research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Flux syntheses and single-crystal structures of CsNa10M4(AsO4)9 (M = Zr, Hf)

crossmark logo

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by S. Parkin, University of Kentucky, USA (Received 30 May 2022; accepted 15 June 2022; online 21 June 2022)

The isostructural compounds caesium deca­sodium tetra­zirconium nona­arsenate, CsNa10Zr4(AsO4)9, and caesium deca­sodium tetra­hafnium nona­arsenate, CsNa10Hf4(AsO4)9, arose as unexpected single-crystal products from the reactions of Na2CO3, MO2 (M = Zr, Hf) and As2O5 in a eutectic flux of NaCl and CsCl. They consist of MO6 octa­hedra and AsO4 tetra­hedra sharing vertices to generate three-dimensional polyhedral networks encapsulating the caesium and sodium ions. The MO6 groups share all their vertices with adjacent As atoms but the As atoms have one or two `terminal' O atoms not bonded to Zr or Hf. The Cs+ ion adopts a squashed octa­hedral geometry and the coordination polyhedra of the partially occupied sodium ions are variously trigonal bipyramidal, tetra­hedral, square pyramidal and trigonal pyramidal. Site symmetries: Cs [\overline{3}]; M 3; As 1 and 2; O 1; Na 1, 2 and 3. The M = Zr crystal was refined as an obverse/reverse rhombohedral twin.

1. Chemical context

Potassium titanyl phosphate (KTiOPO4; KTP) has long been recognized as an important non-linear optical (NLO) material (Zumsteg et al., 1976[Zumsteg, F. C., Bierlein, J. D. & Gier, T. E. (1976). J. Appl. Phys. 47, 4980-4985.]) due to its unique combination of desirable physical properties including `a large hyperpolarizability, excellent temperature window, wide wavelength for phase matching and outstanding crystal stability' (Stucky et al., 1989[Stucky, G. D., Phillips, M. L. F. & Gier, T. E. (1989). Chem. Mater. 1, 492-509.]). Work continues to improve the performance of KTP waveguides in optoelectronics (Kores et al., 2021[Kores, C. C., Canalias, C. & Laurell, F. (2021). APL Photonics, 6, article 091102.]) and it is finding new uses as a frequency doubler (to 532 nm green light) for 1064 nm Nd–YAG laser radiation in many areas of medicine (Shim & Kim, 2021[Shim, H.-K. & Kim, M. R. (2021). Amer. J. Case Rep. 22, article e931042.]; McGarey et al., 2021[McGarey, P. O., Collins, A., Dominguez, L. M., Dion, G. R. & Simpson, G. B. (2021). J. Voice, 35, 800-803.]). So far as crystal chemistry is concerned, the KTiOPO4 structure type (space group Pna21, a ≃ 12.8, b ≃ 6.4, c ≃ 10.6 Å, Z = 8, Z′ = 2) is remarkably accommodating with respect to partial or complete isovalent or aleovalent substitution at the potassium (Na+, Rb+, Cs+, Tl+, NH4+…), titanium (ZrIV, HfIV, VIV, SnIV, SbV, Ga3+, Fe3+, Al3+, Cr3+…), phospho­rus (AsV, SiIV, GeIV) and even oxygen (OH, F) sites and comprehensive reviews on its substitution chemistry have appeared (Sorokina & Voronkova, 2007[Sorokina, N. I. & Voronkova, V. I. (2007). Crystallogr. Rep. 52, 80-93.]).

In an attempt to grow single crystals of the possible new KTP analogues NaZrOAsO4 and NaHfOAsO4 by reacting Na2CO3, MO2 (M = Zr, Hf) and As2O5 in a low-melting flux of NaCl and CsCl, the isostructural title compounds CsNa10Zr4(AsO4)9 (I) and CsNa10Hf4(AsO4)9 (II) were the unexpected result and their crystal structures are now described.

2. Structural commentary

Compounds (I) and (II) are isostructural and crystallize in the rhombohedral space group R[\overline{3}]c (No. 167) with an unusually long c unit-cell parameter of nearly 77 Å. This is of course partly a consequence of our choosing the hexa­gonal (R-centred) setting of the unit cell [the equivalent primitive rhombohedral lattice for (I) has a = b = c ≃ 26.21 Å and α = β = γ ≃ 20.3°] but even so, it is notable that the l index runs well into three figures for (I) in the R-centred setting. This description will focus on the structure of (I) and note significant differences for (II) where applicable.

The asymmetric unit of (I), expanded to show the full coordination polyhedra of the zirconium and arsenic atoms, is shown in Fig. 1[link]. It consists of two zirconium atoms (both with site symmetry 3 on Wyckoff site 12c), two arsenic atoms [As1 on a general position (36f) and As2 with site symmetry 2 (18e)] and six oxygen atoms, one of which is disordered over two adjacent sites (all lying on general positions, 36f), which leads to the unusual 4:9 stoichiometry for the ZrIV and AsO43– moieties with a net charge of −11. The structure of (I) is completed by a Cs+ ion (site symmetry [\overline{3}], 6b) and four partly occupied sodium cations [one on a general position (36f), one with site symmetry 2 (18e) and two with site symmetry 3 (12c)]. To maintain charge balance, the four sodium ions must have a total occupancy of 10 based on Z = 6 (full occupancy of the four sites would give 13 sodium ions per caesium ion).

[Figure 1]
Figure 1
The asymmetric unit of (I) expanded to include the full Zr and As coordination polyhedra showing 50% displacement ellipsoids. Only one disorder component about As2 is shown. Symmetry codes: (i) 1 − x, 1 − y, −z; (ii) y, 1 − xy, −z; (iii) 1 − y, 1 + x − y, z; (iv) [{4\over 3}] − x, [{2\over 3}] − x + y, [{1\over 6}] − z; (v) x − y, x, −z; (vi) y − x, 1 − x, z.

Both zirconium atoms adopt almost regular ZrO6 octa­hedral geometries (Müller-Buschbaum, 2010[Müller-Buschbaum, H. K. (2010). Z. Anorg. Allg. Chem. 636, 1667-1685.]) when crystal symmetry is taken into account: the mean Zr1—O separation (to 3 × O3 and 3 × O5) is 2.070 Å and the quadratic elongation and angular variance are 1.001 and 4.43°2, respectively (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). Equivalent data for Zr2 (bonded to to 3 × O2 and 3 × O4) are 2.072 Å, 1.003 and 9.86°2, respectively. The `extrapolated' (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) bond-valence sums (BVS) in valence units are 4.10 and 4.07 for Zr1 and Zr2, respectively, in acceptable agreement with the expected value of 4.00. The mean Hf—O distances in (II) are 2.062 Å for Hf1 (BVS = 4.13, quadratic elongation = 1.002, angular variance = 5.38°2) and 2.065 Å for Hf2 (4.10, 1.004, 13.20°2). It may be seen that the Hf—O bonds are slightly shorter than the Zr—O bonds, which is in accordance with ionic radii data (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]): r6(ZrIV) = 0.72 (6 = six-coordinate) and r6(HfIV) = 0.71 Å and is presumed to arise from the lanthanide contraction effect.

The As1 atom in (I) is surrounded by four oxygen atoms (O1–O4) in the geometry of a slightly distorted tetra­hedron [mean As—O = 1.677 Å, spread of O—As—O angles = 103.0 (2)–114.9 (2)°, τ4 (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) = 0.95]. Atom As2 is also tetra­hedral (to 2 × O5 and 2 × O6), with the latter O atom disordered over two adjacent sites in almost equal occupancies of 0.45 (3):0.55 (3) [O6A⋯O6B = 0.909 (13) Å]. Of the six oxygen atoms in the structure of (I), four of them (O2–O5) bridge zirconium and arsenic atoms with a mean Zr—O—As bond angle of 141.5° [equivalent mean Hf—O—As bond angle in (II) = 140.4°] and two (O1 and O6) are `terminal' and only bonded to arsenic: all of the O atoms also form one or more bonds to nearby caesium and/or sodium ions.

The caesium ion in (I) adopts a grossly squashed octa­hedral coordination to six O1 atoms with Cs1—O1 = 3.235 (4) Å: the cis O—Cs—O bond angles are compressed to 62.30 (10) or expanded to 117.70 (10)°: the Cs1 BVS of 0.61 compared to an expected value of 1.00 suggests significant underbonding. The inter­pretation of the sodium-ion coordination polyhedra are complicated by the positional disorder of atom O6 but can be described as distorted trigonal bipyramidal (Na1), very distorted tetra­hedral (Na2), square-based pyramidal (Na3) and squashed trigonal pyramidal (Na4). It is notable that Na4 is only three coordinate but similar NaO3 geometries have been observed in dehydrated sodium aluminosilicate zeolites (Adams et al., 1982[Adams, J. M., Haselden, D. A. & Hewat, A. W. (1982). J. Solid State Chem. 44, 245-253.]).

The extended structure of (I) (Fig. 2[link]) can be conceptually broken down into two different types of layers lying parallel to (001). The first layer (type `A') occurs at z ≃ 0, 1/6, 1/3, 1/2, 2/3 and 5/6 with adjacent A-layers laterally displaced by 1/3 in x and 2/3 in y and consists of the Zr2 and As1 centred polyhedra as well as the caesium ions. Fig. 3[link] shows that each Zr2O6 octa­hedron is connected by two As1O4 tetra­hedra (via O2 and O4) to result in a `honeycomb' array of polyhedral 12-rings (six octa­hedra and 12 tetra­hedra) encapsulating the Cs+ ions. Atom O3 of the arsenate group provides the link to the type `B' layers on either side of the A layer. This inter-octa­hedral connectivity via O3 leads to a distinctive `lantern' motif (Fig. 4[link]) in which three tetra­hedra link two octa­hedra [Zr1⋯Zr2 = 4.886 (2); Hf1⋯Hf2 in (II) = 4.863 (2) Å]: similar `lanterns' are a feature of the polyhedral connectivity in the scandium tungstate [M2(XO4)3] (Abrahams & Bernstein, 1966[Abrahams, S. C. & Bernstein, J. L. (1966). J. Chem. Phys. 45, 2745-2752.]), Nasicon [AM2(XO4)3] (Anantharamulu et al., 2011[Anantharamulu, N., Koteswara Rao, K., Rambabu, G., Vijaya Kumar, B., Radha, V. & Vithal, M. (2011). J. Mater. Sci. 46, 2821-2837.]) and langbeinite [A2M2(XO4)3] (Norberg, 2002[Norberg, S. T. (2002). Acta Cryst. B58, 743-749.]) structure types but they differ from (I) because all the vertices of the constituent tetra­hedra in these structures link to adjacent octa­hedra, hence their 2:3 M:X ratios compared to the 4:9 ratio for (I).

[Figure 2]
Figure 2
The unit-cell of (I) in polyhedral representation viewed approximately down [110]. A single O atom at the average location of O6A and O6B in the asymmetric unit has been used to construct the As2 tetra­hedron. Colour code: Zr1O6 octa­hedra blue, Zr2O6 octa­hedra green, As1O4 tetra­hedra peach, As2O4 tetra­hedra rose, Cs sky blue, Na yellow, O (polyhedral corners) red.
[Figure 3]
Figure 3
View down [001] of an `A'-type layer in the structure of (I) in polyhedral representation. Atom and polyhedron colours as in Fig. 2[link] except O3 is blue.
[Figure 4]
Figure 4
Detail of the extended structure of (I) showing a Zr2As3O18 `lantern' motif of Zr1 and Zr2 octa­hedra linked by three As1 tetra­hedra via atoms O2 and O3. In (I), this motif has crystallographically imposed threefold symmetry about a rotation axis passing through the zirconium atoms. Symmetry codes: (i) 1 − y, 1 + x − y, z; (ii) y − x, 1 − x, z.

The B layers in (I) (Fig. 5[link]) lie at z ≃ 1/12, 1/4, 5/12, 7/12, 3/4 and 11/12 and are associated with the Zr1 and As2 species. These also feature polyhedral 12-rings (six octa­hedra and six tetra­hedra) but only one As2 tetra­hedron (with two terminal As2—O6 bonds) links adjacent Zr1 octa­hedra via atom O5. There are numerous sodium sites associated with the B layers. The disorder of the sodium ions in the vicinities of the B layers and possible small [110] channels (see Fig. 2[link]) suggests the possibility of ionic conductivity (Norberg, 2002[Norberg, S. T. (2002). Acta Cryst. B58, 743-749.]). An analysis of the stucture with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) with the sodium ions removed indicated that there was 119.4 Å3 of free space per unit cell (∼2.1%).

[Figure 5]
Figure 5
View down [001] of a `B'-type layer in the structure of (I) in polyhedral representation. Atom and polyhedron colours as in Fig. 2[link] except O3 is blue.

3. Database survey

A survey of the Inorganic Crystal Structure Database (ICSD) (Belsky et al., 2002[Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364-369.]) revealed 11 matches for crystal structures containing Zr + As + O, the majority of these being Nasicon (Anantharamulu et al., 2011[Anantharamulu, N., Koteswara Rao, K., Rambabu, G., Vijaya Kumar, B., Radha, V. & Vithal, M. (2011). J. Mater. Sci. 46, 2821-2837.]) derivatives such as NaZr2(AsO4)3 (Chakir et al., 2003[Chakir, M., El Jazouli, A. & de Waal, A. (2003). Mater. Res. Bull. 38, 1773-1779.]) or KZr2(AsO4)3 (Elbrahimi & Durand, 1990[Elbrahimi, M. & Durand, J. (1990). Z. Anorg. Allg. Chem. 584, 178-184.]) as well as one KTP analogue, viz. RbZrOAsO4 (Simpson & Harrison, 2004[Simpson, M. & Harrison, W. T. A. (2004). Solid State Sci. 6, 981-985.]). There were no hits for the combination of Hf + As + O.

4. Synthesis and crystallization

Compound (I) was prepared by mixing 1.00 g of Na2CO3, 0.581 g of ZrO2 and 1.399 g of As2O5 (Na:Zr:As molar ratio ≃ 4:1:3) in an agate mortar: 1.00 g of this mixture was added to 3.0 g of a eutectic-melt mixture (Tmelt ≃ 500°C) of NaCl/CsCl (∼0.35:0.65 mol) and placed in a flat-bottom alumina crucible. The crucible was rapidly heated to 500°C in a muffle furnace and then ramped at 12°C min−1 to 700°C and cooled at the same rate to 400°C and then removed from the furnace and left to cool. The gummy white product was washed with copious amounts of hot water followed by acetone to result in a mass of tiny colourless rods of (I). Compound (II) was made in the same way starting from a pre-mixture of 1.00 g Na2CO3, 1.12 g HfO2 and 1.57 g As2O5 and tiny colourless rods of (II) were the result.

Caution! Arsenic compounds are highly toxic and carcinogenic. Take all appropriate safety precautions, especially with respect to dust contamination.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The crystal chosen for data collection for (I) was found to be twinned over its rhombohedral obverse and reverse settings (Herbst-Irmer & Sheldrick, 2002[Herbst-Irmer, R. & Sheldrick, G. M. (2002). Acta Cryst. B58, 477-481.]) in a 0.797 (3):0.203 (3) ratio, which was processed as a SHELXL HKLF 5 refinement. To ensure charge balance, the occupancies of the four partially occupied sodium sites must sum to 10.0 Na per caesium ion and this was achieved by using a SUMP card (linear free variable restraint) in SHELXL, as unrestrained refinements tended to drift to a collective occupancy of above 10 (full occupancy of the four sodium sites would give 13 Na to 1 Cs). This needed cautious damped refinement cycles to begin with, but as the refinement converged, the damping could be removed to give refined fractional site occupancies of Na1 = 0.852 (5), Na2 = 0.860 (9), Na3 = 0.731 (12) and Na4 = 0.423 (11) for (I) and Na1 = 0.887 (7), Na2 = 0.846 (11), Na3 = 0.735 (16) and Na4 = 0.337 (14) for (II). The final difference map for (II) features electron density peaks of ∼2 e Å−3 near some of the sodium ions, perhaps suggesting that they are localizing over split multiple sites at low temperatures, but efforts to model this did not lead to satisfactory refinements. The value of Ueq for Na4 is small, which might indicate partial occupancy of caesium on this site (i.e., a formula of Cs1+xNa10-xHf4(AsO4)9, but attempts to model this were inconclusive.

Table 1
Experimental details

  (I) (II)
Crystal data
Chemical formula CsNa10Zr4(AsO4)9 CsNa10Hf4(AsO4)9
Mr 1977.97 2327.05
Crystal system, space group Trigonal, R[\overline{3}]c:H Trigonal, R[\overline{3}]c:H
Temperature (K) 293 120
a, c (Å) 9.2218 (5), 76.982 (5) 9.1795 (2), 76.527 (8)
V3) 5669.6 (7) 5584.5 (6)
Z 6 6
Radiation type Mo Kα Mo Kα
μ (mm−1) 10.07 20.25
Crystal size (mm) 0.10 × 0.10 × 0.10 0.08 × 0.08 × 0.08
 
Data collection
Diffractometer Bruker SMART CCD Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.350, 0.495 0.40, 0.50
No. of measured, independent and observed [I > 2σ(I)] reflections 2288, 2288, 1694 11660, 1434, 1164
Rint 0.070
(sin θ/λ)max−1) 0.756 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.093, 1.00 0.032, 0.078, 1.06
No. of reflections 2288 1434
No. of parameters 112 107
No. of restraints 1 7
Δρmax, Δρmin (e Å−3) 1.85, −1.63 2.57, −2.00
Computer programs: SMART and SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), ATOMS (Dowty, 2005[Dowty, E. W. (2005). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999) for (I); DENZO/SCALEPACK (Otwinowski & Minor, 1997) for (II). Cell refinement: SAINT (Bruker, 1999) for (I); DENZO/SCALEPACK (Otwinowski & Minor, 1997) for (II). Data reduction: SAINT (Bruker, 1999) for (I); DENZO/SCALEPACK (Otwinowski & Minor, 1997) for (II). Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for (I); SHELXS97 (Sheldrick, 2008) for (II). For both structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and ATOMS (Dowty, 2005); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015) and publCIF (Westrip, 2010).

Caesium decasodium tetrazirconium nonaarsenate (I) top
Crystal data top
CsNa10Zr4(AsO4)9Dx = 3.476 Mg m3
Mr = 1977.97Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 2999 reflections
a = 9.2218 (5) Åθ = 2.6–30.8°
c = 76.982 (5) ŵ = 10.07 mm1
V = 5669.6 (7) Å3T = 293 K
Z = 6Prism, colourless
F(000) = 54600.10 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
1694 reflections with I > 2σ(I)
ω scansθmax = 32.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1212
Tmin = 0.350, Tmax = 0.495k = 1313
2288 measured reflectionsl = 0114
2288 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0452P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.00Δρmax = 1.85 e Å3
2288 reflectionsΔρmin = 1.63 e Å3
112 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component obverse/reverse twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs10.0000000.0000000.0000000.0381 (2)
Na10.3350 (5)0.0681 (4)0.04049 (4)0.0410 (9)0.852 (5)
Na20.4054 (5)0.3333330.0833330.0411 (13)0.860 (9)
Na30.0000000.0000000.05355 (8)0.0321 (17)0.731 (12)
Na40.6666670.3333330.06014 (12)0.021 (2)0.423 (11)
Zr10.3333330.6666670.05681 (2)0.01237 (15)
Zr20.3333330.6666670.00666 (2)0.01204 (15)
As10.34556 (6)0.39774 (6)0.02640 (2)0.01350 (11)
As20.6666670.73010 (9)0.0833330.0309 (2)
O10.1757 (5)0.2319 (4)0.03370 (5)0.0251 (8)
O20.3084 (5)0.4671 (5)0.00779 (5)0.0251 (8)
O30.4373 (5)0.5591 (4)0.04062 (5)0.0192 (7)
O40.4946 (5)0.3445 (5)0.02328 (5)0.0217 (8)
O50.5457 (5)0.7825 (5)0.07152 (5)0.0234 (8)
O6A0.603 (2)0.5691 (13)0.09411 (18)0.036 (5)0.45 (3)
O6B0.5238 (19)0.5873 (11)0.09900 (16)0.034 (4)0.55 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0436 (4)0.0436 (4)0.0271 (4)0.02182 (18)0.0000.000
Na10.072 (2)0.0286 (15)0.0375 (16)0.0369 (17)0.0102 (17)0.0033 (13)
Na20.0307 (18)0.0138 (18)0.073 (3)0.0069 (9)0.0044 (10)0.009 (2)
Na30.0216 (19)0.0216 (19)0.053 (4)0.0108 (9)0.0000.000
Na40.015 (3)0.015 (3)0.034 (5)0.0074 (14)0.0000.000
Zr10.0109 (2)0.0109 (2)0.0153 (3)0.00546 (10)0.0000.000
Zr20.0109 (2)0.0109 (2)0.0144 (3)0.00543 (10)0.0000.000
As10.0135 (2)0.0114 (2)0.0162 (2)0.00670 (18)0.00020 (18)0.00004 (18)
As20.0460 (5)0.0276 (3)0.0254 (4)0.0230 (3)0.0191 (4)0.0095 (2)
O10.0227 (19)0.0166 (17)0.029 (2)0.0041 (15)0.0059 (16)0.0051 (16)
O20.029 (2)0.0199 (18)0.0268 (19)0.0131 (17)0.0026 (17)0.0055 (16)
O30.0199 (17)0.0165 (16)0.0220 (17)0.0097 (14)0.0002 (15)0.0050 (15)
O40.0246 (19)0.0293 (19)0.0227 (18)0.0219 (17)0.0003 (15)0.0034 (17)
O50.0178 (17)0.028 (2)0.0252 (18)0.0123 (16)0.0095 (15)0.0076 (17)
O6A0.034 (8)0.024 (5)0.034 (6)0.001 (4)0.010 (6)0.003 (4)
O6B0.032 (7)0.021 (4)0.032 (5)0.000 (4)0.014 (5)0.004 (4)
Geometric parameters (Å, º) top
Cs1—O1i3.235 (4)Na4—O6Avi2.694 (17)
Cs1—O1ii3.235 (4)Na4—O6Axii2.694 (17)
Cs1—O1iii3.235 (4)Zr1—O52.041 (3)
Cs1—O13.235 (4)Zr1—O5xiii2.041 (3)
Cs1—O1iv3.235 (4)Zr1—O5ix2.041 (3)
Cs1—O1v3.235 (4)Zr1—O3ix2.099 (3)
Na1—O6Bvi2.193 (9)Zr1—O3xiii2.099 (3)
Na1—O3vii2.394 (5)Zr1—O32.099 (3)
Na1—O1v2.482 (5)Zr2—O2xiii2.062 (4)
Na1—O6Avi2.485 (16)Zr2—O2ix2.062 (4)
Na1—O42.582 (5)Zr2—O22.062 (4)
Na1—O12.632 (5)Zr2—O4xiv2.081 (3)
Na2—O6A2.185 (10)Zr2—O4iv2.081 (3)
Na2—O6Avi2.185 (10)Zr2—O4xv2.081 (3)
Na2—O6B2.361 (12)As1—O11.647 (4)
Na2—O6Bvi2.361 (12)As1—O21.673 (4)
Na2—O5viii2.495 (5)As1—O41.691 (3)
Na2—O5ix2.495 (5)As1—O31.694 (4)
Na3—O1ii2.463 (5)As2—O6A1.538 (10)
Na3—O12.463 (5)As2—O6Axii1.538 (10)
Na3—O1v2.463 (5)As2—O5xii1.686 (4)
Na3—O6Bviii2.47 (2)As2—O51.686 (4)
Na3—O6Bx2.47 (2)As2—O6B1.786 (13)
Na3—O6Bvi2.47 (2)As2—O6Bxii1.786 (13)
Na4—O6Axi2.694 (17)O6A—O6B0.909 (13)
O1i—Cs1—O1ii180.0 (3)O5xiii—Zr1—O3ix87.67 (16)
O1i—Cs1—O1iii62.30 (10)O5ix—Zr1—O3ix91.79 (15)
O1ii—Cs1—O1iii117.70 (10)O5—Zr1—O3xiii87.66 (16)
O1i—Cs1—O1117.70 (10)O5xiii—Zr1—O3xiii91.79 (15)
O1ii—Cs1—O162.30 (10)O5ix—Zr1—O3xiii176.01 (15)
O1iii—Cs1—O1180.00 (9)O3ix—Zr1—O3xiii88.35 (14)
O1i—Cs1—O1iv62.30 (10)O5—Zr1—O391.79 (15)
O1ii—Cs1—O1iv117.70 (10)O5xiii—Zr1—O3176.01 (15)
O1iii—Cs1—O1iv62.30 (10)O5ix—Zr1—O387.67 (16)
O1—Cs1—O1iv117.70 (10)O3ix—Zr1—O388.35 (14)
O1i—Cs1—O1v117.70 (10)O3xiii—Zr1—O388.35 (14)
O1ii—Cs1—O1v62.30 (10)O2xiii—Zr2—O2ix93.66 (15)
O1iii—Cs1—O1v117.70 (10)O2xiii—Zr2—O293.66 (15)
O1—Cs1—O1v62.30 (10)O2ix—Zr2—O293.66 (15)
O1iv—Cs1—O1v180.00 (16)O2xiii—Zr2—O4xiv92.00 (16)
O6Bvi—Na1—O3vii104.6 (4)O2ix—Zr2—O4xiv88.01 (15)
O6Bvi—Na1—O1v93.4 (5)O2—Zr2—O4xiv173.98 (15)
O3vii—Na1—O1v87.41 (15)O2xiii—Zr2—O4iv173.98 (15)
O6Bvi—Na1—O6Avi21.3 (3)O2ix—Zr2—O4iv92.00 (16)
O3vii—Na1—O6Avi90.3 (4)O2—Zr2—O4iv88.01 (15)
O1v—Na1—O6Avi108.7 (4)O4xiv—Zr2—O4iv86.15 (14)
O6Bvi—Na1—O4118.5 (3)O2xiii—Zr2—O4xv88.01 (15)
O3vii—Na1—O4119.01 (18)O2ix—Zr2—O4xv173.98 (15)
O1v—Na1—O4127.39 (17)O2—Zr2—O4xv92.01 (16)
O6Avi—Na1—O4115.1 (3)O4xiv—Zr2—O4xv86.15 (14)
O6Bvi—Na1—O185.3 (5)O4iv—Zr2—O4xv86.15 (14)
O3vii—Na1—O1165.74 (19)O1—As1—O2111.5 (2)
O1v—Na1—O181.68 (19)O1—As1—O4108.17 (19)
O6Avi—Na1—O1101.8 (5)O2—As1—O4109.94 (19)
O4—Na1—O162.47 (13)O1—As1—O3114.88 (19)
O6Bvi—Na1—O4vii132.4 (6)O2—As1—O3108.98 (18)
O3vii—Na1—O4vii58.02 (13)O4—As1—O3103.03 (18)
O1v—Na1—O4vii125.80 (15)O6A—As2—O6Axii78.4 (18)
O6Avi—Na1—O4vii111.4 (6)O6A—As2—O5xii112.1 (4)
O4—Na1—O4vii61.11 (16)O6Axii—As2—O5xii125.4 (7)
O1—Na1—O4vii122.35 (15)O6A—As2—O5125.4 (7)
O6A—Na2—O6Avi140.7 (13)O6Axii—As2—O5112.1 (4)
O6A—Na2—O6B22.7 (4)O5xii—As2—O5103.8 (3)
O6Avi—Na2—O6B161.0 (11)O6A—As2—O6B30.6 (6)
O6A—Na2—O6Bvi161.0 (11)O6Axii—As2—O6B106.8 (15)
O6Avi—Na2—O6Bvi22.7 (4)O5xii—As2—O6B103.3 (4)
O6B—Na2—O6Bvi176.2 (9)O5—As2—O6B103.1 (5)
O6A—Na2—O5viii118.7 (7)O6A—As2—O6Bxii106.8 (15)
O6Avi—Na2—O5viii95.2 (5)O6Axii—As2—O6Bxii30.6 (6)
O6B—Na2—O5viii96.8 (5)O5xii—As2—O6Bxii103.0 (5)
O6Bvi—Na2—O5viii79.9 (4)O5—As2—O6Bxii103.2 (4)
O6A—Na2—O5ix95.2 (5)O6B—As2—O6Bxii136.7 (12)
O6Avi—Na2—O5ix118.7 (7)As1—O1—Na3157.7 (2)
O6B—Na2—O5ix79.9 (4)As1—O1—Na1ii117.0 (2)
O6Bvi—Na2—O5ix96.8 (5)Na3—O1—Na1ii74.73 (13)
O5viii—Na2—O5ix64.2 (2)As1—O1—Na193.24 (18)
O6A—Na2—O6Avii113.6 (6)Na3—O1—Na172.10 (12)
O6Avi—Na2—O6Avii40.3 (6)Na1ii—O1—Na1146.6 (2)
O6B—Na2—O6Avii124.1 (3)As1—O1—Cs1105.65 (17)
O6Bvi—Na2—O6Avii58.3 (4)Na3—O1—Cs191.66 (16)
O5viii—Na2—O6Avii92.7 (2)Na1ii—O1—Cs193.89 (14)
O5ix—Na2—O6Avii149.8 (3)Na1—O1—Cs191.09 (13)
O6A—Na2—O6Axii40.3 (6)As1—O2—Zr2148.2 (2)
O6Avi—Na2—O6Axii113.6 (6)As1—O3—Zr1130.8 (2)
O6B—Na2—O6Axii58.3 (5)As1—O3—Na1xvi108.79 (18)
O6Bvi—Na2—O6Axii124.1 (3)Zr1—O3—Na1xvi120.42 (18)
O5viii—Na2—O6Axii149.8 (2)As1—O4—Zr2xv148.4 (2)
O5ix—Na2—O6Axii92.7 (2)As1—O4—Na193.97 (17)
O6Avii—Na2—O6Axii114.9 (5)Zr2xv—O4—Na1109.81 (17)
O1ii—Na3—O185.6 (2)As1—O4—Na1xvi87.30 (16)
O1ii—Na3—O1v85.6 (2)Zr2xv—O4—Na1xvi96.88 (15)
O1—Na3—O1v85.6 (2)Na1—O4—Na1xvi121.76 (18)
O1ii—Na3—O6Bviii83.5 (2)As2—O5—Zr1138.4 (2)
O1—Na3—O6Bviii87.5 (2)As2—O5—Na2xiii95.98 (16)
O1v—Na3—O6Bviii167.5 (3)Zr1—O5—Na2xiii124.11 (18)
O1ii—Na3—O6Bx87.5 (2)As2—O6A—Na2118.8 (6)
O1—Na3—O6Bx167.5 (3)As2—O6A—Na1vi116.7 (8)
O1v—Na3—O6Bx83.5 (2)Na2—O6A—Na1vi115.9 (6)
O6Bviii—Na3—O6Bx102.1 (3)As2—O6A—Na4xi147.0 (14)
O1ii—Na3—O6Bvi167.5 (3)Na2—O6A—Na4xi75.0 (4)
O1—Na3—O6Bvi83.5 (2)Na1vi—O6A—Na4xi75.8 (3)
O1v—Na3—O6Bvi87.5 (2)As2—O6A—Na2xvi83.8 (9)
O6Bviii—Na3—O6Bvi102.1 (3)Na2—O6A—Na2xvi106.0 (9)
O6Bx—Na3—O6Bvi102.1 (3)Na1vi—O6A—Na2xvi109.3 (5)
O6Axi—Na4—O6Avi108.1 (5)Na4xi—O6A—Na2xvi63.2 (5)
O6Axi—Na4—O6Axii108.1 (5)As2—O6B—Na1vi120.5 (5)
O6Avi—Na4—O6Axii108.1 (5)As2—O6B—Na2101.0 (7)
O5—Zr1—O5xiii92.21 (16)Na1vi—O6B—Na2120.8 (4)
O5—Zr1—O5ix92.21 (16)As2—O6B—Na3xvii116.8 (7)
O5xiii—Zr1—O5ix92.20 (16)Na1vi—O6B—Na3xvii79.9 (6)
O5—Zr1—O3ix176.01 (15)Na2—O6B—Na3xvii118.3 (6)
Symmetry codes: (i) y, x+y, z; (ii) y, xy, z; (iii) x, y, z; (iv) xy, x, z; (v) x+y, x, z; (vi) xy+1/3, y+2/3, z+1/6; (vii) y+1, xy, z; (viii) y2/3, x1/3, z+1/6; (ix) x+y, x+1, z; (x) x+1/3, x+y1/3, z+1/6; (xi) y+1/3, x1/3, z+1/6; (xii) x+4/3, x+y+2/3, z+1/6; (xiii) y+1, xy+1, z; (xiv) y, x+y+1, z; (xv) x+1, y+1, z; (xvi) x+y+1, x+1, z; (xvii) y+1/3, x+2/3, z+1/6.
Caesium decasodium tetrahafnium nonaarsenate (II) top
Crystal data top
CsNa10Hf4(AsO4)9Dx = 4.152 Mg m3
Mr = 2327.05Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 22894 reflections
a = 9.1795 (2) Åθ = 2.9–27.5°
c = 76.527 (8) ŵ = 20.25 mm1
V = 5584.5 (6) Å3T = 120 K
Z = 6Prism, colourless
F(000) = 62280.08 × 0.08 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
1164 reflections with I > 2σ(I)
ω scansRint = 0.070
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
θmax = 27.5°, θmin = 3.2°
Tmin = 0.40, Tmax = 0.50h = 1111
11660 measured reflectionsk = 1111
1434 independent reflectionsl = 9999
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0359P)2 + 136.7342P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max = 0.008
S = 1.06Δρmax = 2.57 e Å3
1434 reflectionsΔρmin = 2.00 e Å3
107 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs10.0000000.0000000.0000000.0162 (3)
Na10.3354 (5)0.0688 (5)0.04043 (5)0.0256 (11)0.887 (7)
Na20.4061 (6)0.3333330.0833330.0208 (15)*0.846 (11)
Na30.0000000.0000000.05288 (11)0.018 (2)0.735 (16)
Na40.6666670.3333330.06123 (16)0.002 (4)*0.337 (14)
Hf10.3333330.6666670.05673 (2)0.00710 (15)
Hf20.3333330.6666670.00682 (2)0.00611 (15)
As10.34520 (9)0.39770 (9)0.02639 (2)0.00578 (18)
As20.6666670.73244 (13)0.0833330.0205 (3)
O10.1730 (6)0.2332 (6)0.03369 (6)0.0113 (11)
O20.3086 (6)0.4663 (6)0.00745 (6)0.0109 (11)
O30.4389 (6)0.5622 (6)0.04043 (6)0.0068 (10)
O40.4922 (6)0.3405 (6)0.02356 (6)0.0097 (11)
O50.5461 (6)0.7864 (6)0.07152 (6)0.0127 (11)
O6A0.602 (2)0.569 (2)0.0942 (2)0.008 (2)0.35 (2)
O6B0.5276 (16)0.5861 (12)0.09848 (14)0.029 (4)0.65 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0181 (4)0.0181 (4)0.0125 (5)0.0091 (2)0.0000.000
Na10.049 (3)0.014 (2)0.023 (2)0.023 (2)0.0094 (18)0.0012 (16)
Na30.002 (3)0.002 (3)0.049 (5)0.0012 (13)0.0000.000
Hf10.00580 (19)0.00580 (19)0.0097 (3)0.00290 (9)0.0000.000
Hf20.00499 (19)0.00499 (19)0.0084 (3)0.00250 (9)0.0000.000
As10.0056 (4)0.0037 (4)0.0086 (3)0.0027 (3)0.0002 (3)0.0002 (3)
As20.0312 (7)0.0178 (4)0.0170 (6)0.0156 (4)0.0165 (5)0.0083 (3)
O10.007 (3)0.007 (3)0.015 (3)0.000 (2)0.001 (2)0.001 (2)
O20.015 (3)0.009 (3)0.011 (2)0.007 (2)0.003 (2)0.000 (2)
O30.005 (2)0.005 (2)0.011 (2)0.003 (2)0.0006 (19)0.0054 (19)
O40.010 (3)0.013 (3)0.010 (2)0.010 (2)0.002 (2)0.000 (2)
O50.007 (3)0.017 (3)0.012 (2)0.004 (2)0.006 (2)0.006 (2)
O6A0.008 (2)0.008 (2)0.008 (2)0.0042 (11)0.00000 (10)0.00000 (10)
O6B0.030 (7)0.021 (5)0.022 (5)0.003 (5)0.014 (5)0.002 (4)
Geometric parameters (Å, º) top
Cs1—O13.218 (5)Na4—O6Avi2.654 (18)
Cs1—O1i3.218 (5)Na4—O6Axii2.654 (18)
Cs1—O1ii3.218 (5)Hf1—O5xiii2.039 (5)
Cs1—O1iii3.218 (5)Hf1—O5ix2.039 (5)
Cs1—O1iv3.218 (5)Hf1—O52.039 (5)
Cs1—O1v3.218 (5)Hf1—O3ix2.084 (4)
Na1—O6Bvi2.212 (10)Hf1—O3xiii2.084 (4)
Na1—O3vii2.377 (6)Hf1—O32.084 (4)
Na1—O1iii2.443 (6)Hf2—O22.051 (5)
Na1—O6Avi2.467 (17)Hf2—O2ix2.052 (5)
Na1—O42.524 (6)Hf2—O2xiii2.052 (5)
Na1—O12.649 (6)Hf2—O4xiv2.077 (5)
Na1—O4vii2.972 (6)Hf2—O4ii2.077 (5)
Na2—O6A2.170 (16)Hf2—O4xv2.077 (5)
Na2—O6Avi2.170 (16)As1—O11.644 (5)
Na2—O6B2.320 (10)As1—O21.680 (5)
Na2—O6Bvi2.320 (10)As1—O41.689 (5)
Na2—O5viii2.458 (7)As1—O31.696 (4)
Na2—O5ix2.458 (7)As2—O6A1.552 (15)
Na3—O1v2.421 (7)As2—O6Axi1.552 (15)
Na3—O1iii2.421 (7)As2—O51.684 (5)
Na3—O12.421 (7)As2—O5xi1.684 (5)
Na3—O6Bviii2.534 (17)As2—O6B1.750 (11)
Na3—O6Bx2.534 (17)As2—O6Bxi1.750 (11)
Na3—O6Bvi2.534 (17)O6A—O6B0.842 (15)
Na4—O6Axi2.654 (18)
O1—Cs1—O1i180.00 (19)O5ix—Hf1—O387.7 (2)
O1—Cs1—O1ii117.59 (14)O5—Hf1—O392.3 (2)
O1i—Cs1—O1ii62.41 (14)O3ix—Hf1—O387.88 (18)
O1—Cs1—O1iii62.41 (14)O3xiii—Hf1—O387.88 (18)
O1i—Cs1—O1iii117.59 (14)O2—Hf2—O2ix94.29 (18)
O1ii—Cs1—O1iii180.00 (19)O2—Hf2—O2xiii94.29 (18)
O1—Cs1—O1iv117.59 (14)O2ix—Hf2—O2xiii94.28 (18)
O1i—Cs1—O1iv62.41 (14)O2—Hf2—O4xiv92.38 (19)
O1ii—Cs1—O1iv62.41 (14)O2ix—Hf2—O4xiv173.05 (19)
O1iii—Cs1—O1iv117.59 (14)O2xiii—Hf2—O4xiv87.19 (19)
O1—Cs1—O1v62.41 (14)O2—Hf2—O4ii87.18 (19)
O1i—Cs1—O1v117.59 (14)O2ix—Hf2—O4ii92.38 (19)
O1ii—Cs1—O1v117.59 (14)O2xiii—Hf2—O4ii173.05 (19)
O1iii—Cs1—O1v62.41 (14)O4xiv—Hf2—O4ii85.96 (19)
O1iv—Cs1—O1v180.0 (3)O2—Hf2—O4xv173.04 (19)
O6Bvi—Na1—O3vii103.8 (4)O2ix—Hf2—O4xv87.18 (19)
O6Bvi—Na1—O1iii94.4 (4)O2xiii—Hf2—O4xv92.38 (19)
O3vii—Na1—O1iii86.5 (2)O4xiv—Hf2—O4xv85.96 (19)
O6Bvi—Na1—O6Avi19.8 (4)O4ii—Hf2—O4xv85.96 (19)
O3vii—Na1—O6Avi90.7 (5)O1—As1—O2110.9 (3)
O1iii—Na1—O6Avi108.7 (5)O1—As1—O4108.0 (2)
O6Bvi—Na1—O4118.4 (3)O2—As1—O4110.3 (2)
O3vii—Na1—O4119.4 (2)O1—As1—O3115.4 (2)
O1iii—Na1—O4127.6 (2)O2—As1—O3108.7 (2)
O6Avi—Na1—O4115.0 (4)O4—As1—O3103.3 (2)
O6Bvi—Na1—O186.1 (4)O6A—As2—O6Axi78.0 (15)
O3vii—Na1—O1165.2 (2)O6A—As2—O5125.7 (7)
O1iii—Na1—O181.7 (2)O6Axi—As2—O5112.6 (6)
O6Avi—Na1—O1101.5 (5)O6A—As2—O5xi112.6 (6)
O4—Na1—O162.78 (17)O6Axi—As2—O5xi125.7 (7)
O6Bvi—Na1—O4vii130.4 (5)O5—As2—O5xi103.0 (3)
O3vii—Na1—O4vii58.22 (16)O6A—As2—O6B28.8 (6)
O1iii—Na1—O4vii126.1 (2)O6Axi—As2—O6B104.5 (12)
O6Avi—Na1—O4vii110.9 (5)O5—As2—O6B104.3 (5)
O4—Na1—O4vii61.4 (2)O5xi—As2—O6B104.8 (4)
O1—Na1—O4vii123.09 (19)O6A—As2—O6Bxi104.5 (12)
O6A—Na2—O6Avi141.3 (12)O6Axi—As2—O6Bxi28.8 (6)
O6A—Na2—O6B21.3 (4)O5—As2—O6Bxi104.8 (4)
O6Avi—Na2—O6B160.8 (9)O5xi—As2—O6Bxi104.3 (5)
O6A—Na2—O6Bvi160.8 (9)O6B—As2—O6Bxi132.5 (10)
O6Avi—Na2—O6Bvi21.3 (4)As1—O1—Na3157.3 (3)
O6B—Na2—O6Bvi177.8 (8)As1—O1—Na1v118.2 (3)
O6A—Na2—O5viii118.4 (6)Na3—O1—Na1v75.36 (17)
O6Avi—Na2—O5viii94.8 (5)As1—O1—Na191.9 (2)
O6B—Na2—O5viii97.9 (4)Na3—O1—Na171.66 (16)
O6Bvi—Na2—O5viii80.2 (3)Na1v—O1—Na1146.7 (3)
O6A—Na2—O5ix94.8 (5)As1—O1—Cs1105.5 (2)
O6Avi—Na2—O5ix118.4 (6)Na3—O1—Cs190.6 (2)
O6B—Na2—O5ix80.2 (3)Na1v—O1—Cs194.33 (17)
O6Bvi—Na2—O5ix97.9 (4)Na1—O1—Cs190.47 (16)
O5viii—Na2—O5ix64.8 (3)As1—O2—Hf2147.4 (3)
O1v—Na3—O1iii87.0 (3)As1—O3—Hf1130.0 (3)
O1v—Na3—O187.0 (3)As1—O3—Na1xvi108.8 (2)
O1iii—Na3—O187.0 (3)Hf1—O3—Na1xvi121.1 (2)
O1v—Na3—O6Bviii84.6 (2)As1—O4—Hf2xiv146.9 (3)
O1iii—Na3—O6Bviii170.0 (4)As1—O4—Na195.3 (2)
O1—Na3—O6Bviii87.2 (2)Hf2xiv—O4—Na1110.6 (2)
O1v—Na3—O6Bx87.2 (2)As1—O4—Na1xvi86.8 (2)
O1iii—Na3—O6Bx84.5 (2)Hf2xiv—O4—Na1xvi95.70 (19)
O1—Na3—O6Bx170.0 (4)Na1—O4—Na1xvi122.6 (2)
O6Bviii—Na3—O6Bx100.3 (3)As2—O5—Hf1137.1 (3)
O1v—Na3—O6Bvi170.0 (4)As2—O5—Na2xiii96.1 (2)
O1iii—Na3—O6Bvi87.2 (2)Hf1—O5—Na2xiii125.3 (2)
O1—Na3—O6Bvi84.6 (2)As2—O6A—Na2119.0 (8)
O6Bviii—Na3—O6Bvi100.3 (3)As2—O6A—Na1vi116.5 (9)
O6Bx—Na3—O6Bvi100.3 (3)Na2—O6A—Na1vi116.2 (7)
O6Axi—Na4—O6Avi110.0 (4)As2—O6A—Na4xii146.0 (12)
O6Axi—Na4—O6Axii110.0 (4)Na2—O6A—Na4xii74.0 (5)
O6Avi—Na4—O6Axii110.0 (4)Na1vi—O6A—Na4xii77.5 (5)
O5xiii—Hf1—O5ix92.17 (19)As2—O6A—Na2xvi83.9 (8)
O5xiii—Hf1—O592.17 (19)Na2—O6A—Na2xvi105.6 (8)
O5ix—Hf1—O592.17 (19)Na1vi—O6A—Na2xvi109.2 (6)
O5xiii—Hf1—O3ix87.7 (2)Na4xii—O6A—Na2xvi62.2 (5)
O5ix—Hf1—O3ix92.3 (2)As2—O6B—Na1vi120.8 (5)
O5—Hf1—O3ix175.57 (19)As2—O6B—Na2103.8 (6)
O5xiii—Hf1—O3xiii92.3 (2)Na1vi—O6B—Na2120.7 (4)
O5ix—Hf1—O3xiii175.56 (19)As2—O6B—Na3xvii115.6 (6)
O5—Hf1—O3xiii87.7 (2)Na1vi—O6B—Na3xvii77.3 (5)
O3ix—Hf1—O3xiii87.89 (18)Na2—O6B—Na3xvii117.8 (5)
O5xiii—Hf1—O3175.56 (19)
Symmetry codes: (i) x, y, z; (ii) xy, x, z; (iii) x+y, x, z; (iv) y, x+y, z; (v) y, xy, z; (vi) xy+1/3, y+2/3, z+1/6; (vii) y+1, xy, z; (viii) y2/3, x1/3, z+1/6; (ix) x+y, x+1, z; (x) x+1/3, x+y1/3, z+1/6; (xi) x+4/3, x+y+2/3, z+1/6; (xii) y+1/3, x1/3, z+1/6; (xiii) y+1, xy+1, z; (xiv) x+1, y+1, z; (xv) y, x+y+1, z; (xvi) x+y+1, x+1, z; (xvii) y+1/3, x+2/3, z+1/6.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collection for (II).

References

First citationAbrahams, S. C. & Bernstein, J. L. (1966). J. Chem. Phys. 45, 2745–2752.  CrossRef ICSD CAS Web of Science Google Scholar
First citationAdams, J. M., Haselden, D. A. & Hewat, A. W. (1982). J. Solid State Chem. 44, 245–253.  CrossRef ICSD CAS Google Scholar
First citationAnantharamulu, N., Koteswara Rao, K., Rambabu, G., Vijaya Kumar, B., Radha, V. & Vithal, M. (2011). J. Mater. Sci. 46, 2821–2837.  CrossRef CAS Google Scholar
First citationBelsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakir, M., El Jazouli, A. & de Waal, A. (2003). Mater. Res. Bull. 38, 1773–1779.  CrossRef ICSD CAS Google Scholar
First citationDowty, E. W. (2005). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationElbrahimi, M. & Durand, J. (1990). Z. Anorg. Allg. Chem. 584, 178–184.  CrossRef ICSD CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHerbst-Irmer, R. & Sheldrick, G. M. (2002). Acta Cryst. B58, 477–481.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKores, C. C., Canalias, C. & Laurell, F. (2021). APL Photonics, 6, article 091102.  Google Scholar
First citationMcGarey, P. O., Collins, A., Dominguez, L. M., Dion, G. R. & Simpson, G. B. (2021). J. Voice, 35, 800–803.  CrossRef PubMed Google Scholar
First citationMüller-Buschbaum, H. K. (2010). Z. Anorg. Allg. Chem. 636, 1667–1685.  Google Scholar
First citationNorberg, S. T. (2002). Acta Cryst. B58, 743–749.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShim, H.-K. & Kim, M. R. (2021). Amer. J. Case Rep. 22, article e931042.  CrossRef Google Scholar
First citationSimpson, M. & Harrison, W. T. A. (2004). Solid State Sci. 6, 981–985.  CrossRef ICSD CAS Google Scholar
First citationSorokina, N. I. & Voronkova, V. I. (2007). Crystallogr. Rep. 52, 80–93.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStucky, G. D., Phillips, M. L. F. & Gier, T. E. (1989). Chem. Mater. 1, 492–509.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZumsteg, F. C., Bierlein, J. D. & Gier, T. E. (1976). J. Appl. Phys. 47, 4980–4985.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds