) 134
O4—H4⋯Cg4ii 0.84 2.96 3.723 (4) 151
O4′—H4′⋯O1iii 0.84 2.15 2.898 (6) 148
C27′—H27D⋯O4′iv 0.98 2.45 3.35 (6) 153
C35′—H35′⋯O2iii 0.95 2.55 3.254 (13) 131
Symmetry codes: (i) [-x+1, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z.
[Figure 3]
Figure 3
The crystal packing of the title compound, showing the inter­molecular C—H⋯O hydrogen-bonding inter­actions (blue dashed lines) and O—H⋯π (green dashed lines) inter­actions along the b axis. Intra­molecular O—H⋯N hydrogen bonds are depicted in orange. Only the H atoms involved in the C—H⋯O, O—H⋯N and O—H⋯π inter­actions are shown for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 2022.1, last update March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1,3-benzyl-1,3-diazinan-5-oxygen unit gave eight hits. Two similar structures have already been deposited with the CSD, namely 1,3-bis­(3-tert-butyl-2-hy­droxy-5-methyl­benz­yl)-1,3-diazinan-5-ol monohydrate (ETUYAV; Rivera, Miranda-Carvajal, Ríos-Motta & Bolte, 2016[Rivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2016). Acta Cryst. E72, 1353-1355.]) and 1,3-bis­(3-tert-butyl-2-hy­droxy-5-meth­oxy­benz­yl)hexa­hydro­pyrimidin-5-ol monohydrate (JOGWAF; Rivera et al., 2014[Rivera, A., Miranda-Carvajal, I., Osorio, H. J., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o687-o688.]). Inter­estingly, in both of these structures the hydroxyl group bonded to the 1,3-diazinan-5-ol ring is disordered over two positions. The same feature is observed in the title compound. On the other hand, unlike the title compound, ETUYAV and JOGWAF crystallize as hydrates. Unfortunately, because of the multiple disordered parts of the title compound, comparison of the geometric parameters is not reasonable. Other similar compounds with more central ring substituents include 4-allyl-1,3-dibenzyl-1,2,3,4,5,6-hexa­hydro-5-hy­droxy­pyrimidin-2-one (BEMHAC; Enders et al., 1999[Enders, D., Wortmann, L., Dücker, B. & Raabe, G. (1999). Helv. Chim. Acta, 82, 1195-1201.]) and 5-acet­oxy-1,3,4-tribenzyl-6-(1-(bromo)­phenyl­eth­yl)pyrimidin-2-one (RUTCIS; De Lucca et al., 1997[De Lucca, G. V., Liang, J., Aldrich, P. E., Calabrese, J., Cordova, B., Klabe, R. M., Rayner, M. M. & Chang, C.-H. (1997). J. Med. Chem. 40, 1707-1709.]) and an iron complex of 1,3-bis-(3,5-di-tert-butyl-2-hy­droxy­benz­yl)hexa­hydro­pyrimidin-5-ol (MOSYIE; Mendes et al., 2014[Mendes, L. L., Fernandes, C., Franco, R. W. A., Lube, L. M., Wei, S.-H., Reibenspies, J. H., Darensbourg, D. J. & Horn, A. Jr (2014). J. Braz. Chem. Soc. 25, 1050-1061.]) has also been reported.

5. Synthesis and crystallization

To a stirred solution of 1,3-bis­{[(4-meth­oxy­phen­yl)meth­yl]amino}­propan-2-ol (661 mg, 2 mmol) in methanol (20 mL) salicyl­aldehyde (0.21 mL, 246 mg, 2 mmol) was added dropwise. The resulting mixture was heated at reflux for 2 h and allowed to cool to room temperature. The solvent was removed under vacuum and the crude solid was washed with cold methanol and dried in vacuo. The solid was dissolved in hexa­ne–chloro­form mixture and after standing for several days at room temperature, colorless crystals suitable for X-ray diffraction were obtained. Yield 652 mg (75%), m.p. 413 K.

1H NMR (CDCl3, 400 MHz) δ 7.15 (d, 1H, J = 8.60 Hz, Ph-H), 7.12–7.13 (m, 1H, Ph-H), 7.11 (d, 4H, J = 8.80 Hz, Ph-H), 6.99 (m, 1H, Ph-H), 6.85 (d, 1H, J = 7.60 Hz, Ph-H), 6.81 (d, 4H, J = 8.80 Hz, Ph-H), 3.88 (s, 1H, NCHN), 3.76 (s, 6H, OCH3), 3.72–3.74 (m, 1H, CHOH), 3.03 (d, 2H, J = 12.0 Hz, NCH2CHOH), 2.99 (d, 2H, J = 13.0 Hz, NCH2Ph), 2.98 (d, 2H, J = 13.0 Hz, NCH2Ph), 2.22 (dd, 2H, J = 12.0 and 1.2 Hz, NCH2CHOH), 1.60 (bs, 1H, OH). The hydrogen atom of a hydroxyl group could not be assigned because of the overlaping and widening of that signal with those due to hydrogen bonds.

Elemental analysis (Thermo Scientific Flash 2000 CHNS/O elemental analyzer): Found, %: C 71.87; H 6.91; N 6.45; O 14.74. C26H30N2O4. Calculated, %: C, 71.89; H, 6.91; N, 6.45; O, 14.75.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C were refined using a riding model. Uiso values of methyl H atoms were set to 1.5Ueq(C), while the Uiso values of H atoms bonded to the remaining C atoms were set to 1.2Ueq(C). The H atom bonded to O in the major occupied site was freely refined. The H atom bonded to O in the minor occupied site was refined using a riding model with Uiso(H) set to 1.5Ueq(O). In addition, the H—O—C—C torsion angle was allowed to refine. The displacement ellipsoids of O4 and O4′ were restrained to be similar. The distances O4—C3 and O4′—C3 were restrained to be similar. Bond lengths and angles in the fragments C24–O2–C27′ and C24–O2–C27 were restrained to be similar. The displacement ellipsoids of O2 and C27/C27′ were restrained to be similar. Bond lengths, angles and displacement parameters in the fragments N2–O3′–C31′–C32′–C33′–C34′–C35′–C36′–C37′–C8′ and N2–O3–C31–C32–C33–C34–C35–C36–C37–C8 were restrained to be similar. The following restraints implemented in SHELXL (Sheldrick, 2015) were used to restrain the geometry (SADI, SAME) and Uij (SIMU, RIGU) of the disordered parts.

Table 2
Experimental details

Crystal data
Chemical formula C26H30N2O4
Mr 434.52
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 173
a, b, c (Å) 19.998 (3), 9.7472 (9), 23.540 (3)
V3) 4588.5 (10)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.22 × 0.19 × 0.16
 
Data collection
Diffractometer Stoe IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.664, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18262, 4311, 2335
Rint 0.081
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.109, 0.95
No. of reflections 4311
No. of parameters 399
No. of restraints 547
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.16
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008).

2-(2-Hydroxyphenyl)-1,3-bis(4-methoxybenzyl)-1,3-diazinan-5-ol top
Crystal data top
C26H30N2O4Dx = 1.258 Mg m3
Mr = 434.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 7737 reflections
a = 19.998 (3) Åθ = 3.4–25.6°
b = 9.7472 (9) ŵ = 0.09 mm1
c = 23.540 (3) ÅT = 173 K
V = 4588.5 (10) Å3Block, colourless
Z = 80.22 × 0.19 × 0.16 mm
F(000) = 1856
Data collection top
Stoe IPDS II two-circle
diffractometer
2335 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.081
ω scanθmax = 25.7°, θmin = 3.4°
Absorption correction: multi-scan
(X-Area; Stoe & Cie, 2001)
h = 2422
Tmin = 0.664, Tmax = 1.000k = 1111
18262 measured reflectionsl = 2428
4311 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: mixed
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0335P)2]
where P = (Fo2 + 2Fc2)/3
4311 reflections(Δ/σ)max < 0.001
399 parametersΔρmax = 0.16 e Å3
547 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.64494 (9)0.3740 (2)0.25570 (9)0.0342 (5)
O10.58538 (11)0.4927 (3)0.34826 (13)0.0696 (7)
H10.5815 (18)0.459 (4)0.3119 (17)0.091 (15)*
O40.50732 (14)0.3007 (3)0.23995 (15)0.0555 (13)0.642 (5)
H40.4870420.3376920.2127170.083*0.642 (5)
O4'0.5371 (3)0.1431 (7)0.1729 (3)0.081 (3)0.358 (5)
H4'0.4999290.1077870.1806380.121*0.358 (5)
C10.66421 (11)0.2731 (2)0.30042 (11)0.0317 (6)
H1A0.7030340.2171950.2869520.038*
C20.61862 (13)0.3081 (3)0.20410 (13)0.0457 (7)
H2A0.6539720.2513140.1863480.055*
H2B0.6048630.3791580.1764340.055*
C30.55947 (13)0.2191 (3)0.21893 (13)0.0464 (7)
H30.5438340.1706130.1839320.056*0.642 (5)
H3'0.5222830.2769200.2342180.056*0.358 (5)
C40.58025 (14)0.1144 (3)0.26241 (13)0.0477 (8)
H4A0.5411510.0579740.2733390.057*
H4B0.6144960.0528320.2459230.057*
C70.70390 (12)0.4597 (3)0.24109 (13)0.0418 (7)
H7A0.7396010.3999470.2257350.050*
H7B0.7211590.5033540.2761250.050*
C110.68338 (11)0.3498 (2)0.35392 (11)0.0330 (6)
C120.64143 (14)0.4514 (3)0.37613 (13)0.0475 (8)
C130.65800 (17)0.5142 (3)0.42826 (15)0.0586 (9)
H130.6295260.5826400.4437490.070*
C140.71505 (17)0.4768 (3)0.45672 (15)0.0584 (9)
H140.7253690.5191520.4919980.070*
C150.75702 (15)0.3802 (3)0.43525 (13)0.0495 (8)
H150.7966740.3556560.4550110.059*
C160.74101 (12)0.3179 (3)0.38395 (12)0.0378 (6)
H160.7706270.2509330.3688710.045*
C210.68809 (11)0.5699 (3)0.19816 (11)0.0350 (6)
C220.63905 (13)0.6682 (3)0.20784 (12)0.0419 (7)
H220.6150870.6667220.2426760.050*
C230.62426 (13)0.7679 (3)0.16811 (13)0.0433 (7)
H230.5903970.8337290.1757480.052*
C240.65872 (13)0.7720 (3)0.11727 (12)0.0403 (7)
O20.64754 (11)0.8643 (2)0.07398 (9)0.0589 (6)
C270.5966 (7)0.9663 (14)0.0835 (5)0.072 (3)0.82 (4)
H27A0.5533740.9210160.0890000.108*0.82 (4)
H27B0.5941041.0274740.0505100.108*0.82 (4)
H27C0.6078021.0198930.1174170.108*0.82 (4)
C27'0.5806 (14)0.923 (6)0.070 (2)0.065 (8)0.18 (4)
H27D0.5671010.9580410.1074420.097*0.18 (4)
H27E0.5489810.8519320.0579000.097*0.18 (4)
H27F0.5805850.9981250.0425190.097*0.18 (4)
C250.70868 (13)0.6764 (3)0.10696 (13)0.0439 (7)
H250.7332590.6795250.0724470.053*
C260.72262 (12)0.5768 (3)0.14690 (12)0.0395 (7)
H260.7566250.5113380.1392120.047*
N20.60744 (9)0.1826 (2)0.31273 (10)0.0383 (6)
O30.41646 (11)0.2103 (2)0.46241 (12)0.0543 (8)0.807 (3)
C310.56972 (15)0.0008 (3)0.37903 (16)0.0347 (8)0.807 (3)
C320.56991 (16)0.1417 (3)0.38677 (16)0.0373 (8)0.807 (3)
H320.6063690.1936880.3724500.045*0.807 (3)
C330.51887 (15)0.2086 (3)0.41458 (15)0.0410 (9)0.807 (3)
H330.5204690.3052160.4195930.049*0.807 (3)
C340.4650 (3)0.1337 (7)0.4353 (4)0.0414 (12)0.807 (3)
C350.46267 (16)0.0054 (4)0.42766 (18)0.0427 (9)0.807 (3)
H350.4257280.0569230.4414230.051*0.807 (3)
C360.51522 (17)0.0710 (4)0.39942 (16)0.0433 (9)0.807 (3)
H360.5134010.1674980.3941150.052*0.807 (3)
C370.3584 (3)0.1389 (5)0.4817 (3)0.0555 (14)0.807 (3)
H37A0.3278390.2037310.5001090.083*0.807 (3)
H37B0.3715690.0678900.5089330.083*0.807 (3)
H37C0.3358760.0961220.4492190.083*0.807 (3)
C80.6279 (2)0.0714 (4)0.35223 (17)0.0386 (10)0.807 (3)
H8A0.6563370.1109310.3825230.046*0.807 (3)
H8B0.6551740.0035720.3311430.046*0.807 (3)
O3'0.3808 (5)0.0422 (11)0.4830 (5)0.051 (2)0.193 (3)
C31'0.5554 (8)0.0528 (13)0.3947 (7)0.038 (2)0.193 (3)
C32'0.5373 (7)0.0836 (13)0.3961 (7)0.0423 (18)0.193 (3)
H32'0.5626690.1506860.3763200.051*0.193 (3)
C33'0.4778 (15)0.123 (3)0.4290 (18)0.046 (2)0.193 (3)
H33'0.4657840.2163260.4333550.055*0.193 (3)
C34'0.4398 (7)0.0205 (13)0.4532 (7)0.045 (2)0.193 (3)
C35'0.4582 (6)0.1174 (12)0.4500 (6)0.041 (2)0.193 (3)
H35'0.4316500.1860240.4675960.049*0.193 (3)
C36'0.5156 (5)0.1526 (13)0.4208 (6)0.039 (2)0.193 (3)
H36'0.5283060.2463670.4184900.047*0.193 (3)
C37'0.3661 (13)0.1853 (19)0.4926 (14)0.060 (5)0.193 (3)
H37D0.3240240.1933970.5137280.089*0.193 (3)
H37E0.3618210.2324640.4560300.089*0.193 (3)
H37F0.4023420.2270540.5146110.089*0.193 (3)
C8'0.6183 (8)0.1040 (18)0.3664 (6)0.039 (3)0.193 (3)
H8C0.6425060.1634980.3936050.047*0.193 (3)
H8D0.6473090.0243470.3580230.047*0.193 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0291 (10)0.0343 (11)0.0394 (14)0.0033 (9)0.0047 (10)0.0072 (11)
O10.0639 (14)0.0682 (15)0.077 (2)0.0357 (12)0.0098 (14)0.0027 (15)
O40.0386 (18)0.053 (2)0.075 (3)0.0011 (15)0.0129 (17)0.0146 (18)
O4'0.080 (5)0.077 (5)0.085 (6)0.021 (4)0.035 (4)0.014 (4)
C10.0294 (12)0.0279 (13)0.0378 (17)0.0049 (11)0.0013 (11)0.0018 (12)
C20.0453 (16)0.0478 (18)0.0440 (19)0.0053 (13)0.0089 (13)0.0045 (15)
C30.0449 (16)0.0424 (16)0.052 (2)0.0054 (14)0.0148 (14)0.0031 (15)
C40.0491 (16)0.0340 (15)0.060 (2)0.0079 (13)0.0141 (15)0.0048 (15)
C70.0340 (13)0.0427 (17)0.0488 (19)0.0053 (12)0.0003 (12)0.0103 (14)
C110.0372 (13)0.0249 (13)0.0370 (16)0.0019 (11)0.0059 (12)0.0048 (12)
C120.0516 (17)0.0371 (16)0.054 (2)0.0098 (13)0.0098 (15)0.0084 (15)
C130.082 (2)0.0371 (17)0.057 (2)0.0042 (17)0.0285 (19)0.0050 (16)
C140.080 (2)0.048 (2)0.047 (2)0.0206 (18)0.0063 (19)0.0047 (17)
C150.0560 (17)0.0540 (18)0.0387 (18)0.0203 (16)0.0016 (15)0.0011 (16)
C160.0343 (14)0.0401 (15)0.0390 (17)0.0060 (12)0.0031 (12)0.0030 (14)
C210.0317 (13)0.0351 (14)0.0383 (17)0.0052 (12)0.0003 (12)0.0018 (13)
C220.0464 (15)0.0445 (16)0.0348 (17)0.0016 (13)0.0090 (13)0.0006 (14)
C230.0508 (17)0.0333 (15)0.0457 (19)0.0063 (13)0.0039 (14)0.0010 (14)
C240.0474 (16)0.0311 (14)0.0425 (19)0.0078 (13)0.0014 (14)0.0049 (14)
O20.0808 (14)0.0443 (12)0.0514 (15)0.0060 (11)0.0072 (11)0.0169 (11)
C270.098 (5)0.041 (4)0.076 (5)0.015 (4)0.000 (3)0.023 (3)
C27'0.095 (9)0.034 (15)0.065 (19)0.006 (9)0.001 (9)0.019 (14)
C250.0477 (16)0.0453 (17)0.0389 (18)0.0069 (14)0.0129 (13)0.0034 (14)
C260.0375 (14)0.0373 (15)0.0438 (19)0.0013 (12)0.0046 (12)0.0047 (14)
N20.0321 (11)0.0356 (12)0.0473 (15)0.0055 (10)0.0070 (10)0.0145 (10)
O30.0421 (13)0.0374 (13)0.084 (2)0.0022 (11)0.0177 (13)0.0050 (13)
C310.0315 (16)0.0299 (17)0.043 (2)0.0002 (14)0.0070 (14)0.0052 (16)
C320.0328 (16)0.0299 (16)0.049 (2)0.0019 (14)0.0058 (15)0.0022 (16)
C330.0390 (16)0.0256 (16)0.059 (2)0.0024 (14)0.0003 (15)0.0016 (16)
C340.036 (2)0.036 (2)0.052 (3)0.0054 (18)0.000 (2)0.0018 (18)
C350.0372 (17)0.0326 (17)0.058 (2)0.0028 (14)0.0021 (16)0.0016 (16)
C360.0425 (18)0.0286 (18)0.059 (2)0.0006 (16)0.0040 (17)0.0074 (17)
C370.049 (2)0.055 (3)0.063 (3)0.008 (2)0.016 (2)0.011 (3)
C80.0358 (18)0.031 (2)0.049 (2)0.0034 (15)0.0056 (16)0.0100 (18)
O3'0.053 (4)0.044 (4)0.057 (5)0.006 (4)0.006 (4)0.000 (4)
C31'0.034 (3)0.030 (3)0.049 (4)0.000 (3)0.010 (3)0.009 (3)
C32'0.041 (3)0.032 (3)0.054 (4)0.002 (3)0.002 (3)0.004 (3)
C33'0.043 (4)0.035 (4)0.060 (4)0.007 (3)0.003 (4)0.003 (4)
C34'0.043 (4)0.036 (4)0.056 (4)0.004 (3)0.002 (3)0.002 (3)
C35'0.039 (4)0.033 (4)0.051 (5)0.002 (3)0.011 (4)0.003 (4)
C36'0.036 (4)0.031 (4)0.050 (5)0.000 (4)0.013 (4)0.006 (4)
C37'0.056 (9)0.048 (7)0.075 (10)0.008 (6)0.001 (8)0.004 (6)
C8'0.034 (4)0.031 (5)0.051 (4)0.001 (4)0.008 (4)0.011 (4)
Geometric parameters (Å, º) top
N1—C21.472 (3)C27—H27C0.9800
N1—C71.486 (3)C27'—H27D0.9800
N1—C11.491 (3)C27'—H27E0.9800
O1—C121.360 (4)C27'—H27F0.9800
O1—H10.92 (4)C25—C261.380 (4)
O4—C31.402 (4)C25—H250.9500
O4—H40.8400C26—H260.9500
O4'—C31.387 (6)N2—C81.486 (4)
O4'—H4'0.8400N2—C8'1.494 (8)
C1—N21.467 (3)O3—C341.382 (5)
C1—C111.514 (4)O3—C371.428 (5)
C1—H1A1.0000C31—C361.381 (5)
C2—C31.508 (4)C31—C321.385 (4)
C2—H2A0.9900C31—C81.499 (5)
C2—H2B0.9900C32—C331.377 (4)
C3—C41.504 (4)C32—H320.9500
C3—H31.0000C33—C341.389 (7)
C3—H3'1.0000C33—H330.9500
C4—N21.463 (4)C34—C351.369 (7)
C4—H4A0.9900C35—C361.398 (5)
C4—H4B0.9900C35—H350.9500
C7—C211.508 (4)C36—H360.9500
C7—H7A0.9900C37—H37A0.9800
C7—H7B0.9900C37—H37B0.9800
C11—C161.387 (3)C37—H37C0.9800
C11—C121.400 (4)C8—H8A0.9900
C12—C131.411 (4)C8—H8B0.9900
C13—C141.372 (4)O3'—C34'1.388 (14)
C13—H130.9500O3'—C37'1.443 (15)
C14—C151.359 (4)C31'—C32'1.378 (12)
C14—H140.9500C31'—C36'1.400 (12)
C15—C161.389 (4)C31'—C8'1.508 (15)
C15—H150.9500C32'—C33'1.47 (3)
C16—H160.9500C32'—H32'0.9500
C21—C221.390 (4)C33'—C34'1.38 (4)
C21—C261.392 (4)C33'—H33'0.9500
C22—C231.381 (4)C34'—C35'1.396 (12)
C22—H220.9500C35'—C36'1.380 (11)
C23—C241.382 (4)C35'—H35'0.9500
C23—H230.9500C36'—H36'0.9500
C24—O21.378 (3)C37'—H37D0.9800
C24—C251.387 (4)C37'—H37E0.9800
O2—C271.440 (5)C37'—H37F0.9800
O2—C27'1.459 (16)C8'—H8C0.9900
C27—H27A0.9800C8'—H8D0.9900
C27—H27B0.9800
C2—N1—C7109.8 (2)O2—C27'—H27D109.5
C2—N1—C1112.8 (2)O2—C27'—H27E109.5
C7—N1—C1109.24 (18)H27D—C27'—H27E109.5
C12—O1—H1114 (2)O2—C27'—H27F109.5
C3—O4—H4109.5H27D—C27'—H27F109.5
C3—O4'—H4'109.5H27E—C27'—H27F109.5
N2—C1—N1109.64 (18)C26—C25—C24119.9 (3)
N2—C1—C11109.2 (2)C26—C25—H25120.0
N1—C1—C11109.1 (2)C24—C25—H25120.0
N2—C1—H1A109.6C25—C26—C21121.6 (2)
N1—C1—H1A109.6C25—C26—H26119.2
C11—C1—H1A109.6C21—C26—H26119.2
N1—C2—C3109.9 (2)C4—N2—C1113.6 (2)
N1—C2—H2A109.7C4—N2—C8106.1 (2)
C3—C2—H2A109.7C1—N2—C8110.4 (2)
N1—C2—H2B109.7C4—N2—C8'120.4 (8)
C3—C2—H2B109.7C1—N2—C8'111.3 (7)
H2A—C2—H2B108.2C34—O3—C37117.1 (4)
O4'—C3—C4105.0 (4)C36—C31—C32117.3 (3)
O4—C3—C4110.5 (3)C36—C31—C8121.4 (3)
O4'—C3—C2112.2 (4)C32—C31—C8121.2 (3)
O4—C3—C2109.8 (3)C33—C32—C31122.0 (3)
C4—C3—C2109.3 (2)C33—C32—H32119.0
O4—C3—H3109.0C31—C32—H32119.0
C4—C3—H3109.0C32—C33—C34119.5 (4)
C2—C3—H3109.0C32—C33—H33120.2
O4'—C3—H3'110.1C34—C33—H33120.2
C4—C3—H3'110.1C35—C34—O3124.9 (5)
C2—C3—H3'110.1C35—C34—C33120.1 (4)
N2—C4—C3110.2 (2)O3—C34—C33115.0 (5)
N2—C4—H4A109.6C34—C35—C36119.3 (4)
C3—C4—H4A109.6C34—C35—H35120.4
N2—C4—H4B109.6C36—C35—H35120.4
C3—C4—H4B109.6C31—C36—C35121.8 (3)
H4A—C4—H4B108.1C31—C36—H36119.1
N1—C7—C21112.9 (2)C35—C36—H36119.1
N1—C7—H7A109.0O3—C37—H37A109.5
C21—C7—H7A109.0O3—C37—H37B109.5
N1—C7—H7B109.0H37A—C37—H37B109.5
C21—C7—H7B109.0O3—C37—H37C109.5
H7A—C7—H7B107.8H37A—C37—H37C109.5
C16—C11—C12117.8 (3)H37B—C37—H37C109.5
C16—C11—C1121.6 (2)N2—C8—C31113.1 (3)
C12—C11—C1120.6 (2)N2—C8—H8A109.0
O1—C12—C11121.6 (3)C31—C8—H8A109.0
O1—C12—C13119.0 (3)N2—C8—H8B109.0
C11—C12—C13119.4 (3)C31—C8—H8B109.0
C14—C13—C12120.3 (3)H8A—C8—H8B107.8
C14—C13—H13119.8C34'—O3'—C37'113.6 (14)
C12—C13—H13119.8C32'—C31'—C36'120.7 (12)
C15—C14—C13121.1 (3)C32'—C31'—C8'123.3 (12)
C15—C14—H14119.5C36'—C31'—C8'116.0 (11)
C13—C14—H14119.5C31'—C32'—C33'118.4 (17)
C14—C15—C16119.0 (3)C31'—C32'—H32'120.8
C14—C15—H15120.5C33'—C32'—H32'120.8
C16—C15—H15120.5C34'—C33'—C32'119 (2)
C11—C16—C15122.4 (3)C34'—C33'—H33'120.7
C11—C16—H16118.8C32'—C33'—H33'120.7
C15—C16—H16118.8C33'—C34'—O3'124.6 (16)
C22—C21—C26117.3 (2)C33'—C34'—C35'121.9 (17)
C22—C21—C7121.9 (2)O3'—C34'—C35'113.5 (11)
C26—C21—C7120.8 (2)C36'—C35'—C34'119.1 (12)
C23—C22—C21121.7 (3)C36'—C35'—H35'120.4
C23—C22—H22119.1C34'—C35'—H35'120.4
C21—C22—H22119.1C35'—C36'—C31'121.2 (11)
C22—C23—C24120.0 (2)C35'—C36'—H36'119.4
C22—C23—H23120.0C31'—C36'—H36'119.4
C24—C23—H23120.0O3'—C37'—H37D109.5
O2—C24—C23125.3 (2)O3'—C37'—H37E109.5
O2—C24—C25115.2 (3)H37D—C37'—H37E109.5
C23—C24—C25119.4 (3)O3'—C37'—H37F109.5
C24—O2—C27116.8 (4)H37D—C37'—H37F109.5
C24—O2—C27'116.8 (16)H37E—C37'—H37F109.5
O2—C27—H27A109.5N2—C8'—C31'115.0 (11)
O2—C27—H27B109.5N2—C8'—H8C108.5
H27A—C27—H27B109.5C31'—C8'—H8C108.5
O2—C27—H27C109.5N2—C8'—H8D108.5
H27A—C27—H27C109.5C31'—C8'—H8D108.5
H27B—C27—H27C109.5H8C—C8'—H8D107.5
C2—N1—C1—N254.3 (3)C22—C21—C26—C250.4 (4)
C7—N1—C1—N2176.7 (2)C7—C21—C26—C25179.7 (2)
C2—N1—C1—C11173.8 (2)C3—C4—N2—C157.1 (3)
C7—N1—C1—C1163.8 (3)C3—C4—N2—C8178.6 (2)
C7—N1—C2—C3179.1 (2)C3—C4—N2—C8'167.1 (7)
C1—N1—C2—C357.0 (3)N1—C1—N2—C454.3 (3)
N1—C2—C3—O4'173.5 (4)C11—C1—N2—C4173.8 (2)
N1—C2—C3—O463.9 (3)N1—C1—N2—C8173.5 (2)
N1—C2—C3—C457.5 (3)C11—C1—N2—C867.1 (3)
O4'—C3—C4—N2177.8 (4)N1—C1—N2—C8'165.8 (8)
O4—C3—C4—N263.8 (3)C11—C1—N2—C8'46.4 (8)
C2—C3—C4—N257.2 (3)C36—C31—C32—C331.3 (5)
C2—N1—C7—C2158.8 (3)C8—C31—C32—C33175.7 (3)
C1—N1—C7—C21177.1 (2)C31—C32—C33—C340.6 (7)
N2—C1—C11—C16107.0 (3)C37—O3—C34—C352.8 (10)
N1—C1—C11—C16133.2 (2)C37—O3—C34—C33176.7 (5)
N2—C1—C11—C1269.9 (3)C32—C33—C34—C350.4 (9)
N1—C1—C11—C1249.9 (3)C32—C33—C34—O3179.9 (5)
C16—C11—C12—O1177.4 (3)O3—C34—C35—C36179.9 (6)
C1—C11—C12—O15.6 (4)C33—C34—C35—C360.6 (10)
C16—C11—C12—C131.7 (4)C32—C31—C36—C351.1 (6)
C1—C11—C12—C13175.3 (3)C8—C31—C36—C35175.9 (4)
O1—C12—C13—C14178.5 (3)C34—C35—C36—C310.2 (7)
C11—C12—C13—C140.6 (4)C4—N2—C8—C3172.2 (4)
C12—C13—C14—C150.7 (5)C1—N2—C8—C31164.2 (3)
C13—C14—C15—C160.7 (4)C36—C31—C8—N243.1 (5)
C12—C11—C16—C151.8 (4)C32—C31—C8—N2140.1 (4)
C1—C11—C16—C15175.3 (2)C36'—C31'—C32'—C33'4 (3)
C14—C15—C16—C110.5 (4)C8'—C31'—C32'—C33'175 (2)
N1—C7—C21—C2257.9 (3)C31'—C32'—C33'—C34'5 (4)
N1—C7—C21—C26122.3 (3)C32'—C33'—C34'—O3'177 (2)
C26—C21—C22—C230.8 (4)C32'—C33'—C34'—C35'4 (4)
C7—C21—C22—C23179.3 (2)C37'—O3'—C34'—C33'7 (3)
C21—C22—C23—C240.2 (4)C37'—O3'—C34'—C35'172.6 (18)
C22—C23—C24—O2178.5 (3)C33'—C34'—C35'—C36'1 (3)
C22—C23—C24—C250.9 (4)O3'—C34'—C35'—C36'179.2 (13)
C23—C24—O2—C271.4 (10)C34'—C35'—C36'—C31'0 (2)
C25—C24—O2—C27179.2 (9)C32'—C31'—C36'—C35'2 (2)
C23—C24—O2—C27'26 (3)C8'—C31'—C36'—C35'177.4 (13)
C25—C24—O2—C27'153 (3)C4—N2—C8'—C31'66.0 (14)
O2—C24—C25—C26178.2 (2)C1—N2—C8'—C31'157.2 (11)
C23—C24—C25—C261.3 (4)C32'—C31'—C8'—N2108.9 (18)
C24—C25—C26—C210.6 (4)C36'—C31'—C8'—N272.1 (19)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C31–C36 ring (major occupancy component).
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.92 (4)2.01 (4)2.740 (3)135 (3)
C27—H27B···O3i0.982.583.342 (10)134
O4—H4···Cg4ii0.842.963.723 (4)151
O4—H4···O1iii0.842.152.898 (6)148
C27—H27D···O4iv0.982.453.35 (6)153
C35—H35···O2iii0.952.553.254 (13)131
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1, z.
 

Funding information

We acknowledge the Facultad de Ciencias de la Universidad Nacional de Colombia, Sede Bogotá, for financial support of this work (research project No. 53864).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDe Lucca, G. V., Liang, J., Aldrich, P. E., Calabrese, J., Cordova, B., Klabe, R. M., Rayner, M. M. & Chang, C.-H. (1997). J. Med. Chem. 40, 1707–1709.  CSD CrossRef CAS PubMed Google Scholar
First citationEnders, D., Wortmann, L., Dücker, B. & Raabe, G. (1999). Helv. Chim. Acta, 82, 1195–1201.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKoll, A., Karpfen, A. & Wolschann, P. (2006). J. Mol. Struct. 790, 55–64.  Web of Science CrossRef CAS Google Scholar
First citationMakkos, E., Bodrogi, D. & Szieberth, D. (2021). Phys. Chem. Chem. Phys. 23, 24738–24749.  CrossRef CAS PubMed Google Scholar
First citationMendes, L. L., Fernandes, C., Franco, R. W. A., Lube, L. M., Wei, S.-H., Reibenspies, J. H., Darensbourg, D. J. & Horn, A. Jr (2014). J. Braz. Chem. Soc. 25, 1050–1061.  CAS Google Scholar
First citationRivera, A., Miranda-Carvajal, I., Osorio, H. J., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o687–o688.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Miranda-Carvajal, I. & Ríos-Motta, J. (2016). Int. J. Chem. 8, 62–68.  CrossRef CAS Google Scholar
First citationRivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2016). Acta Cryst. E72, 1353–1355.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWiberg, K. B., Bailey, W. F., Lambert, K. M. & Stempel, Z. D. (2018). J. Org. Chem. 83, 5242–5255.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds