research communications
and Hirshfeld surface analysis of 2,2′-(phenylazanediyl)bis(1-phenylethan-1-one)
aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
The whole molecule of the title compound, C22H19NO2, is generated by twofold rotational symmetry. The N atom exhibits a trigonal-planar geometry and is located on the twofold rotation axis. In the crystal, molecules are linked by C—H⋯O contacts with R22(12) ring motifs, and C—H⋯π interactions, resulting in ribbons along the c-axis direction. van der Waals interactions between these ribbons consolidate the molecular packing. Hirshfeld surface analysis indicates that the greatest contributions to the crystal packing are from H⋯H (45.5%), C⋯H/H⋯C (38.2%) and O⋯H/H⋯O (16.0%) interactions.
Keywords: crystal structure; C—H⋯O hydrogen bonds; C—H⋯··π interactions; van der Waals interactions; Hirshfeld surface.
CCDC reference: 2173928
1. Chemical context
Functionalized amine and et al., 2018; Shikhaliyev et al., 2019; Viswanathan et al., 2019; Gurbanov et al., 2020). N,N-bis(phenacyl)anilines are of particular significance in the fine chemical industry due to their use as precursors of various heterocyclic systems such as piperidine, triazepine, 1,4-dihydropyrazine, 1,4-oxazine, pyrrole and indoles (Zeng & Chen, 2006; Ravindran et al., 2007; Paul & Muthusubramanian, 2013; Yan et al., 2014).
are versatile intermediates in organic synthesis, material science and medicinal chemistry (ZubkovThus, in the framework of our ongoing structural studies (Naghiyev et al., 2020, 2021, 2022; Khalilov et al., 2022), we report the and Hirshfeld surface analysis of the title compound, 2,2′-(phenylazanediyl)bis(1-phenylethan-1-one).
2. Structural commentary
The ). The N1 atom has a trigonal-planar geometry, and it is bonded to two C atoms (C5 and C5A) from two symmetry-related 1-phenylethan-1-one groups and atom C1 of the phenyl ring, which is divided by the twofold rotation axis. The phenyl ring (C1–C4/C2A/C3A) attached to the N1 atom and the phenyl rings (C7–C12 and C7A–C12A) of the two symmetry-related 1-phenylethan-1-one groups are oriented at 89.65 (6)° to each other.
of the title compound contains half a molecule, the complete molecule being generated by the twofold rotational axis. Atoms N1, C1 and C4 are located on the twofold rotation axis (Fig. 13. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by intermolecular C—H⋯O [C5—H5A⋯O1(x, −y + 1, z + ); 2.51 Å, 158°] interactions with (12) ring motifs, resulting in ribbons along the c-axis direction (Bernstein et al., 1995; Table 1; Fig. 2). C—H⋯π interactions also contribute to the stronger cohesion of molecules in the ribbons (Table 1; Fig. 3). The molecular packing also features van der Waals interactions between these ribbons.
Crystal Explorer17.5 (Turner et al., 2017) was used to perform a Hirshfeld surface analysis and generate the associated two-dimensional fingerprint plots, with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.1305 (red) to 1.2546 (blue) a.u (Fig. 4). In the Hirshfeld surface mapped over dnorm (Fig. 4), the bright-red spots near atoms O1 and H5A indicate the short C—H⋯O contacts (Table 1). Other contacts are equal to or longer than the sum of van der Waals radii.
Fingerprint plots (Fig. 5b–d; Table1) reveal that H⋯H (45.5%), C⋯H/H⋯C (38.2%) and O⋯H/H⋯O (16.0%) interactions make the greatest contributions to the surface contacts. N⋯H/H⋯N (0.3%) contacts also contribute to the overall crystal packing of the title compound. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, C⋯H/H⋯C and O⋯H/H⋯O interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for the N,N-dimethylaniline moiety revealed three structures closely related to the title compound, viz. 4-methyl-N-[(4-methylphenyl)sulfonyl]-N-phenylbenzenesulfonamide [CSD refcode GOBNIW (I); Eren et al., 2014], N,N′-[(phenylimino)diethane-2,1-diyl]bis(pyridine-2-carboxamide) [IDIZOM (II); Li et al., 2013] and (2E,2′E)-dimethyl 2,2′-[(phenylazanediyl)bis(methylene)]bis(3-phenylacrylate) [XEBWUY (III); Sabari et al., 2012]. Like the title compound, the molecule of (I) possesses twofold rotational symmetry. The N atom has a trigonal-planar geometry and is located on the twofold rotation axis. Weak C—H⋯O hydrogen bonds connect the molecules, forming a three-dimensional network. The of (II) contains two independent molecules with similar conformations. In the crystal, N—H⋯O and weak C—H⋯O hydrogen bonds link the molecules into a three-dimensional supramolecular structure. Weak intermolecular C—H⋯π interactions are also observed. In (III), the C=C double bonds adopt an E configuration. In the crystal, pairs of C—H⋯O hydrogen bonds link the molecules into inversion dimers.
5. Synthesis and crystallization
The title compound was synthesized using the reported procedure (He et al., 2014), and pale-yellow needle-like crystals were obtained upon slow evaporation from an ethanol/water (4:1) homogeneous solution at room temperature.
6. Refinement
Crystal data, data collection and structure . All H atoms bound to C atoms were positioned geometrically (C—H = 0.95 and 0.99 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). Owing to poor agreement between observed and calculated intensities, eighteen outliers (8 1 3, 1 5 6, 25 0 2, 4 5 3, 2 7 3, 1 2 3, 1 1 6, 7 3 0, 14 3 9, 5 3 0, 4 5 8, 0 4 0, 21 0 2, 7 4 8, 9 10 3, 2 4 0, 23 2 2, 2 8 5) were omitted during the final cycle.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2173928
https://doi.org/10.1107/S2056989022005382/tx2050sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022005382/tx2050Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C22H19NO2 | Dx = 1.281 Mg m−3 |
Mr = 329.38 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbcn | Cell parameters from 14002 reflections |
a = 20.8269 (2) Å | θ = 4.3–79.0° |
b = 9.09843 (10) Å | µ = 0.65 mm−1 |
c = 9.0158 (1) Å | T = 100 K |
V = 1708.42 (3) Å3 | Prism, pale yellow |
Z = 4 | 0.09 × 0.06 × 0.05 mm |
F(000) = 696 |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 1746 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.034 |
φ and ω scans | θmax = 79.4°, θmin = 4.3° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −26→26 |
Tmin = 0.906, Tmax = 0.939 | k = −11→10 |
21247 measured reflections | l = −10→11 |
1834 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.142 | w = 1/[σ2(Fo2) + (0.0811P)2 + 0.6375P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
1834 reflections | Δρmax = 0.28 e Å−3 |
115 parameters | Δρmin = −0.23 e Å−3 |
Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.38204 (5) | 0.42787 (12) | 0.14622 (11) | 0.0346 (3) | |
N1 | 0.500000 | 0.50356 (17) | 0.250000 | 0.0275 (4) | |
C1 | 0.500000 | 0.65552 (19) | 0.250000 | 0.0258 (4) | |
C2 | 0.54585 (7) | 0.73540 (15) | 0.16825 (14) | 0.0312 (3) | |
H2 | 0.577660 | 0.684521 | 0.112882 | 0.037* | |
C3 | 0.54488 (9) | 0.88824 (18) | 0.16798 (17) | 0.0432 (4) | |
H3 | 0.575533 | 0.940593 | 0.110555 | 0.052* | |
C4 | 0.500000 | 0.9651 (2) | 0.250000 | 0.0537 (7) | |
H4 | 0.499999 | 1.069489 | 0.250000 | 0.064* | |
C5 | 0.45804 (6) | 0.41853 (14) | 0.34384 (14) | 0.0256 (3) | |
H5A | 0.447899 | 0.476190 | 0.433961 | 0.031* | |
H5B | 0.480651 | 0.328071 | 0.375413 | 0.031* | |
C6 | 0.39556 (6) | 0.37610 (14) | 0.26663 (14) | 0.0262 (3) | |
C7 | 0.35248 (6) | 0.26878 (14) | 0.34230 (13) | 0.0256 (3) | |
C8 | 0.36541 (6) | 0.21454 (15) | 0.48403 (15) | 0.0304 (3) | |
H8 | 0.402012 | 0.248116 | 0.537005 | 0.036* | |
C9 | 0.32461 (7) | 0.11135 (17) | 0.54737 (16) | 0.0362 (4) | |
H9 | 0.333629 | 0.073789 | 0.643461 | 0.043* | |
C10 | 0.27080 (7) | 0.06284 (17) | 0.47116 (17) | 0.0362 (4) | |
H10 | 0.243425 | −0.008843 | 0.514406 | 0.043* | |
C11 | 0.25697 (7) | 0.11905 (17) | 0.33172 (16) | 0.0353 (4) | |
H11 | 0.219476 | 0.087802 | 0.280639 | 0.042* | |
C12 | 0.29775 (7) | 0.22064 (15) | 0.26696 (16) | 0.0316 (3) | |
H12 | 0.288486 | 0.257788 | 0.170838 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0336 (5) | 0.0400 (6) | 0.0302 (5) | −0.0032 (4) | −0.0024 (4) | 0.0071 (4) |
N1 | 0.0260 (7) | 0.0226 (7) | 0.0338 (8) | 0.000 | 0.0068 (6) | 0.000 |
C1 | 0.0285 (8) | 0.0239 (8) | 0.0250 (8) | 0.000 | −0.0043 (6) | 0.000 |
C2 | 0.0378 (8) | 0.0281 (7) | 0.0277 (7) | −0.0037 (5) | −0.0006 (5) | 0.0014 (5) |
C3 | 0.0632 (11) | 0.0286 (7) | 0.0378 (8) | −0.0102 (7) | 0.0028 (7) | 0.0047 (6) |
C4 | 0.091 (2) | 0.0228 (10) | 0.0475 (13) | 0.000 | 0.0033 (12) | 0.000 |
C5 | 0.0251 (6) | 0.0241 (6) | 0.0277 (6) | −0.0004 (4) | 0.0020 (4) | 0.0007 (4) |
C6 | 0.0266 (6) | 0.0247 (6) | 0.0272 (6) | 0.0028 (5) | 0.0027 (5) | −0.0019 (5) |
C7 | 0.0254 (6) | 0.0236 (6) | 0.0277 (6) | 0.0014 (5) | 0.0035 (4) | −0.0028 (4) |
C8 | 0.0292 (6) | 0.0326 (7) | 0.0292 (6) | −0.0036 (5) | 0.0009 (5) | −0.0009 (5) |
C9 | 0.0377 (7) | 0.0407 (8) | 0.0303 (7) | −0.0064 (6) | 0.0040 (6) | 0.0041 (6) |
C10 | 0.0352 (7) | 0.0367 (7) | 0.0366 (7) | −0.0092 (6) | 0.0086 (6) | −0.0019 (6) |
C11 | 0.0305 (7) | 0.0382 (8) | 0.0372 (8) | −0.0086 (6) | 0.0014 (5) | −0.0063 (6) |
C12 | 0.0316 (7) | 0.0328 (7) | 0.0304 (7) | −0.0024 (5) | −0.0009 (5) | −0.0019 (5) |
O1—C6 | 1.2165 (16) | C5—H5B | 0.9900 |
N1—C1 | 1.383 (2) | C6—C7 | 1.4913 (18) |
N1—C5 | 1.4415 (14) | C7—C8 | 1.3960 (19) |
N1—C5i | 1.4416 (14) | C7—C12 | 1.3973 (19) |
C1—C2i | 1.4082 (16) | C8—C9 | 1.3892 (19) |
C1—C2 | 1.4082 (16) | C8—H8 | 0.9500 |
C2—C3 | 1.391 (2) | C9—C10 | 1.387 (2) |
C2—H2 | 0.9500 | C9—H9 | 0.9500 |
C3—C4 | 1.382 (2) | C10—C11 | 1.388 (2) |
C3—H3 | 0.9500 | C10—H10 | 0.9500 |
C4—H4 | 0.9500 | C11—C12 | 1.384 (2) |
C5—C6 | 1.5254 (17) | C11—H11 | 0.9500 |
C5—H5A | 0.9900 | C12—H12 | 0.9500 |
C1—N1—C5 | 122.46 (7) | O1—C6—C7 | 121.50 (12) |
C1—N1—C5i | 122.46 (7) | O1—C6—C5 | 120.45 (11) |
C5—N1—C5i | 115.08 (14) | C7—C6—C5 | 118.05 (11) |
N1—C1—C2i | 121.07 (9) | C8—C7—C12 | 119.44 (12) |
N1—C1—C2 | 121.07 (9) | C8—C7—C6 | 122.28 (12) |
C2i—C1—C2 | 117.86 (17) | C12—C7—C6 | 118.27 (12) |
C3—C2—C1 | 120.47 (14) | C9—C8—C7 | 119.81 (13) |
C3—C2—H2 | 119.8 | C9—C8—H8 | 120.1 |
C1—C2—H2 | 119.8 | C7—C8—H8 | 120.1 |
C4—C3—C2 | 120.98 (15) | C10—C9—C8 | 120.38 (13) |
C4—C3—H3 | 119.5 | C10—C9—H9 | 119.8 |
C2—C3—H3 | 119.5 | C8—C9—H9 | 119.8 |
C3i—C4—C3 | 119.2 (2) | C9—C10—C11 | 119.97 (13) |
C3i—C4—H4 | 120.4 | C9—C10—H10 | 120.0 |
C3—C4—H4 | 120.4 | C11—C10—H10 | 120.0 |
N1—C5—C6 | 112.65 (9) | C12—C11—C10 | 120.05 (13) |
N1—C5—H5A | 109.1 | C12—C11—H11 | 120.0 |
C6—C5—H5A | 109.1 | C10—C11—H11 | 120.0 |
N1—C5—H5B | 109.1 | C11—C12—C7 | 120.32 (13) |
C6—C5—H5B | 109.1 | C11—C12—H12 | 119.8 |
H5A—C5—H5B | 107.8 | C7—C12—H12 | 119.8 |
C5—N1—C1—C2i | −6.40 (9) | O1—C6—C7—C8 | −176.33 (12) |
C5i—N1—C1—C2i | 173.60 (9) | C5—C6—C7—C8 | 4.37 (18) |
C5—N1—C1—C2 | 173.59 (9) | O1—C6—C7—C12 | 4.30 (19) |
C5i—N1—C1—C2 | −6.41 (9) | C5—C6—C7—C12 | −175.00 (11) |
N1—C1—C2—C3 | 179.32 (10) | C12—C7—C8—C9 | 1.3 (2) |
C2i—C1—C2—C3 | −0.68 (10) | C6—C7—C8—C9 | −178.06 (12) |
C1—C2—C3—C4 | 1.4 (2) | C7—C8—C9—C10 | −0.6 (2) |
C2—C3—C4—C3i | −0.69 (11) | C8—C9—C10—C11 | −0.9 (2) |
C1—N1—C5—C6 | 93.41 (9) | C9—C10—C11—C12 | 1.7 (2) |
C5i—N1—C5—C6 | −86.59 (9) | C10—C11—C12—C7 | −1.0 (2) |
N1—C5—C6—O1 | −8.70 (17) | C8—C7—C12—C11 | −0.6 (2) |
N1—C5—C6—C7 | 170.61 (11) | C6—C7—C12—C11 | 178.84 (12) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Cg1 is the centroid of the phenyl ring attached to atom N1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O1ii | 0.99 | 2.51 | 3.4483 (16) | 158 |
C8—H8···Cg1iii | 0.95 | 2.85 | 3.6963 (14) | 148 |
C8—H8···Cg1iv | 0.95 | 2.85 | 3.6963 (14) | 148 |
Symmetry codes: (ii) x, −y+1, z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x−1/2, y+1/2, z. |
Acknowledgements
Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, ANK, MA and MGS; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, FNN and ANK; resources, AB, VNK and FNN; supervision, ANK and MA.
Funding information
This paper was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Eren, B., Demir, S., Dal, H. & Hökelek, T. (2014). Acta Cryst. E70, o238–o239. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
He, J., Shi, L., Liu, S., Jia, P., Wang, J. & Hu, R. (2014). Monatsh. Chem. 145, 213–216. Web of Science CrossRef CAS PubMed Google Scholar
Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, G.-N., Niu, Z.-G., Huang, M.-Q., Zou, Y. & Hu, L.-J. (2013). Acta Cryst. E69, o677. CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. Web of Science CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521. Web of Science CSD CrossRef IUCr Journals Google Scholar
Paul, N. & Muthusubramanian, S. (2013). Synth. Commun. 43, 1200–1209. Web of Science CrossRef CAS Google Scholar
Ravindran, G., Muthusubramanian, S., Selvaraj, S. & Perumal, S. (2007). J. Heterocycl. Chem. 44, 133–136. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sabari, V., Selvakumar, R., Bakthadoss, M. & Aravindhan, S. (2012). Acta Cryst. E68, o2265. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net. Google Scholar
Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. Web of Science CrossRef CAS PubMed Google Scholar
Yan, H., Tan, H. & Xin, H. (2014). Heterocycles, 89, 359–373. Web of Science CSD CrossRef Google Scholar
Zeng, D. X. & Chen, Y. (2006). Synlett, pp. 0490–0492. Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.