research communications
10M4(AsO4)9 (M = Zr, Hf)
syntheses and single-crystal structures of CsNaaDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The isostructural compounds caesium decasodium tetrazirconium nonaarsenate, CsNa10Zr4(AsO4)9, and caesium decasodium tetrahafnium nonaarsenate, CsNa10Hf4(AsO4)9, arose as unexpected single-crystal products from the reactions of Na2CO3, MO2 (M = Zr, Hf) and As2O5 in a eutectic of NaCl and CsCl. They consist of MO6 octahedra and AsO4 tetrahedra sharing vertices to generate three-dimensional polyhedral networks encapsulating the caesium and sodium ions. The MO6 groups share all their vertices with adjacent As atoms but the As atoms have one or two `terminal' O atoms not bonded to Zr or Hf. The Cs+ ion adopts a squashed octahedral geometry and the coordination polyhedra of the partially occupied sodium ions are variously trigonal bipyramidal, tetrahedral, square pyramidal and trigonal pyramidal. Site symmetries: Cs ; M 3; As 1 and 2; O 1; Na 1, 2 and 3. The M = Zr crystal was refined as an obverse/reverse rhombohedral twin.
Keywords: crystal structure; zirconium; hafnium; arsenate; ionic conduction.
1. Chemical context
Potassium titanyl phosphate (KTiOPO4; KTP) has long been recognized as an important non-linear optical (NLO) material (Zumsteg et al., 1976) due to its unique combination of desirable physical properties including `a large hyperpolarizability, excellent temperature window, wide wavelength for phase matching and outstanding crystal stability' (Stucky et al., 1989). Work continues to improve the performance of KTP waveguides in optoelectronics (Kores et al., 2021) and it is finding new uses as a frequency doubler (to 532 nm green light) for 1064 nm Nd–YAG laser radiation in many areas of medicine (Shim & Kim, 2021; McGarey et al., 2021). So far as crystal chemistry is concerned, the KTiOPO4 structure type (space group Pna21, a ≃ 12.8, b ≃ 6.4, c ≃ 10.6 Å, Z = 8, Z′ = 2) is remarkably accommodating with respect to partial or complete isovalent or aleovalent substitution at the potassium (Na+, Rb+, Cs+, Tl+, NH4+…), titanium (ZrIV, HfIV, VIV, SnIV, SbV, Ga3+, Fe3+, Al3+, Cr3+…), phosphorus (AsV, SiIV, GeIV) and even oxygen (OH−, F−) sites and comprehensive reviews on its substitution chemistry have appeared (Sorokina & Voronkova, 2007).
In an attempt to grow single crystals of the possible new KTP analogues NaZrOAsO4 and NaHfOAsO4 by reacting Na2CO3, MO2 (M = Zr, Hf) and As2O5 in a low-melting of NaCl and CsCl, the isostructural title compounds CsNa10Zr4(AsO4)9 (I) and CsNa10Hf4(AsO4)9 (II) were the unexpected result and their crystal structures are now described.
2. Structural commentary
Compounds (I) and (II) are isostructural and crystallize in the rhombohedral Rc (No. 167) with an unusually long c unit-cell parameter of nearly 77 Å. This is of course partly a consequence of our choosing the hexagonal (R-centred) setting of the [the equivalent primitive rhombohedral lattice for (I) has a = b = c ≃ 26.21 Å and α = β = γ ≃ 20.3°] but even so, it is notable that the l index runs well into three figures for (I) in the R-centred setting. This description will focus on the structure of (I) and note significant differences for (II) where applicable.
The . It consists of two zirconium atoms (both with 3 on Wyckoff site 12c), two arsenic atoms [As1 on a general position (36f) and As2 with 2 (18e)] and six oxygen atoms, one of which is disordered over two adjacent sites (all lying on general positions, 36f), which leads to the unusual 4:9 stoichiometry for the ZrIV and AsO43– moieties with a net charge of −11. The structure of (I) is completed by a Cs+ ion (site symmetry , 6b) and four partly occupied sodium cations [one on a general position (36f), one with 2 (18e) and two with 3 (12c)]. To maintain charge balance, the four sodium ions must have a total occupancy of 10 based on Z = 6 (full occupancy of the four sites would give 13 sodium ions per caesium ion).
of (I), expanded to show the full coordination polyhedra of the zirconium and arsenic atoms, is shown in Fig. 1Both zirconium atoms adopt almost regular ZrO6 octahedral geometries (Müller-Buschbaum, 2010) when crystal symmetry is taken into account: the mean Zr1—O separation (to 3 × O3 and 3 × O5) is 2.070 Å and the quadratic elongation and angular variance are 1.001 and 4.43°2, respectively (Robinson et al., 1971). Equivalent data for Zr2 (bonded to to 3 × O2 and 3 × O4) are 2.072 Å, 1.003 and 9.86°2, respectively. The `extrapolated' (Brese & O'Keeffe, 1991) bond-valence sums (BVS) in valence units are 4.10 and 4.07 for Zr1 and Zr2, respectively, in acceptable agreement with the expected value of 4.00. The mean Hf—O distances in (II) are 2.062 Å for Hf1 (BVS = 4.13, quadratic elongation = 1.002, angular variance = 5.38°2) and 2.065 Å for Hf2 (4.10, 1.004, 13.20°2). It may be seen that the Hf—O bonds are slightly shorter than the Zr—O bonds, which is in accordance with ionic radii data (Shannon, 1976): r6(ZrIV) = 0.72 (6 = six-coordinate) and r6(HfIV) = 0.71 Å and is presumed to arise from the lanthanide contraction effect.
The As1 atom in (I) is surrounded by four oxygen atoms (O1–O4) in the geometry of a slightly distorted tetrahedron [mean As—O = 1.677 Å, spread of O—As—O angles = 103.0 (2)–114.9 (2)°, τ4 (Yang et al., 2007) = 0.95]. Atom As2 is also tetrahedral (to 2 × O5 and 2 × O6), with the latter O atom disordered over two adjacent sites in almost equal occupancies of 0.45 (3):0.55 (3) [O6A⋯O6B = 0.909 (13) Å]. Of the six oxygen atoms in the structure of (I), four of them (O2–O5) bridge zirconium and arsenic atoms with a mean Zr—O—As bond angle of 141.5° [equivalent mean Hf—O—As bond angle in (II) = 140.4°] and two (O1 and O6) are `terminal' and only bonded to arsenic: all of the O atoms also form one or more bonds to nearby caesium and/or sodium ions.
The caesium ion in (I) adopts a grossly squashed octahedral coordination to six O1 atoms with Cs1—O1 = 3.235 (4) Å: the cis O—Cs—O bond angles are compressed to 62.30 (10) or expanded to 117.70 (10)°: the Cs1 BVS of 0.61 compared to an expected value of 1.00 suggests significant underbonding. The interpretation of the sodium-ion coordination polyhedra are complicated by the positional disorder of atom O6 but can be described as distorted trigonal bipyramidal (Na1), very distorted tetrahedral (Na2), square-based pyramidal (Na3) and squashed trigonal pyramidal (Na4). It is notable that Na4 is only three coordinate but similar NaO3 geometries have been observed in dehydrated sodium aluminosilicate zeolites (Adams et al., 1982).
The extended structure of (I) (Fig. 2) can be conceptually broken down into two different types of layers lying parallel to (001). The first layer (type `A') occurs at z ≃ 0, 1/6, 1/3, 1/2, 2/3 and 5/6 with adjacent A-layers laterally displaced by 1/3 in x and 2/3 in y and consists of the Zr2 and As1 centred polyhedra as well as the caesium ions. Fig. 3 shows that each Zr2O6 octahedron is connected by two As1O4 tetrahedra (via O2 and O4) to result in a `honeycomb' array of polyhedral 12-rings (six octahedra and 12 tetrahedra) encapsulating the Cs+ ions. Atom O3 of the arsenate group provides the link to the type `B' layers on either side of the A layer. This inter-octahedral connectivity via O3 leads to a distinctive `lantern' motif (Fig. 4) in which three tetrahedra link two octahedra [Zr1⋯Zr2 = 4.886 (2); Hf1⋯Hf2 in (II) = 4.863 (2) Å]: similar `lanterns' are a feature of the polyhedral connectivity in the scandium tungstate [M2(XO4)3] (Abrahams & Bernstein, 1966), Nasicon [AM2(XO4)3] (Anantharamulu et al., 2011) and langbeinite [A2M2(XO4)3] (Norberg, 2002) structure types but they differ from (I) because all the vertices of the constituent tetrahedra in these structures link to adjacent octahedra, hence their 2:3 M:X ratios compared to the 4:9 ratio for (I).
The B layers in (I) (Fig. 5) lie at z ≃ 1/12, 1/4, 5/12, 7/12, 3/4 and 11/12 and are associated with the Zr1 and As2 species. These also feature polyhedral 12-rings (six octahedra and six tetrahedra) but only one As2 tetrahedron (with two terminal As2—O6 bonds) links adjacent Zr1 octahedra via atom O5. There are numerous sodium sites associated with the B layers. The disorder of the sodium ions in the vicinities of the B layers and possible small [110] channels (see Fig. 2) suggests the possibility of (Norberg, 2002). An analysis of the stucture with PLATON (Spek, 2020) with the sodium ions removed indicated that there was 119.4 Å3 of free space per (∼2.1%).
3. Database survey
A survey of the Inorganic et al., 2002) revealed 11 matches for crystal structures containing Zr + As + O, the majority of these being Nasicon (Anantharamulu et al., 2011) derivatives such as NaZr2(AsO4)3 (Chakir et al., 2003) or KZr2(AsO4)3 (Elbrahimi & Durand, 1990) as well as one KTP analogue, viz. RbZrOAsO4 (Simpson & Harrison, 2004). There were no hits for the combination of Hf + As + O.
Database (ICSD) (Belsky4. Synthesis and crystallization
Compound (I) was prepared by mixing 1.00 g of Na2CO3, 0.581 g of ZrO2 and 1.399 g of As2O5 (Na:Zr:As molar ratio ≃ 4:1:3) in an agate mortar: 1.00 g of this mixture was added to 3.0 g of a eutectic-melt mixture (Tmelt ≃ 500°C) of NaCl/CsCl (∼0.35:0.65 mol) and placed in a flat-bottom alumina crucible. The crucible was rapidly heated to 500°C in a muffle furnace and then ramped at 12°C min−1 to 700°C and cooled at the same rate to 400°C and then removed from the furnace and left to cool. The gummy white product was washed with copious amounts of hot water followed by acetone to result in a mass of tiny colourless rods of (I). Compound (II) was made in the same way starting from a pre-mixture of 1.00 g Na2CO3, 1.12 g HfO2 and 1.57 g As2O5 and tiny colourless rods of (II) were the result.
Caution! Arsenic compounds are highly toxic and carcinogenic. Take all appropriate safety precautions, especially with respect to dust contamination.
5. Refinement
Crystal data, data collection and structure . The crystal chosen for data collection for (I) was found to be twinned over its rhombohedral obverse and reverse settings (Herbst-Irmer & Sheldrick, 2002) in a 0.797 (3):0.203 (3) ratio, which was processed as a SHELXL HKLF 5 To ensure charge balance, the occupancies of the four partially occupied sodium sites must sum to 10.0 Na per caesium ion and this was achieved by using a SUMP card (linear free variable restraint) in SHELXL, as unrestrained refinements tended to drift to a collective occupancy of above 10 (full occupancy of the four sodium sites would give 13 Na to 1 Cs). This needed cautious damped cycles to begin with, but as the converged, the damping could be removed to give refined fractional site occupancies of Na1 = 0.852 (5), Na2 = 0.860 (9), Na3 = 0.731 (12) and Na4 = 0.423 (11) for (I) and Na1 = 0.887 (7), Na2 = 0.846 (11), Na3 = 0.735 (16) and Na4 = 0.337 (14) for (II). The final difference map for (II) features electron density peaks of ∼2 e Å−3 near some of the sodium ions, perhaps suggesting that they are localizing over split multiple sites at low temperatures, but efforts to model this did not lead to satisfactory refinements. The value of Ueq for Na4 is small, which might indicate partial occupancy of caesium on this site (i.e., a formula of Cs1+xNa10-xHf4(AsO4)9, but attempts to model this were inconclusive.
details are summarized in Table 1Supporting information
https://doi.org/10.1107/S2056989022006338/pk2665sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022006338/pk2665Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989022006338/pk2665IIsup3.hkl
Data collection: SMART (Bruker, 1999) for (I); DENZO/SCALEPACK (Otwinowski & Minor, 1997) for (II). Cell
SAINT (Bruker, 1999) for (I); DENZO/SCALEPACK (Otwinowski & Minor, 1997) for (II). Data reduction: SAINT (Bruker, 1999) for (I); DENZO/SCALEPACK (Otwinowski & Minor, 1997) for (II). Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for (I); SHELXS97 (Sheldrick, 2008) for (II). For both structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and ATOMS (Dowty, 2005); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015) and publCIF (Westrip, 2010).CsNa10Zr4(AsO4)9 | Dx = 3.476 Mg m−3 |
Mr = 1977.97 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 2999 reflections |
a = 9.2218 (5) Å | θ = 2.6–30.8° |
c = 76.982 (5) Å | µ = 10.07 mm−1 |
V = 5669.6 (7) Å3 | T = 293 K |
Z = 6 | Prism, colourless |
F(000) = 5460 | 0.10 × 0.10 × 0.10 mm |
Bruker SMART CCD diffractometer | 1694 reflections with I > 2σ(I) |
ω scans | θmax = 32.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −12→12 |
Tmin = 0.350, Tmax = 0.495 | k = −13→13 |
2288 measured reflections | l = 0→114 |
2288 independent reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0452P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.093 | (Δ/σ)max < 0.001 |
S = 1.00 | Δρmax = 1.85 e Å−3 |
2288 reflections | Δρmin = −1.63 e Å−3 |
112 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component obverse/reverse twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cs1 | 0.000000 | 0.000000 | 0.000000 | 0.0381 (2) | |
Na1 | 0.3350 (5) | 0.0681 (4) | 0.04049 (4) | 0.0410 (9) | 0.852 (5) |
Na2 | 0.4054 (5) | 0.333333 | 0.083333 | 0.0411 (13) | 0.860 (9) |
Na3 | 0.000000 | 0.000000 | 0.05355 (8) | 0.0321 (17) | 0.731 (12) |
Na4 | 0.666667 | 0.333333 | 0.06014 (12) | 0.021 (2) | 0.423 (11) |
Zr1 | 0.333333 | 0.666667 | 0.05681 (2) | 0.01237 (15) | |
Zr2 | 0.333333 | 0.666667 | −0.00666 (2) | 0.01204 (15) | |
As1 | 0.34556 (6) | 0.39774 (6) | 0.02640 (2) | 0.01350 (11) | |
As2 | 0.666667 | 0.73010 (9) | 0.083333 | 0.0309 (2) | |
O1 | 0.1757 (5) | 0.2319 (4) | 0.03370 (5) | 0.0251 (8) | |
O2 | 0.3084 (5) | 0.4671 (5) | 0.00779 (5) | 0.0251 (8) | |
O3 | 0.4373 (5) | 0.5591 (4) | 0.04062 (5) | 0.0192 (7) | |
O4 | 0.4946 (5) | 0.3445 (5) | 0.02328 (5) | 0.0217 (8) | |
O5 | 0.5457 (5) | 0.7825 (5) | 0.07152 (5) | 0.0234 (8) | |
O6A | 0.603 (2) | 0.5691 (13) | 0.09411 (18) | 0.036 (5) | 0.45 (3) |
O6B | 0.5238 (19) | 0.5873 (11) | 0.09900 (16) | 0.034 (4) | 0.55 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.0436 (4) | 0.0436 (4) | 0.0271 (4) | 0.02182 (18) | 0.000 | 0.000 |
Na1 | 0.072 (2) | 0.0286 (15) | 0.0375 (16) | 0.0369 (17) | −0.0102 (17) | −0.0033 (13) |
Na2 | 0.0307 (18) | 0.0138 (18) | 0.073 (3) | 0.0069 (9) | −0.0044 (10) | −0.009 (2) |
Na3 | 0.0216 (19) | 0.0216 (19) | 0.053 (4) | 0.0108 (9) | 0.000 | 0.000 |
Na4 | 0.015 (3) | 0.015 (3) | 0.034 (5) | 0.0074 (14) | 0.000 | 0.000 |
Zr1 | 0.0109 (2) | 0.0109 (2) | 0.0153 (3) | 0.00546 (10) | 0.000 | 0.000 |
Zr2 | 0.0109 (2) | 0.0109 (2) | 0.0144 (3) | 0.00543 (10) | 0.000 | 0.000 |
As1 | 0.0135 (2) | 0.0114 (2) | 0.0162 (2) | 0.00670 (18) | 0.00020 (18) | 0.00004 (18) |
As2 | 0.0460 (5) | 0.0276 (3) | 0.0254 (4) | 0.0230 (3) | −0.0191 (4) | −0.0095 (2) |
O1 | 0.0227 (19) | 0.0166 (17) | 0.029 (2) | 0.0041 (15) | 0.0059 (16) | 0.0051 (16) |
O2 | 0.029 (2) | 0.0199 (18) | 0.0268 (19) | 0.0131 (17) | −0.0026 (17) | 0.0055 (16) |
O3 | 0.0199 (17) | 0.0165 (16) | 0.0220 (17) | 0.0097 (14) | 0.0002 (15) | −0.0050 (15) |
O4 | 0.0246 (19) | 0.0293 (19) | 0.0227 (18) | 0.0219 (17) | 0.0003 (15) | −0.0034 (17) |
O5 | 0.0178 (17) | 0.028 (2) | 0.0252 (18) | 0.0123 (16) | −0.0095 (15) | −0.0076 (17) |
O6A | 0.034 (8) | 0.024 (5) | 0.034 (6) | 0.001 (4) | −0.010 (6) | 0.003 (4) |
O6B | 0.032 (7) | 0.021 (4) | 0.032 (5) | 0.000 (4) | −0.014 (5) | 0.004 (4) |
Cs1—O1i | 3.235 (4) | Na4—O6Avi | 2.694 (17) |
Cs1—O1ii | 3.235 (4) | Na4—O6Axii | 2.694 (17) |
Cs1—O1iii | 3.235 (4) | Zr1—O5 | 2.041 (3) |
Cs1—O1 | 3.235 (4) | Zr1—O5xiii | 2.041 (3) |
Cs1—O1iv | 3.235 (4) | Zr1—O5ix | 2.041 (3) |
Cs1—O1v | 3.235 (4) | Zr1—O3ix | 2.099 (3) |
Na1—O6Bvi | 2.193 (9) | Zr1—O3xiii | 2.099 (3) |
Na1—O3vii | 2.394 (5) | Zr1—O3 | 2.099 (3) |
Na1—O1v | 2.482 (5) | Zr2—O2xiii | 2.062 (4) |
Na1—O6Avi | 2.485 (16) | Zr2—O2ix | 2.062 (4) |
Na1—O4 | 2.582 (5) | Zr2—O2 | 2.062 (4) |
Na1—O1 | 2.632 (5) | Zr2—O4xiv | 2.081 (3) |
Na2—O6A | 2.185 (10) | Zr2—O4iv | 2.081 (3) |
Na2—O6Avi | 2.185 (10) | Zr2—O4xv | 2.081 (3) |
Na2—O6B | 2.361 (12) | As1—O1 | 1.647 (4) |
Na2—O6Bvi | 2.361 (12) | As1—O2 | 1.673 (4) |
Na2—O5viii | 2.495 (5) | As1—O4 | 1.691 (3) |
Na2—O5ix | 2.495 (5) | As1—O3 | 1.694 (4) |
Na3—O1ii | 2.463 (5) | As2—O6A | 1.538 (10) |
Na3—O1 | 2.463 (5) | As2—O6Axii | 1.538 (10) |
Na3—O1v | 2.463 (5) | As2—O5xii | 1.686 (4) |
Na3—O6Bviii | 2.47 (2) | As2—O5 | 1.686 (4) |
Na3—O6Bx | 2.47 (2) | As2—O6B | 1.786 (13) |
Na3—O6Bvi | 2.47 (2) | As2—O6Bxii | 1.786 (13) |
Na4—O6Axi | 2.694 (17) | O6A—O6B | 0.909 (13) |
O1i—Cs1—O1ii | 180.0 (3) | O5xiii—Zr1—O3ix | 87.67 (16) |
O1i—Cs1—O1iii | 62.30 (10) | O5ix—Zr1—O3ix | 91.79 (15) |
O1ii—Cs1—O1iii | 117.70 (10) | O5—Zr1—O3xiii | 87.66 (16) |
O1i—Cs1—O1 | 117.70 (10) | O5xiii—Zr1—O3xiii | 91.79 (15) |
O1ii—Cs1—O1 | 62.30 (10) | O5ix—Zr1—O3xiii | 176.01 (15) |
O1iii—Cs1—O1 | 180.00 (9) | O3ix—Zr1—O3xiii | 88.35 (14) |
O1i—Cs1—O1iv | 62.30 (10) | O5—Zr1—O3 | 91.79 (15) |
O1ii—Cs1—O1iv | 117.70 (10) | O5xiii—Zr1—O3 | 176.01 (15) |
O1iii—Cs1—O1iv | 62.30 (10) | O5ix—Zr1—O3 | 87.67 (16) |
O1—Cs1—O1iv | 117.70 (10) | O3ix—Zr1—O3 | 88.35 (14) |
O1i—Cs1—O1v | 117.70 (10) | O3xiii—Zr1—O3 | 88.35 (14) |
O1ii—Cs1—O1v | 62.30 (10) | O2xiii—Zr2—O2ix | 93.66 (15) |
O1iii—Cs1—O1v | 117.70 (10) | O2xiii—Zr2—O2 | 93.66 (15) |
O1—Cs1—O1v | 62.30 (10) | O2ix—Zr2—O2 | 93.66 (15) |
O1iv—Cs1—O1v | 180.00 (16) | O2xiii—Zr2—O4xiv | 92.00 (16) |
O6Bvi—Na1—O3vii | 104.6 (4) | O2ix—Zr2—O4xiv | 88.01 (15) |
O6Bvi—Na1—O1v | 93.4 (5) | O2—Zr2—O4xiv | 173.98 (15) |
O3vii—Na1—O1v | 87.41 (15) | O2xiii—Zr2—O4iv | 173.98 (15) |
O6Bvi—Na1—O6Avi | 21.3 (3) | O2ix—Zr2—O4iv | 92.00 (16) |
O3vii—Na1—O6Avi | 90.3 (4) | O2—Zr2—O4iv | 88.01 (15) |
O1v—Na1—O6Avi | 108.7 (4) | O4xiv—Zr2—O4iv | 86.15 (14) |
O6Bvi—Na1—O4 | 118.5 (3) | O2xiii—Zr2—O4xv | 88.01 (15) |
O3vii—Na1—O4 | 119.01 (18) | O2ix—Zr2—O4xv | 173.98 (15) |
O1v—Na1—O4 | 127.39 (17) | O2—Zr2—O4xv | 92.01 (16) |
O6Avi—Na1—O4 | 115.1 (3) | O4xiv—Zr2—O4xv | 86.15 (14) |
O6Bvi—Na1—O1 | 85.3 (5) | O4iv—Zr2—O4xv | 86.15 (14) |
O3vii—Na1—O1 | 165.74 (19) | O1—As1—O2 | 111.5 (2) |
O1v—Na1—O1 | 81.68 (19) | O1—As1—O4 | 108.17 (19) |
O6Avi—Na1—O1 | 101.8 (5) | O2—As1—O4 | 109.94 (19) |
O4—Na1—O1 | 62.47 (13) | O1—As1—O3 | 114.88 (19) |
O6Bvi—Na1—O4vii | 132.4 (6) | O2—As1—O3 | 108.98 (18) |
O3vii—Na1—O4vii | 58.02 (13) | O4—As1—O3 | 103.03 (18) |
O1v—Na1—O4vii | 125.80 (15) | O6A—As2—O6Axii | 78.4 (18) |
O6Avi—Na1—O4vii | 111.4 (6) | O6A—As2—O5xii | 112.1 (4) |
O4—Na1—O4vii | 61.11 (16) | O6Axii—As2—O5xii | 125.4 (7) |
O1—Na1—O4vii | 122.35 (15) | O6A—As2—O5 | 125.4 (7) |
O6A—Na2—O6Avi | 140.7 (13) | O6Axii—As2—O5 | 112.1 (4) |
O6A—Na2—O6B | 22.7 (4) | O5xii—As2—O5 | 103.8 (3) |
O6Avi—Na2—O6B | 161.0 (11) | O6A—As2—O6B | 30.6 (6) |
O6A—Na2—O6Bvi | 161.0 (11) | O6Axii—As2—O6B | 106.8 (15) |
O6Avi—Na2—O6Bvi | 22.7 (4) | O5xii—As2—O6B | 103.3 (4) |
O6B—Na2—O6Bvi | 176.2 (9) | O5—As2—O6B | 103.1 (5) |
O6A—Na2—O5viii | 118.7 (7) | O6A—As2—O6Bxii | 106.8 (15) |
O6Avi—Na2—O5viii | 95.2 (5) | O6Axii—As2—O6Bxii | 30.6 (6) |
O6B—Na2—O5viii | 96.8 (5) | O5xii—As2—O6Bxii | 103.0 (5) |
O6Bvi—Na2—O5viii | 79.9 (4) | O5—As2—O6Bxii | 103.2 (4) |
O6A—Na2—O5ix | 95.2 (5) | O6B—As2—O6Bxii | 136.7 (12) |
O6Avi—Na2—O5ix | 118.7 (7) | As1—O1—Na3 | 157.7 (2) |
O6B—Na2—O5ix | 79.9 (4) | As1—O1—Na1ii | 117.0 (2) |
O6Bvi—Na2—O5ix | 96.8 (5) | Na3—O1—Na1ii | 74.73 (13) |
O5viii—Na2—O5ix | 64.2 (2) | As1—O1—Na1 | 93.24 (18) |
O6A—Na2—O6Avii | 113.6 (6) | Na3—O1—Na1 | 72.10 (12) |
O6Avi—Na2—O6Avii | 40.3 (6) | Na1ii—O1—Na1 | 146.6 (2) |
O6B—Na2—O6Avii | 124.1 (3) | As1—O1—Cs1 | 105.65 (17) |
O6Bvi—Na2—O6Avii | 58.3 (4) | Na3—O1—Cs1 | 91.66 (16) |
O5viii—Na2—O6Avii | 92.7 (2) | Na1ii—O1—Cs1 | 93.89 (14) |
O5ix—Na2—O6Avii | 149.8 (3) | Na1—O1—Cs1 | 91.09 (13) |
O6A—Na2—O6Axii | 40.3 (6) | As1—O2—Zr2 | 148.2 (2) |
O6Avi—Na2—O6Axii | 113.6 (6) | As1—O3—Zr1 | 130.8 (2) |
O6B—Na2—O6Axii | 58.3 (5) | As1—O3—Na1xvi | 108.79 (18) |
O6Bvi—Na2—O6Axii | 124.1 (3) | Zr1—O3—Na1xvi | 120.42 (18) |
O5viii—Na2—O6Axii | 149.8 (2) | As1—O4—Zr2xv | 148.4 (2) |
O5ix—Na2—O6Axii | 92.7 (2) | As1—O4—Na1 | 93.97 (17) |
O6Avii—Na2—O6Axii | 114.9 (5) | Zr2xv—O4—Na1 | 109.81 (17) |
O1ii—Na3—O1 | 85.6 (2) | As1—O4—Na1xvi | 87.30 (16) |
O1ii—Na3—O1v | 85.6 (2) | Zr2xv—O4—Na1xvi | 96.88 (15) |
O1—Na3—O1v | 85.6 (2) | Na1—O4—Na1xvi | 121.76 (18) |
O1ii—Na3—O6Bviii | 83.5 (2) | As2—O5—Zr1 | 138.4 (2) |
O1—Na3—O6Bviii | 87.5 (2) | As2—O5—Na2xiii | 95.98 (16) |
O1v—Na3—O6Bviii | 167.5 (3) | Zr1—O5—Na2xiii | 124.11 (18) |
O1ii—Na3—O6Bx | 87.5 (2) | As2—O6A—Na2 | 118.8 (6) |
O1—Na3—O6Bx | 167.5 (3) | As2—O6A—Na1vi | 116.7 (8) |
O1v—Na3—O6Bx | 83.5 (2) | Na2—O6A—Na1vi | 115.9 (6) |
O6Bviii—Na3—O6Bx | 102.1 (3) | As2—O6A—Na4xi | 147.0 (14) |
O1ii—Na3—O6Bvi | 167.5 (3) | Na2—O6A—Na4xi | 75.0 (4) |
O1—Na3—O6Bvi | 83.5 (2) | Na1vi—O6A—Na4xi | 75.8 (3) |
O1v—Na3—O6Bvi | 87.5 (2) | As2—O6A—Na2xvi | 83.8 (9) |
O6Bviii—Na3—O6Bvi | 102.1 (3) | Na2—O6A—Na2xvi | 106.0 (9) |
O6Bx—Na3—O6Bvi | 102.1 (3) | Na1vi—O6A—Na2xvi | 109.3 (5) |
O6Axi—Na4—O6Avi | 108.1 (5) | Na4xi—O6A—Na2xvi | 63.2 (5) |
O6Axi—Na4—O6Axii | 108.1 (5) | As2—O6B—Na1vi | 120.5 (5) |
O6Avi—Na4—O6Axii | 108.1 (5) | As2—O6B—Na2 | 101.0 (7) |
O5—Zr1—O5xiii | 92.21 (16) | Na1vi—O6B—Na2 | 120.8 (4) |
O5—Zr1—O5ix | 92.21 (16) | As2—O6B—Na3xvii | 116.8 (7) |
O5xiii—Zr1—O5ix | 92.20 (16) | Na1vi—O6B—Na3xvii | 79.9 (6) |
O5—Zr1—O3ix | 176.01 (15) | Na2—O6B—Na3xvii | 118.3 (6) |
Symmetry codes: (i) y, −x+y, −z; (ii) −y, x−y, z; (iii) −x, −y, −z; (iv) x−y, x, −z; (v) −x+y, −x, z; (vi) x−y+1/3, −y+2/3, −z+1/6; (vii) −y+1, x−y, z; (viii) y−2/3, x−1/3, −z+1/6; (ix) −x+y, −x+1, z; (x) −x+1/3, −x+y−1/3, −z+1/6; (xi) y+1/3, x−1/3, −z+1/6; (xii) −x+4/3, −x+y+2/3, −z+1/6; (xiii) −y+1, x−y+1, z; (xiv) y, −x+y+1, −z; (xv) −x+1, −y+1, −z; (xvi) −x+y+1, −x+1, z; (xvii) y+1/3, x+2/3, −z+1/6. |
CsNa10Hf4(AsO4)9 | Dx = 4.152 Mg m−3 |
Mr = 2327.05 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 22894 reflections |
a = 9.1795 (2) Å | θ = 2.9–27.5° |
c = 76.527 (8) Å | µ = 20.25 mm−1 |
V = 5584.5 (6) Å3 | T = 120 K |
Z = 6 | Prism, colourless |
F(000) = 6228 | 0.08 × 0.08 × 0.08 mm |
Nonius KappaCCD diffractometer | 1164 reflections with I > 2σ(I) |
ω scans | Rint = 0.070 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | θmax = 27.5°, θmin = 3.2° |
Tmin = 0.40, Tmax = 0.50 | h = −11→11 |
11660 measured reflections | k = −11→11 |
1434 independent reflections | l = −99→99 |
Refinement on F2 | 7 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0359P)2 + 136.7342P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.078 | (Δ/σ)max = 0.008 |
S = 1.06 | Δρmax = 2.57 e Å−3 |
1434 reflections | Δρmin = −2.00 e Å−3 |
107 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cs1 | 0.000000 | 0.000000 | 0.000000 | 0.0162 (3) | |
Na1 | 0.3354 (5) | 0.0688 (5) | 0.04043 (5) | 0.0256 (11) | 0.887 (7) |
Na2 | 0.4061 (6) | 0.333333 | 0.083333 | 0.0208 (15)* | 0.846 (11) |
Na3 | 0.000000 | 0.000000 | 0.05288 (11) | 0.018 (2) | 0.735 (16) |
Na4 | 0.666667 | 0.333333 | 0.06123 (16) | 0.002 (4)* | 0.337 (14) |
Hf1 | 0.333333 | 0.666667 | 0.05673 (2) | 0.00710 (15) | |
Hf2 | 0.333333 | 0.666667 | −0.00682 (2) | 0.00611 (15) | |
As1 | 0.34520 (9) | 0.39770 (9) | 0.02639 (2) | 0.00578 (18) | |
As2 | 0.666667 | 0.73244 (13) | 0.083333 | 0.0205 (3) | |
O1 | 0.1730 (6) | 0.2332 (6) | 0.03369 (6) | 0.0113 (11) | |
O2 | 0.3086 (6) | 0.4663 (6) | 0.00745 (6) | 0.0109 (11) | |
O3 | 0.4389 (6) | 0.5622 (6) | 0.04043 (6) | 0.0068 (10) | |
O4 | 0.4922 (6) | 0.3405 (6) | 0.02356 (6) | 0.0097 (11) | |
O5 | 0.5461 (6) | 0.7864 (6) | 0.07152 (6) | 0.0127 (11) | |
O6A | 0.602 (2) | 0.569 (2) | 0.0942 (2) | 0.008 (2) | 0.35 (2) |
O6B | 0.5276 (16) | 0.5861 (12) | 0.09848 (14) | 0.029 (4) | 0.65 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.0181 (4) | 0.0181 (4) | 0.0125 (5) | 0.0091 (2) | 0.000 | 0.000 |
Na1 | 0.049 (3) | 0.014 (2) | 0.023 (2) | 0.023 (2) | −0.0094 (18) | −0.0012 (16) |
Na3 | 0.002 (3) | 0.002 (3) | 0.049 (5) | 0.0012 (13) | 0.000 | 0.000 |
Hf1 | 0.00580 (19) | 0.00580 (19) | 0.0097 (3) | 0.00290 (9) | 0.000 | 0.000 |
Hf2 | 0.00499 (19) | 0.00499 (19) | 0.0084 (3) | 0.00250 (9) | 0.000 | 0.000 |
As1 | 0.0056 (4) | 0.0037 (4) | 0.0086 (3) | 0.0027 (3) | 0.0002 (3) | 0.0002 (3) |
As2 | 0.0312 (7) | 0.0178 (4) | 0.0170 (6) | 0.0156 (4) | −0.0165 (5) | −0.0083 (3) |
O1 | 0.007 (3) | 0.007 (3) | 0.015 (3) | 0.000 (2) | 0.001 (2) | 0.001 (2) |
O2 | 0.015 (3) | 0.009 (3) | 0.011 (2) | 0.007 (2) | −0.003 (2) | 0.000 (2) |
O3 | 0.005 (2) | 0.005 (2) | 0.011 (2) | 0.003 (2) | −0.0006 (19) | −0.0054 (19) |
O4 | 0.010 (3) | 0.013 (3) | 0.010 (2) | 0.010 (2) | 0.002 (2) | 0.000 (2) |
O5 | 0.007 (3) | 0.017 (3) | 0.012 (2) | 0.004 (2) | −0.006 (2) | −0.006 (2) |
O6A | 0.008 (2) | 0.008 (2) | 0.008 (2) | 0.0042 (11) | 0.00000 (10) | 0.00000 (10) |
O6B | 0.030 (7) | 0.021 (5) | 0.022 (5) | 0.003 (5) | −0.014 (5) | 0.002 (4) |
Cs1—O1 | 3.218 (5) | Na4—O6Avi | 2.654 (18) |
Cs1—O1i | 3.218 (5) | Na4—O6Axii | 2.654 (18) |
Cs1—O1ii | 3.218 (5) | Hf1—O5xiii | 2.039 (5) |
Cs1—O1iii | 3.218 (5) | Hf1—O5ix | 2.039 (5) |
Cs1—O1iv | 3.218 (5) | Hf1—O5 | 2.039 (5) |
Cs1—O1v | 3.218 (5) | Hf1—O3ix | 2.084 (4) |
Na1—O6Bvi | 2.212 (10) | Hf1—O3xiii | 2.084 (4) |
Na1—O3vii | 2.377 (6) | Hf1—O3 | 2.084 (4) |
Na1—O1iii | 2.443 (6) | Hf2—O2 | 2.051 (5) |
Na1—O6Avi | 2.467 (17) | Hf2—O2ix | 2.052 (5) |
Na1—O4 | 2.524 (6) | Hf2—O2xiii | 2.052 (5) |
Na1—O1 | 2.649 (6) | Hf2—O4xiv | 2.077 (5) |
Na1—O4vii | 2.972 (6) | Hf2—O4ii | 2.077 (5) |
Na2—O6A | 2.170 (16) | Hf2—O4xv | 2.077 (5) |
Na2—O6Avi | 2.170 (16) | As1—O1 | 1.644 (5) |
Na2—O6B | 2.320 (10) | As1—O2 | 1.680 (5) |
Na2—O6Bvi | 2.320 (10) | As1—O4 | 1.689 (5) |
Na2—O5viii | 2.458 (7) | As1—O3 | 1.696 (4) |
Na2—O5ix | 2.458 (7) | As2—O6A | 1.552 (15) |
Na3—O1v | 2.421 (7) | As2—O6Axi | 1.552 (15) |
Na3—O1iii | 2.421 (7) | As2—O5 | 1.684 (5) |
Na3—O1 | 2.421 (7) | As2—O5xi | 1.684 (5) |
Na3—O6Bviii | 2.534 (17) | As2—O6B | 1.750 (11) |
Na3—O6Bx | 2.534 (17) | As2—O6Bxi | 1.750 (11) |
Na3—O6Bvi | 2.534 (17) | O6A—O6B | 0.842 (15) |
Na4—O6Axi | 2.654 (18) | ||
O1—Cs1—O1i | 180.00 (19) | O5ix—Hf1—O3 | 87.7 (2) |
O1—Cs1—O1ii | 117.59 (14) | O5—Hf1—O3 | 92.3 (2) |
O1i—Cs1—O1ii | 62.41 (14) | O3ix—Hf1—O3 | 87.88 (18) |
O1—Cs1—O1iii | 62.41 (14) | O3xiii—Hf1—O3 | 87.88 (18) |
O1i—Cs1—O1iii | 117.59 (14) | O2—Hf2—O2ix | 94.29 (18) |
O1ii—Cs1—O1iii | 180.00 (19) | O2—Hf2—O2xiii | 94.29 (18) |
O1—Cs1—O1iv | 117.59 (14) | O2ix—Hf2—O2xiii | 94.28 (18) |
O1i—Cs1—O1iv | 62.41 (14) | O2—Hf2—O4xiv | 92.38 (19) |
O1ii—Cs1—O1iv | 62.41 (14) | O2ix—Hf2—O4xiv | 173.05 (19) |
O1iii—Cs1—O1iv | 117.59 (14) | O2xiii—Hf2—O4xiv | 87.19 (19) |
O1—Cs1—O1v | 62.41 (14) | O2—Hf2—O4ii | 87.18 (19) |
O1i—Cs1—O1v | 117.59 (14) | O2ix—Hf2—O4ii | 92.38 (19) |
O1ii—Cs1—O1v | 117.59 (14) | O2xiii—Hf2—O4ii | 173.05 (19) |
O1iii—Cs1—O1v | 62.41 (14) | O4xiv—Hf2—O4ii | 85.96 (19) |
O1iv—Cs1—O1v | 180.0 (3) | O2—Hf2—O4xv | 173.04 (19) |
O6Bvi—Na1—O3vii | 103.8 (4) | O2ix—Hf2—O4xv | 87.18 (19) |
O6Bvi—Na1—O1iii | 94.4 (4) | O2xiii—Hf2—O4xv | 92.38 (19) |
O3vii—Na1—O1iii | 86.5 (2) | O4xiv—Hf2—O4xv | 85.96 (19) |
O6Bvi—Na1—O6Avi | 19.8 (4) | O4ii—Hf2—O4xv | 85.96 (19) |
O3vii—Na1—O6Avi | 90.7 (5) | O1—As1—O2 | 110.9 (3) |
O1iii—Na1—O6Avi | 108.7 (5) | O1—As1—O4 | 108.0 (2) |
O6Bvi—Na1—O4 | 118.4 (3) | O2—As1—O4 | 110.3 (2) |
O3vii—Na1—O4 | 119.4 (2) | O1—As1—O3 | 115.4 (2) |
O1iii—Na1—O4 | 127.6 (2) | O2—As1—O3 | 108.7 (2) |
O6Avi—Na1—O4 | 115.0 (4) | O4—As1—O3 | 103.3 (2) |
O6Bvi—Na1—O1 | 86.1 (4) | O6A—As2—O6Axi | 78.0 (15) |
O3vii—Na1—O1 | 165.2 (2) | O6A—As2—O5 | 125.7 (7) |
O1iii—Na1—O1 | 81.7 (2) | O6Axi—As2—O5 | 112.6 (6) |
O6Avi—Na1—O1 | 101.5 (5) | O6A—As2—O5xi | 112.6 (6) |
O4—Na1—O1 | 62.78 (17) | O6Axi—As2—O5xi | 125.7 (7) |
O6Bvi—Na1—O4vii | 130.4 (5) | O5—As2—O5xi | 103.0 (3) |
O3vii—Na1—O4vii | 58.22 (16) | O6A—As2—O6B | 28.8 (6) |
O1iii—Na1—O4vii | 126.1 (2) | O6Axi—As2—O6B | 104.5 (12) |
O6Avi—Na1—O4vii | 110.9 (5) | O5—As2—O6B | 104.3 (5) |
O4—Na1—O4vii | 61.4 (2) | O5xi—As2—O6B | 104.8 (4) |
O1—Na1—O4vii | 123.09 (19) | O6A—As2—O6Bxi | 104.5 (12) |
O6A—Na2—O6Avi | 141.3 (12) | O6Axi—As2—O6Bxi | 28.8 (6) |
O6A—Na2—O6B | 21.3 (4) | O5—As2—O6Bxi | 104.8 (4) |
O6Avi—Na2—O6B | 160.8 (9) | O5xi—As2—O6Bxi | 104.3 (5) |
O6A—Na2—O6Bvi | 160.8 (9) | O6B—As2—O6Bxi | 132.5 (10) |
O6Avi—Na2—O6Bvi | 21.3 (4) | As1—O1—Na3 | 157.3 (3) |
O6B—Na2—O6Bvi | 177.8 (8) | As1—O1—Na1v | 118.2 (3) |
O6A—Na2—O5viii | 118.4 (6) | Na3—O1—Na1v | 75.36 (17) |
O6Avi—Na2—O5viii | 94.8 (5) | As1—O1—Na1 | 91.9 (2) |
O6B—Na2—O5viii | 97.9 (4) | Na3—O1—Na1 | 71.66 (16) |
O6Bvi—Na2—O5viii | 80.2 (3) | Na1v—O1—Na1 | 146.7 (3) |
O6A—Na2—O5ix | 94.8 (5) | As1—O1—Cs1 | 105.5 (2) |
O6Avi—Na2—O5ix | 118.4 (6) | Na3—O1—Cs1 | 90.6 (2) |
O6B—Na2—O5ix | 80.2 (3) | Na1v—O1—Cs1 | 94.33 (17) |
O6Bvi—Na2—O5ix | 97.9 (4) | Na1—O1—Cs1 | 90.47 (16) |
O5viii—Na2—O5ix | 64.8 (3) | As1—O2—Hf2 | 147.4 (3) |
O1v—Na3—O1iii | 87.0 (3) | As1—O3—Hf1 | 130.0 (3) |
O1v—Na3—O1 | 87.0 (3) | As1—O3—Na1xvi | 108.8 (2) |
O1iii—Na3—O1 | 87.0 (3) | Hf1—O3—Na1xvi | 121.1 (2) |
O1v—Na3—O6Bviii | 84.6 (2) | As1—O4—Hf2xiv | 146.9 (3) |
O1iii—Na3—O6Bviii | 170.0 (4) | As1—O4—Na1 | 95.3 (2) |
O1—Na3—O6Bviii | 87.2 (2) | Hf2xiv—O4—Na1 | 110.6 (2) |
O1v—Na3—O6Bx | 87.2 (2) | As1—O4—Na1xvi | 86.8 (2) |
O1iii—Na3—O6Bx | 84.5 (2) | Hf2xiv—O4—Na1xvi | 95.70 (19) |
O1—Na3—O6Bx | 170.0 (4) | Na1—O4—Na1xvi | 122.6 (2) |
O6Bviii—Na3—O6Bx | 100.3 (3) | As2—O5—Hf1 | 137.1 (3) |
O1v—Na3—O6Bvi | 170.0 (4) | As2—O5—Na2xiii | 96.1 (2) |
O1iii—Na3—O6Bvi | 87.2 (2) | Hf1—O5—Na2xiii | 125.3 (2) |
O1—Na3—O6Bvi | 84.6 (2) | As2—O6A—Na2 | 119.0 (8) |
O6Bviii—Na3—O6Bvi | 100.3 (3) | As2—O6A—Na1vi | 116.5 (9) |
O6Bx—Na3—O6Bvi | 100.3 (3) | Na2—O6A—Na1vi | 116.2 (7) |
O6Axi—Na4—O6Avi | 110.0 (4) | As2—O6A—Na4xii | 146.0 (12) |
O6Axi—Na4—O6Axii | 110.0 (4) | Na2—O6A—Na4xii | 74.0 (5) |
O6Avi—Na4—O6Axii | 110.0 (4) | Na1vi—O6A—Na4xii | 77.5 (5) |
O5xiii—Hf1—O5ix | 92.17 (19) | As2—O6A—Na2xvi | 83.9 (8) |
O5xiii—Hf1—O5 | 92.17 (19) | Na2—O6A—Na2xvi | 105.6 (8) |
O5ix—Hf1—O5 | 92.17 (19) | Na1vi—O6A—Na2xvi | 109.2 (6) |
O5xiii—Hf1—O3ix | 87.7 (2) | Na4xii—O6A—Na2xvi | 62.2 (5) |
O5ix—Hf1—O3ix | 92.3 (2) | As2—O6B—Na1vi | 120.8 (5) |
O5—Hf1—O3ix | 175.57 (19) | As2—O6B—Na2 | 103.8 (6) |
O5xiii—Hf1—O3xiii | 92.3 (2) | Na1vi—O6B—Na2 | 120.7 (4) |
O5ix—Hf1—O3xiii | 175.56 (19) | As2—O6B—Na3xvii | 115.6 (6) |
O5—Hf1—O3xiii | 87.7 (2) | Na1vi—O6B—Na3xvii | 77.3 (5) |
O3ix—Hf1—O3xiii | 87.89 (18) | Na2—O6B—Na3xvii | 117.8 (5) |
O5xiii—Hf1—O3 | 175.56 (19) |
Symmetry codes: (i) −x, −y, −z; (ii) x−y, x, −z; (iii) −x+y, −x, z; (iv) y, −x+y, −z; (v) −y, x−y, z; (vi) x−y+1/3, −y+2/3, −z+1/6; (vii) −y+1, x−y, z; (viii) y−2/3, x−1/3, −z+1/6; (ix) −x+y, −x+1, z; (x) −x+1/3, −x+y−1/3, −z+1/6; (xi) −x+4/3, −x+y+2/3, −z+1/6; (xii) y+1/3, x−1/3, −z+1/6; (xiii) −y+1, x−y+1, z; (xiv) −x+1, −y+1, −z; (xv) y, −x+y+1, −z; (xvi) −x+y+1, −x+1, z; (xvii) y+1/3, x+2/3, −z+1/6. |
Acknowledgements
We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collection for (II).
References
Abrahams, S. C. & Bernstein, J. L. (1966). J. Chem. Phys. 45, 2745–2752. CrossRef ICSD CAS Web of Science Google Scholar
Adams, J. M., Haselden, D. A. & Hewat, A. W. (1982). J. Solid State Chem. 44, 245–253. CrossRef ICSD CAS Google Scholar
Anantharamulu, N., Koteswara Rao, K., Rambabu, G., Vijaya Kumar, B., Radha, V. & Vithal, M. (2011). J. Mater. Sci. 46, 2821–2837. CrossRef CAS Google Scholar
Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chakir, M., El Jazouli, A. & de Waal, A. (2003). Mater. Res. Bull. 38, 1773–1779. CrossRef ICSD CAS Google Scholar
Dowty, E. W. (2005). ATOMS. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Elbrahimi, M. & Durand, J. (1990). Z. Anorg. Allg. Chem. 584, 178–184. CrossRef ICSD CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Herbst-Irmer, R. & Sheldrick, G. M. (2002). Acta Cryst. B58, 477–481. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kores, C. C., Canalias, C. & Laurell, F. (2021). APL Photonics, 6, article 091102. Google Scholar
McGarey, P. O., Collins, A., Dominguez, L. M., Dion, G. R. & Simpson, G. B. (2021). J. Voice, 35, 800–803. CrossRef PubMed Google Scholar
Müller-Buschbaum, H. K. (2010). Z. Anorg. Allg. Chem. 636, 1667–1685. Google Scholar
Norberg, S. T. (2002). Acta Cryst. B58, 743–749. Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. CrossRef PubMed CAS Web of Science Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shim, H.-K. & Kim, M. R. (2021). Amer. J. Case Rep. 22, article e931042. CrossRef Google Scholar
Simpson, M. & Harrison, W. T. A. (2004). Solid State Sci. 6, 981–985. CrossRef ICSD CAS Google Scholar
Sorokina, N. I. & Voronkova, V. I. (2007). Crystallogr. Rep. 52, 80–93. CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stucky, G. D., Phillips, M. L. F. & Gier, T. E. (1989). Chem. Mater. 1, 492–509. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zumsteg, F. C., Bierlein, J. D. & Gier, T. E. (1976). J. Appl. Phys. 47, 4980–4985. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.