research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2,2′-(phenyl­aza­nedi­yl)bis­­(1-phenyl­ethan-1-one)

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 16 May 2022; accepted 20 May 2022; online 7 June 2022)

The whole mol­ecule of the title compound, C22H19NO2, is generated by twofold rotational symmetry. The N atom exhibits a trigonal-planar geometry and is located on the twofold rotation axis. In the crystal, mol­ecules are linked by C—H⋯O contacts with R22(12) ring motifs, and C—H⋯π inter­actions, resulting in ribbons along the c-axis direction. van der Waals inter­actions between these ribbons consolidate the mol­ecular packing. Hirshfeld surface analysis indicates that the greatest contributions to the crystal packing are from H⋯H (45.5%), C⋯H/H⋯C (38.2%) and O⋯H/H⋯O (16.0%) inter­actions.

1. Chemical context

Functionalized amine and carbonyl compounds are versatile inter­mediates in organic synthesis, material science and medicinal chemistry (Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]; Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628-633.]). N,N-bis­(phenac­yl)anilines are of particular significance in the fine chemical industry due to their use as precursors of various heterocyclic systems such as piperidine, triazepine, 1,4-di­hydro­pyrazine, 1,4-oxazine, pyrrole and indoles (Zeng & Chen, 2006[Zeng, D. X. & Chen, Y. (2006). Synlett, pp. 0490-0492.]; Ravindran et al., 2007[Ravindran, G., Muthusubramanian, S., Selvaraj, S. & Perumal, S. (2007). J. Heterocycl. Chem. 44, 133-136.]; Paul & Muthusubramanian, 2013[Paul, N. & Muthusubramanian, S. (2013). Synth. Commun. 43, 1200-1209.]; Yan et al., 2014[Yan, H., Tan, H. & Xin, H. (2014). Heterocycles, 89, 359-373.]).

[Scheme 1]

Thus, in the framework of our ongoing structural studies (Naghiyev et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.], 2021[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]; Khalilov et al., 2022[Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525-529.]), we report the crystal structure and Hirshfeld surface analysis of the title compound, 2,2′-(phenyl­aza­nedi­yl)bis­(1-phenyl­ethan-1-one).

2. Structural commentary

The asymmetric unit of the title compound contains half a mol­ecule, the complete mol­ecule being generated by the twofold rotational axis. Atoms N1, C1 and C4 are located on the twofold rotation axis (Fig. 1[link]). The N1 atom has a trigonal-planar geometry, and it is bonded to two C atoms (C5 and C5A) from two symmetry-related 1-phenyl­ethan-1-one groups and atom C1 of the phenyl ring, which is divided by the twofold rotation axis. The phenyl ring (C1–C4/C2A/C3A) attached to the N1 atom and the phenyl rings (C7–C12 and C7A–C12A) of the two symmetry-related 1-phenyl­ethan-1-one groups are oriented at 89.65 (6)° to each other.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by inter­molecular C—H⋯O [C5—H5A⋯O1(x, −y + 1, z + [{1\over 2}]); 2.51 Å, 158°] inter­actions with [R_{2}^{2}](12) ring motifs, resulting in ribbons along the c-axis direction (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link]; Fig. 2[link]). C—H⋯π inter­actions also contribute to the stronger cohesion of mol­ecules in the ribbons (Table 1[link]; Fig. 3[link]). The mol­ecular packing also features van der Waals inter­actions between these ribbons.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the phenyl ring attached to atom N1.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.99 2.51 3.4483 (16) 158
C8—H8⋯Cg1ii 0.95 2.85 3.6963 (14) 148
C8—H8⋯Cg1iii 0.95 2.85 3.6963 (14) 148
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
A general view of the inter­molecular C—H⋯O hydrogen bonds, and C—H⋯π inter­actions of the title compound. The hydrogen atoms not involved in the hydrogen bonds have been omitted for clarity. Symmetry codes: (a) x, y, z + 1; (b) 1 − x, y, [{1\over 2}] − z; (c) x + [{3\over 2}], −y + [{1\over 2}], −z + 1; (d) 1 − x, 1 − y, −z; (e) 1 − x, 1 − y, 1 − z; (f) x, 1 − y, −[{1\over 2}] + z; (g) x, 1 − y, [{1\over 2}] + z.
[Figure 3]
Figure 3
View of the packing down the c axis showing C—H⋯O hydrogen bonds and and C—H⋯π inter­actions in the title compound. The hydrogen atoms not involved in the hydrogen bonds have been omitted for clarity.

Crystal Explorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net.]) was used to perform a Hirshfeld surface analysis and generate the associated two-dimensional fingerprint plots, with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.1305 (red) to 1.2546 (blue) a.u (Fig. 4[link]). In the Hirshfeld surface mapped over dnorm (Fig. 4[link]), the bright-red spots near atoms O1 and H5A indicate the short C—H⋯O contacts (Table 1[link]). Other contacts are equal to or longer than the sum of van der Waals radii.

[Figure 4]
Figure 4
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of −0.1305 to 1.2546 a.u. The C—H⋯O hydrogen bonds are shown.

Fingerprint plots (Fig. 5[link]bd; Table1) reveal that H⋯H (45.5%), C⋯H/H⋯C (38.2%) and O⋯H/H⋯O (16.0%) inter­actions make the greatest contributions to the surface contacts. N⋯H/H⋯N (0.3%) contacts also contribute to the overall crystal packing of the title compound. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 5]
Figure 5
Two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the N,N-di­methyl­aniline moiety revealed three structures closely related to the title compound, viz. 4-methyl-N-[(4-methyl­phen­yl)sulfon­yl]-N-phenyl­benzene­sulfonamide [CSD refcode GOBNIW (I); Eren et al., 2014[Eren, B., Demir, S., Dal, H. & Hökelek, T. (2014). Acta Cryst. E70, o238-o239.]], N,N′-[(phenyl­imino)diethane-2,1-di­yl]bis­(pyridine-2-carboxamide) [IDIZOM (II); Li et al., 2013[Li, G.-N., Niu, Z.-G., Huang, M.-Q., Zou, Y. & Hu, L.-J. (2013). Acta Cryst. E69, o677.]] and (2E,2′E)-dimethyl 2,2′-[(phenyl­aza­nedi­yl)bis­(methyl­ene)]bis­(3-phenyl­acrylate) [XEBWUY (III); Sabari et al., 2012[Sabari, V., Selvakumar, R., Bakthadoss, M. & Aravindhan, S. (2012). Acta Cryst. E68, o2265.]]. Like the title compound, the mol­ecule of (I) possesses twofold rotational symmetry. The N atom has a trigonal-planar geometry and is located on the twofold rotation axis. Weak C—H⋯O hydrogen bonds connect the mol­ecules, forming a three-dimensional network. The asymmetric unit of (II) contains two independent mol­ecules with similar conformations. In the crystal, N—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular structure. Weak inter­molecular C—H⋯π inter­actions are also observed. In (III), the C=C double bonds adopt an E configuration. In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers.

5. Synthesis and crystallization

The title compound was synthesized using the reported procedure (He et al., 2014[He, J., Shi, L., Liu, S., Jia, P., Wang, J. & Hu, R. (2014). Monatsh. Chem. 145, 213-216.]), and pale-yellow needle-like crystals were obtained upon slow evaporation from an ethanol/water (4:1) homogeneous solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms bound to C atoms were positioned geometrically (C—H = 0.95 and 0.99 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). Owing to poor agreement between observed and calculated intensities, eighteen outliers (8 1 3, 1 5 6, 25 0 2, 4 5 3, 2 7 3, 1 2 3, 1 1 6, 7 3 0, 14 3 9, 5 3 0, 4 5 8, 0 4 0, 21 0 2, 7 4 8, 9 10 3, 2 4 0, 23 2 2, 2 8 5) were omitted during the final refinement cycle.

Table 2
Experimental details

Crystal data
Chemical formula C22H19NO2
Mr 329.38
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 100
a, b, c (Å) 20.8269 (2), 9.09843 (10), 9.0158 (1)
V3) 1708.42 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.65
Crystal size (mm) 0.09 × 0.06 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.906, 0.939
No. of measured, independent and observed [I > 2σ(I)] reflections 21247, 1834, 1746
Rint 0.034
(sin θ/λ)max−1) 0.637
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.142, 1.09
No. of reflections 1834
No. of parameters 115
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.23
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

2,2'-(Phenylazanediyl)bis(1-phenylethan-1-one) top
Crystal data top
C22H19NO2Dx = 1.281 Mg m3
Mr = 329.38Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcnCell parameters from 14002 reflections
a = 20.8269 (2) Åθ = 4.3–79.0°
b = 9.09843 (10) ŵ = 0.65 mm1
c = 9.0158 (1) ÅT = 100 K
V = 1708.42 (3) Å3Prism, pale yellow
Z = 40.09 × 0.06 × 0.05 mm
F(000) = 696
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1746 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.034
φ and ω scansθmax = 79.4°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 2626
Tmin = 0.906, Tmax = 0.939k = 1110
21247 measured reflectionsl = 1011
1834 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0811P)2 + 0.6375P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1834 reflectionsΔρmax = 0.28 e Å3
115 parametersΔρmin = 0.23 e Å3
Special details top

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38204 (5)0.42787 (12)0.14622 (11)0.0346 (3)
N10.5000000.50356 (17)0.2500000.0275 (4)
C10.5000000.65552 (19)0.2500000.0258 (4)
C20.54585 (7)0.73540 (15)0.16825 (14)0.0312 (3)
H20.5776600.6845210.1128820.037*
C30.54488 (9)0.88824 (18)0.16798 (17)0.0432 (4)
H30.5755330.9405930.1105550.052*
C40.5000000.9651 (2)0.2500000.0537 (7)
H40.4999991.0694890.2500000.064*
C50.45804 (6)0.41853 (14)0.34384 (14)0.0256 (3)
H5A0.4478990.4761900.4339610.031*
H5B0.4806510.3280710.3754130.031*
C60.39556 (6)0.37610 (14)0.26663 (14)0.0262 (3)
C70.35248 (6)0.26878 (14)0.34230 (13)0.0256 (3)
C80.36541 (6)0.21454 (15)0.48403 (15)0.0304 (3)
H80.4020120.2481160.5370050.036*
C90.32461 (7)0.11135 (17)0.54737 (16)0.0362 (4)
H90.3336290.0737890.6434610.043*
C100.27080 (7)0.06284 (17)0.47116 (17)0.0362 (4)
H100.2434250.0088430.5144060.043*
C110.25697 (7)0.11905 (17)0.33172 (16)0.0353 (4)
H110.2194760.0878020.2806390.042*
C120.29775 (7)0.22064 (15)0.26696 (16)0.0316 (3)
H120.2884860.2577880.1708380.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0336 (5)0.0400 (6)0.0302 (5)0.0032 (4)0.0024 (4)0.0071 (4)
N10.0260 (7)0.0226 (7)0.0338 (8)0.0000.0068 (6)0.000
C10.0285 (8)0.0239 (8)0.0250 (8)0.0000.0043 (6)0.000
C20.0378 (8)0.0281 (7)0.0277 (7)0.0037 (5)0.0006 (5)0.0014 (5)
C30.0632 (11)0.0286 (7)0.0378 (8)0.0102 (7)0.0028 (7)0.0047 (6)
C40.091 (2)0.0228 (10)0.0475 (13)0.0000.0033 (12)0.000
C50.0251 (6)0.0241 (6)0.0277 (6)0.0004 (4)0.0020 (4)0.0007 (4)
C60.0266 (6)0.0247 (6)0.0272 (6)0.0028 (5)0.0027 (5)0.0019 (5)
C70.0254 (6)0.0236 (6)0.0277 (6)0.0014 (5)0.0035 (4)0.0028 (4)
C80.0292 (6)0.0326 (7)0.0292 (6)0.0036 (5)0.0009 (5)0.0009 (5)
C90.0377 (7)0.0407 (8)0.0303 (7)0.0064 (6)0.0040 (6)0.0041 (6)
C100.0352 (7)0.0367 (7)0.0366 (7)0.0092 (6)0.0086 (6)0.0019 (6)
C110.0305 (7)0.0382 (8)0.0372 (8)0.0086 (6)0.0014 (5)0.0063 (6)
C120.0316 (7)0.0328 (7)0.0304 (7)0.0024 (5)0.0009 (5)0.0019 (5)
Geometric parameters (Å, º) top
O1—C61.2165 (16)C5—H5B0.9900
N1—C11.383 (2)C6—C71.4913 (18)
N1—C51.4415 (14)C7—C81.3960 (19)
N1—C5i1.4416 (14)C7—C121.3973 (19)
C1—C2i1.4082 (16)C8—C91.3892 (19)
C1—C21.4082 (16)C8—H80.9500
C2—C31.391 (2)C9—C101.387 (2)
C2—H20.9500C9—H90.9500
C3—C41.382 (2)C10—C111.388 (2)
C3—H30.9500C10—H100.9500
C4—H40.9500C11—C121.384 (2)
C5—C61.5254 (17)C11—H110.9500
C5—H5A0.9900C12—H120.9500
C1—N1—C5122.46 (7)O1—C6—C7121.50 (12)
C1—N1—C5i122.46 (7)O1—C6—C5120.45 (11)
C5—N1—C5i115.08 (14)C7—C6—C5118.05 (11)
N1—C1—C2i121.07 (9)C8—C7—C12119.44 (12)
N1—C1—C2121.07 (9)C8—C7—C6122.28 (12)
C2i—C1—C2117.86 (17)C12—C7—C6118.27 (12)
C3—C2—C1120.47 (14)C9—C8—C7119.81 (13)
C3—C2—H2119.8C9—C8—H8120.1
C1—C2—H2119.8C7—C8—H8120.1
C4—C3—C2120.98 (15)C10—C9—C8120.38 (13)
C4—C3—H3119.5C10—C9—H9119.8
C2—C3—H3119.5C8—C9—H9119.8
C3i—C4—C3119.2 (2)C9—C10—C11119.97 (13)
C3i—C4—H4120.4C9—C10—H10120.0
C3—C4—H4120.4C11—C10—H10120.0
N1—C5—C6112.65 (9)C12—C11—C10120.05 (13)
N1—C5—H5A109.1C12—C11—H11120.0
C6—C5—H5A109.1C10—C11—H11120.0
N1—C5—H5B109.1C11—C12—C7120.32 (13)
C6—C5—H5B109.1C11—C12—H12119.8
H5A—C5—H5B107.8C7—C12—H12119.8
C5—N1—C1—C2i6.40 (9)O1—C6—C7—C8176.33 (12)
C5i—N1—C1—C2i173.60 (9)C5—C6—C7—C84.37 (18)
C5—N1—C1—C2173.59 (9)O1—C6—C7—C124.30 (19)
C5i—N1—C1—C26.41 (9)C5—C6—C7—C12175.00 (11)
N1—C1—C2—C3179.32 (10)C12—C7—C8—C91.3 (2)
C2i—C1—C2—C30.68 (10)C6—C7—C8—C9178.06 (12)
C1—C2—C3—C41.4 (2)C7—C8—C9—C100.6 (2)
C2—C3—C4—C3i0.69 (11)C8—C9—C10—C110.9 (2)
C1—N1—C5—C693.41 (9)C9—C10—C11—C121.7 (2)
C5i—N1—C5—C686.59 (9)C10—C11—C12—C71.0 (2)
N1—C5—C6—O18.70 (17)C8—C7—C12—C110.6 (2)
N1—C5—C6—C7170.61 (11)C6—C7—C12—C11178.84 (12)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the phenyl ring attached to atom N1.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1ii0.992.513.4483 (16)158
C8—H8···Cg1iii0.952.853.6963 (14)148
C8—H8···Cg1iv0.952.853.6963 (14)148
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1, y+1, z+1; (iv) x1/2, y+1/2, z.
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, ANK, MA and MGS; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, FNN and ANK; resources, AB, VNK and FNN; supervision, ANK and MA.

Funding information

This paper was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEren, B., Demir, S., Dal, H. & Hökelek, T. (2014). Acta Cryst. E70, o238–o239.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHe, J., Shi, L., Liu, S., Jia, P., Wang, J. & Hu, R. (2014). Monatsh. Chem. 145, 213–216.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, G.-N., Niu, Z.-G., Huang, M.-Q., Zou, Y. & Hu, L.-J. (2013). Acta Cryst. E69, o677.  CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaul, N. & Muthusubramanian, S. (2013). Synth. Commun. 43, 1200–1209.  Web of Science CrossRef CAS Google Scholar
First citationRavindran, G., Muthusubramanian, S., Selvaraj, S. & Perumal, S. (2007). J. Heterocycl. Chem. 44, 133–136.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSabari, V., Selvakumar, R., Bakthadoss, M. & Aravindhan, S. (2012). Acta Cryst. E68, o2265.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYan, H., Tan, H. & Xin, H. (2014). Heterocycles, 89, 359–373.  Web of Science CSD CrossRef Google Scholar
First citationZeng, D. X. & Chen, Y. (2006). Synlett, pp. 0490–0492.  Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds