research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-bromo-2-[3-methyl-5-(2,4,6-tri­methyl­benz­yl)oxazolidin-2-yl]phenol

crossmark logo

a"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, bDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, fDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Turkey, gDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey, and hDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 26 May 2022; accepted 2 June 2022; online 10 June 2022)

The title compound, C20H24BrNO2, is chiral at the carbon atoms on either side of the oxygen atom of the oxazolidine ring and crystallizes as a racemate. The 1,3-oxazolidine ring adopts an envelope conformation with the N atom in an endo position. The mean plane of the oxazolidine ring makes dihedral angles of 77.74 (10) and 45.50 (11)°, respectively, with the 4-bromo­phenol and 1,3,5-tri­methyl­benzene rings. In the crystal, adjacent mol­ecules are connected via C—H⋯O hydrogen bonds and C—H⋯π inter­actions into layers parallel to the (200) plane. The packing is strengthened by van der Waals inter­actions between parallel mol­ecular layers. A Hirshfeld surface analysis shows that H⋯H (58.2%), C⋯H/H⋯C (18.9%), and Br⋯H/H⋯Br (11.5%) inter­actions are the most abundant in the crystal packing.

1. Chemical context

Functionalization of amine and carbonyl compounds represents a cornerstone of organic synthesis, material science and medicinal chemistry (Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]; Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628-633.]). In particular, the reaction of 1,2-amino alcohols with oxo compounds is an effective tool in the construction of a broad class of organic compounds such as amides, esters, enamino­nes, ureas, carbamates, aziridines, oxazolidines, oxazolines, oxazolidinones, oxazines, pyrroles, pyridones, morpholines, acridinones etc (Juhász et al., 2011[Juhász, M., Lázár, L. & Fülöp, F. (2011). Tetrahedron Asymmetry, 22, 2012-2017.]; Tamura et al., 2014[Tamura, M., Honda, M., Nakagawa, Y. & Tomishige, K. (2014). J. Chem. Technol. Biotechnol. 89, 19-33.]; Sepideh et al., 2018[Sepideh, F., Zare, F. L., Mohammad, N., Robab, M. & Esmail, V. (2018). J. CO2 Util., 25, 194-204.]; Khalilov, 2021[Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719-723.]).

[Scheme 1]

In the context of our recent studies, herein we report the structural analysis of a 1,3-oxazolidine, synthesized on the base of racemic 1,2-amino alcohol. Theoretically, in the solid state, this 1,3-oxazolidine can exist as eight optical isomers due to two CH and one N-chiral center. However, NMR analysis of the obtained product indicated the formation of a pair of diastereoisomers in a 1:1 ratio (Khalilov, 2021[Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719-723.]) and single-crystal X-ray analysis of the racemic mixture confirmed the 2R,3S,5R- and 2S,3R,5S-configuration of these isomers (Fig. 1[link]).

[Figure 1]
Figure 1
Synthesis of the racemic mixture of 2R,3S,5R- and 2S,3R,5S-oxazolidines.

Thus, in the framework of our ongoing structural studies (Naghiyev et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.], 2021[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]; Khalilov et al., 2022[Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525-529.]), we report the crystal structure and Hirshfeld surface analysis of the racemic title compound, 4-bromo-2-[3-methyl-5-(2,4,6-tri­methyl­benz­yl)oxazolidin-2-yl]phenol.

2. Structural commentary

In the title compound, (Fig. 2[link]), the 1,3-oxazolidine ring (O1/N3/C2/C4/C5) adopts an envelope conformation with the N atom in an endo position [the puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are Q(2) = 0.413 (2) Å, φ(2) = 256.7 (3)°]. The mean plane of th oxazolidine ring makes dihedral angles of 77.74 (10) and 45.50 (11)°, respectively, with the 4-bromo­phenol (C6–C11) and the 1,3,5-tri­methyl­benzene (C14–C19) rings. The mol­ecular conformation is stabilized by intra­molecular O11—H11⋯N3 and C20—H20C⋯O1 hydrogen bonds (Table 1[link]). There are two stereogenic centers in the racaemic title compound and the chirality about the C2 and C5 atoms is R in the chosen asymmetric unit. The geometric properties of the title compound are normal and consistent with those of related compounds listed in the Database survey section.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the 4-bromo­phenol (C6–C11) and 1,3,5-tri­methyl­benzene (C14–C19) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯N3 0.81 (4) 1.89 (4) 2.644 (2) 155 (3)
C4—H4A⋯O1i 0.99 2.58 3.564 (2) 171
C20—H20B⋯O11ii 0.98 2.57 3.548 (3) 173
C20—H20C⋯O1 0.98 2.55 3.332 (3) 136
C2—H2⋯Cg2i 1.00 2.91 3.908 (2) 176
C4—H4BCg3i 0.99 2.88 3.622 (2) 132
C21—H21CCg3iii 0.98 2.93 3.723 (4) 138
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, adjacent mol­ecules are connected via C—H⋯O hydrogen bonds and C—H⋯π inter­actions into layers parallel to the (200) plane (Table 1[link]; Figs. 3[link] and 4[link]). The packing is strengthened by van der Waals inter­actions between parallel mol­ecular layers.

[Figure 3]
Figure 3
A general view of the C—H⋯O hydrogen bonding and C—H⋯π inter­actions of the title compound. Symmetry codes: (i) x, −y + [{1\over 2}], z + [{1\over 2}]; (ii) x, y + 1, z; (iii) x, −y − [{1\over 2}], z − [{1\over 2}]; (iv) x, −y + [{1\over 2}], z − [{3\over 2}].
[Figure 4]
Figure 4
Packing view of the title compound along the b axis with the inter­actions depicted as in Fig. 3[link].

A Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were obtained with CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia.]). The overall two-dimensional fingerprint plot for the title compound is given in Fig. 5[link]a, and those delineated into H⋯H (58.2%), C⋯H/H⋯C (18.9%), and Br⋯H/H⋯Br (11.5%) contacts are shown in Fig. 5[link]bd, while numerical details of the different contacts are given in Table 2[link]. The O⋯H/H⋯O (8.3%), C⋯C (1.4%), Br⋯C/C⋯Br (1.0%), Br⋯O/O⋯Br (0.5%) and Br⋯Br (0.3%) contacts have little directional influence on the mol­ecular packing. A a result, in the crystal packing, C—H⋯π (ring) and van der Waals inter­actions are dominant.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
Br1⋯H10 2.96 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
Br1⋯C12 3.598 1 − x, [{1\over 2}] + y, [{3\over 2}] − z
C9⋯C8 3.409 1 − x, −y, 1 − z
H9⋯H7 2.45 x, [{1\over 2}] − y, −[{1\over 2}] + z
H11⋯H20B 2.35 x, −1 + y, z
C15⋯H21C 2.80 x, [{3\over 2}] − y, [{1\over 2}] + z
H22B⋯C18 3.07 x, 1 − y, 1 − z
H21B⋯H22B 2.51 x, [{1\over 2}] + y, [{1\over 2}] − z
[Figure 5]
Figure 5
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) Br⋯H/H⋯Br inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively.]

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures with a 1,3-oxazolidine ring showed that the five most closely related to the title compound are (S)-5-chloro-N-({2-oxo-3-[4-(3-oxomorpholin-4-yl)phen­yl]oxa­zolidin-5-yl}meth­yl)-thio­phene-2-carboxamide [(I): Shen et al., 2018[Shen, J., Tang, G.-P. & Hu, X.-R. (2018). Acta Cryst. E74, 51-54.]], 2,2-di­chloro-1-(2-phenyl-1,3-oxazolidin-3-yl)ethan­one [(II): Ye et al., 2010[Ye, F., Fu, Y. & Zhao, S. (2010). Acta Cryst. E66, o445.]], (4-benzyl-2-oxo-1,3-oxazolidin-5-yl)- methyl methane­sulfonate [(III): Cunico et al., 2010[Cunico, W., Gomes, C. R. B., Tiekink, E. R. T., Vellasco Junior, W. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o267-o268.]], 2-bromo-4-(3,4-dimethyl-5-phenyl-1,3-oxazolidin-2-yl)-6-meth­oxy­phenol [(IV): Hariono et al., 2012[Hariono, M., Ngah, N., Wahab, H. A. & Abdul Rahim, A. S. (2012). Acta Cryst. E68, o35-o36.]] and (R)-2-phen­oxy-1-(4-phenyl-2-sulfanyl­idene-1,3-oxazolidin-3-yl)ethanone [(V): Caracelli et al., 2011[Caracelli, I., Coelho, D. C. S., Olivato, P. R., Correra, T. C., Rodrigues, A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2755-o2756.]].

In the crystal of (I)[link], classical N—H⋯O hydrogen bonds and weak C— H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular architecture. In (II), mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds, forming one-dimensional chains. In the crystal of (III), N—H⋯O hydrogen bonds, involving one of the sulfur-bound oxo groups as acceptor, lead to the formation of supra­molecular chains along the b-axis direction. These chains are reinforced by C—H⋯O contacts, with the carbonyl O atom accepting three such inter­actions. In (IV), adjacent mol­ecules are connected via O—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions into a zigzag chain along the b-axis direction. In (V), mol­ecules are linked into supra­molecular arrays two mol­ecules thick in the bc plane through C—H⋯O, C—H⋯S and C—H⋯π inter­actions.

5. Synthesis and crystallization

The title compound was synthesized using our recently reported procedure (Khalilov, 2021[Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719-723.]), and colorless needle-like crystals were obtained upon recrystallization from an ethanol/water solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95 to 1.00 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The hydroxyl H atom was found in a difference-Fourier map and was refined freely.

Table 3
Experimental details

Crystal data
Chemical formula C20H24BrNO2
Mr 390.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 21.1019 (3), 9.01359 (11), 10.03985 (11)
β (°) 96.1425 (11)
V3) 1898.66 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.03
Crystal size (mm) 0.32 × 0.04 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.424, 0.882
No. of measured, independent and observed [I > 2σ(I)] reflections 21431, 4096, 3783
Rint 0.043
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.07
No. of reflections 4096
No. of parameters 225
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.58, −0.60
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

4-Bromo-2-[3-methyl-5-(2,4,6-trimethylbenzyl)oxazolidin-2-yl]phenol top
Crystal data top
C20H24BrNO2F(000) = 808
Mr = 390.30Dx = 1.365 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 21.1019 (3) ÅCell parameters from 13703 reflections
b = 9.01359 (11) Åθ = 2.1–78.6°
c = 10.03985 (11) ŵ = 3.03 mm1
β = 96.1425 (11)°T = 100 K
V = 1898.66 (4) Å3Needle, colourless
Z = 40.32 × 0.04 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3783 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.043
φ and ω scansθmax = 79.6°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 2526
Tmin = 0.424, Tmax = 0.882k = 1111
21431 measured reflectionsl = 1210
4096 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.055P)2 + 1.11P]
where P = (Fo2 + 2Fc2)/3
4096 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.60 e Å3
Special details top

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.54220 (2)0.31515 (2)0.43375 (2)0.02813 (9)
O10.27633 (7)0.25150 (17)0.58702 (14)0.0298 (3)
C20.32957 (9)0.1726 (2)0.65118 (19)0.0232 (4)
H20.35170.23340.72560.028*
N30.30119 (8)0.03941 (18)0.70533 (15)0.0240 (3)
C40.24396 (10)0.0998 (2)0.7578 (2)0.0286 (4)
H4A0.25480.15180.84410.034*
H4B0.21240.02100.76960.034*
C50.21970 (10)0.2075 (2)0.6467 (2)0.0275 (4)
H50.19010.15410.57850.033*
C60.37483 (9)0.1367 (2)0.54907 (18)0.0226 (4)
C70.42805 (9)0.2251 (2)0.53991 (18)0.0235 (4)
H70.43640.30660.59910.028*
C80.46904 (9)0.1942 (2)0.44404 (19)0.0229 (4)
C90.45780 (9)0.0753 (2)0.35676 (18)0.0238 (4)
H90.48650.05410.29250.029*
C100.40439 (10)0.0118 (2)0.36452 (18)0.0255 (4)
H100.39610.09250.30430.031*
C110.36252 (9)0.0175 (2)0.45995 (18)0.0237 (4)
O110.31123 (7)0.07205 (17)0.46493 (15)0.0287 (3)
H110.2980 (17)0.053 (4)0.536 (4)0.050 (9)*
C120.34457 (10)0.0365 (2)0.8069 (2)0.0295 (4)
H12A0.38230.07070.76650.044*
H12B0.32280.12180.84180.044*
H12C0.35770.03230.88030.044*
C130.18595 (10)0.3429 (2)0.6965 (2)0.0293 (4)
H13A0.15020.30930.74530.035*
H13B0.21620.39820.76060.035*
C140.16029 (10)0.4466 (2)0.5851 (2)0.0288 (4)
C150.19383 (11)0.5761 (2)0.5574 (2)0.0301 (4)
C160.16792 (12)0.6723 (3)0.4563 (2)0.0361 (5)
H160.19040.76030.43890.043*
C170.11055 (12)0.6426 (3)0.3812 (3)0.0430 (6)
C180.07858 (11)0.5135 (4)0.4079 (3)0.0452 (6)
H180.03930.49150.35640.054*
C190.10236 (10)0.4145 (3)0.5084 (2)0.0365 (5)
C200.25709 (13)0.6141 (3)0.6335 (2)0.0393 (5)
H20A0.25120.63440.72730.059*
H20B0.27480.70210.59380.059*
H20C0.28650.53040.62910.059*
C210.08362 (15)0.7492 (5)0.2732 (3)0.0650 (10)
H21A0.07760.84680.31310.097*
H21B0.04250.71190.23180.097*
H21C0.11330.75810.20500.097*
C220.06445 (12)0.2765 (4)0.5315 (3)0.0523 (7)
H22A0.08590.18970.49850.079*
H22B0.02170.28530.48350.079*
H22C0.06110.26510.62760.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02612 (13)0.02966 (14)0.02922 (14)0.00322 (7)0.00584 (9)0.00477 (7)
O10.0269 (7)0.0344 (8)0.0296 (7)0.0054 (6)0.0103 (6)0.0108 (6)
C20.0242 (9)0.0241 (9)0.0216 (8)0.0010 (7)0.0035 (7)0.0011 (7)
N30.0258 (8)0.0261 (8)0.0201 (7)0.0015 (6)0.0024 (6)0.0029 (6)
C40.0291 (9)0.0332 (10)0.0245 (9)0.0019 (8)0.0076 (7)0.0037 (8)
C50.0270 (10)0.0315 (10)0.0249 (9)0.0003 (8)0.0068 (7)0.0021 (8)
C60.0254 (9)0.0250 (9)0.0173 (8)0.0018 (7)0.0018 (6)0.0021 (7)
C70.0269 (9)0.0231 (8)0.0201 (8)0.0005 (7)0.0007 (7)0.0015 (7)
C80.0223 (9)0.0250 (9)0.0212 (9)0.0002 (7)0.0014 (7)0.0040 (7)
C90.0257 (9)0.0273 (9)0.0183 (8)0.0048 (7)0.0018 (6)0.0014 (7)
C100.0296 (9)0.0266 (9)0.0197 (8)0.0039 (8)0.0005 (7)0.0025 (7)
C110.0260 (9)0.0238 (9)0.0209 (8)0.0015 (7)0.0002 (7)0.0039 (7)
O110.0297 (7)0.0317 (8)0.0249 (7)0.0075 (6)0.0040 (6)0.0043 (6)
C120.0347 (10)0.0290 (10)0.0239 (9)0.0027 (8)0.0009 (8)0.0043 (8)
C130.0312 (10)0.0322 (10)0.0260 (10)0.0005 (8)0.0093 (8)0.0018 (8)
C140.0282 (9)0.0335 (10)0.0264 (9)0.0076 (8)0.0109 (7)0.0004 (8)
C150.0369 (11)0.0319 (10)0.0231 (9)0.0056 (8)0.0102 (8)0.0007 (8)
C160.0421 (13)0.0376 (12)0.0314 (11)0.0092 (9)0.0167 (10)0.0062 (9)
C170.0364 (12)0.0587 (15)0.0361 (12)0.0159 (11)0.0142 (10)0.0169 (11)
C180.0252 (10)0.0668 (17)0.0435 (13)0.0095 (11)0.0032 (9)0.0111 (12)
C190.0240 (9)0.0471 (13)0.0392 (11)0.0059 (9)0.0072 (8)0.0041 (10)
C200.0515 (14)0.0358 (12)0.0306 (11)0.0086 (10)0.0039 (10)0.0001 (9)
C210.0446 (15)0.094 (3)0.0574 (17)0.0211 (17)0.0119 (13)0.0422 (19)
C220.0265 (11)0.0609 (17)0.0689 (18)0.0046 (12)0.0016 (11)0.0095 (15)
Geometric parameters (Å, º) top
Br1—C81.9019 (19)C12—H12B0.9800
O1—C21.424 (2)C12—H12C0.9800
O1—C51.448 (2)C13—C141.513 (3)
C2—N31.472 (2)C13—H13A0.9900
C2—C61.509 (3)C13—H13B0.9900
C2—H21.0000C14—C191.404 (3)
N3—C121.465 (2)C14—C151.407 (3)
N3—C41.472 (3)C15—C161.401 (3)
C4—C51.525 (3)C15—C201.505 (3)
C4—H4A0.9900C16—C171.382 (4)
C4—H4B0.9900C16—H160.9500
C5—C131.524 (3)C17—C181.385 (4)
C5—H51.0000C17—C211.513 (4)
C6—C71.388 (3)C18—C191.399 (4)
C6—C111.404 (3)C18—H180.9500
C7—C81.389 (3)C19—C221.510 (4)
C7—H70.9500C20—H20A0.9800
C8—C91.388 (3)C20—H20B0.9800
C9—C101.383 (3)C20—H20C0.9800
C9—H90.9500C21—H21A0.9800
C10—C111.396 (3)C21—H21B0.9800
C10—H100.9500C21—H21C0.9800
C11—O111.356 (2)C22—H22A0.9800
O11—H110.81 (4)C22—H22B0.9800
C12—H12A0.9800C22—H22C0.9800
C2—O1—C5108.79 (14)H12A—C12—H12C109.5
O1—C2—N3104.01 (15)H12B—C12—H12C109.5
O1—C2—C6109.02 (15)C14—C13—C5113.25 (17)
N3—C2—C6112.83 (16)C14—C13—H13A108.9
O1—C2—H2110.3C5—C13—H13A108.9
N3—C2—H2110.3C14—C13—H13B108.9
C6—C2—H2110.3C5—C13—H13B108.9
C12—N3—C2112.92 (16)H13A—C13—H13B107.7
C12—N3—C4113.51 (15)C19—C14—C15119.3 (2)
C2—N3—C4102.26 (15)C19—C14—C13120.0 (2)
N3—C4—C5101.41 (15)C15—C14—C13120.7 (2)
N3—C4—H4A111.5C16—C15—C14119.4 (2)
C5—C4—H4A111.5C16—C15—C20118.9 (2)
N3—C4—H4B111.5C14—C15—C20121.7 (2)
C5—C4—H4B111.5C17—C16—C15121.8 (2)
H4A—C4—H4B109.3C17—C16—H16119.1
O1—C5—C13110.61 (17)C15—C16—H16119.1
O1—C5—C4104.45 (16)C16—C17—C18118.2 (2)
C13—C5—C4113.71 (17)C16—C17—C21120.5 (3)
O1—C5—H5109.3C18—C17—C21121.3 (3)
C13—C5—H5109.3C17—C18—C19122.1 (2)
C4—C5—H5109.3C17—C18—H18119.0
C7—C6—C11119.50 (17)C19—C18—H18119.0
C7—C6—C2119.82 (17)C18—C19—C14119.2 (2)
C11—C6—C2120.64 (17)C18—C19—C22118.8 (2)
C6—C7—C8119.94 (18)C14—C19—C22122.0 (2)
C6—C7—H7120.0C15—C20—H20A109.5
C8—C7—H7120.0C15—C20—H20B109.5
C9—C8—C7121.00 (18)H20A—C20—H20B109.5
C9—C8—Br1119.54 (14)C15—C20—H20C109.5
C7—C8—Br1119.46 (15)H20A—C20—H20C109.5
C10—C9—C8119.20 (17)H20B—C20—H20C109.5
C10—C9—H9120.4C17—C21—H21A109.5
C8—C9—H9120.4C17—C21—H21B109.5
C9—C10—C11120.70 (18)H21A—C21—H21B109.5
C9—C10—H10119.7C17—C21—H21C109.5
C11—C10—H10119.7H21A—C21—H21C109.5
O11—C11—C10118.61 (18)H21B—C21—H21C109.5
O11—C11—C6121.74 (17)C19—C22—H22A109.5
C10—C11—C6119.65 (18)C19—C22—H22B109.5
C11—O11—H11105 (2)H22A—C22—H22B109.5
N3—C12—H12A109.5C19—C22—H22C109.5
N3—C12—H12B109.5H22A—C22—H22C109.5
H12A—C12—H12B109.5H22B—C22—H22C109.5
N3—C12—H12C109.5
C5—O1—C2—N323.8 (2)C7—C6—C11—O11179.93 (17)
C5—O1—C2—C6144.39 (16)C2—C6—C11—O112.2 (3)
O1—C2—N3—C12163.70 (15)C7—C6—C11—C100.9 (3)
C6—C2—N3—C1278.3 (2)C2—C6—C11—C10178.71 (17)
O1—C2—N3—C441.36 (18)O1—C5—C13—C1464.6 (2)
C6—C2—N3—C4159.35 (16)C4—C5—C13—C14178.21 (18)
C12—N3—C4—C5163.78 (17)C5—C13—C14—C1980.4 (2)
C2—N3—C4—C541.84 (18)C5—C13—C14—C1599.8 (2)
C2—O1—C5—C13125.28 (18)C19—C14—C15—C161.7 (3)
C2—O1—C5—C42.6 (2)C13—C14—C15—C16178.05 (18)
N3—C4—C5—O127.6 (2)C19—C14—C15—C20178.2 (2)
N3—C4—C5—C13148.32 (17)C13—C14—C15—C202.1 (3)
O1—C2—C6—C798.9 (2)C14—C15—C16—C171.0 (3)
N3—C2—C6—C7146.13 (17)C20—C15—C16—C17178.9 (2)
O1—C2—C6—C1179.0 (2)C15—C16—C17—C180.1 (4)
N3—C2—C6—C1136.0 (2)C15—C16—C17—C21179.6 (2)
C11—C6—C7—C80.7 (3)C16—C17—C18—C190.5 (4)
C2—C6—C7—C8178.59 (17)C21—C17—C18—C19179.2 (3)
C6—C7—C8—C90.2 (3)C17—C18—C19—C140.2 (4)
C6—C7—C8—Br1179.44 (14)C17—C18—C19—C22179.8 (3)
C7—C8—C9—C101.0 (3)C15—C14—C19—C181.3 (3)
Br1—C8—C9—C10179.76 (14)C13—C14—C19—C18178.4 (2)
C8—C9—C10—C110.9 (3)C15—C14—C19—C22179.1 (2)
C9—C10—C11—O11179.15 (17)C13—C14—C19—C221.1 (3)
C9—C10—C11—C60.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the 4-bromophenol (C6–C11) and 1,3,5-trimethylbenzene (C14–C19) rings, respectively.
D—H···AD—HH···AD···AD—H···A
O11—H11···N30.81 (4)1.89 (4)2.644 (2)155 (3)
C4—H4A···O1i0.992.583.564 (2)171
C20—H20B···O11ii0.982.573.548 (3)173
C20—H20C···O10.982.553.332 (3)136
C2—H2···Cg2i1.002.913.908 (2)176
C4—H4B···Cg3i0.992.883.622 (2)132
C21—H21C···Cg3iii0.982.933.723 (4)138
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+3/2, z1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
Br1···H102.961 - x, 1/2 + y, 1/2 - z
Br1···C123.5981 - x, 1/2 + y, 3/2 - z
C9···C83.4091 - x, -y, 1 - z
H9···H72.45x, 1/2 - y, -1/2 + z
H11···H20B2.35x, -1 + y, z
C15···H21C2.80x, 3/2 - y, 1/2 + z
H22B···C183.07-x, 1 - y, 1 - z
H21B···H22B2.51-x, 1/2 + y, 1/2 - z
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, ANK, MA and EAF; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, SÖY, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and EAF; supervision, ANK and MA.

Funding information

This work was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].

References

First citationCaracelli, I., Coelho, D. C. S., Olivato, P. R., Correra, T. C., Rodrigues, A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2755–o2756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCunico, W., Gomes, C. R. B., Tiekink, E. R. T., Vellasco Junior, W. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o267–o268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationHariono, M., Ngah, N., Wahab, H. A. & Abdul Rahim, A. S. (2012). Acta Cryst. E68, o35–o36.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJuhász, M., Lázár, L. & Fülöp, F. (2011). Tetrahedron Asymmetry, 22, 2012–2017.  Google Scholar
First citationKhalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723.  Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSepideh, F., Zare, F. L., Mohammad, N., Robab, M. & Esmail, V. (2018). J. CO2 Util., 25, 194-204.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, J., Tang, G.-P. & Hu, X.-R. (2018). Acta Cryst. E74, 51–54.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTamura, M., Honda, M., Nakagawa, Y. & Tomishige, K. (2014). J. Chem. Technol. Biotechnol. 89, 19–33.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYe, F., Fu, Y. & Zhao, S. (2010). Acta Cryst. E66, o445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds