research communications
and Hirshfeld surface analysis of 4-bromo-2-[3-methyl-5-(2,4,6-trimethylbenzyl)oxazolidin-2-yl]phenol
a"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, bDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, fDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Turkey, gDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey, and hDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
The title compound, C20H24BrNO2, is chiral at the carbon atoms on either side of the oxygen atom of the oxazolidine ring and crystallizes as a racemate. The 1,3-oxazolidine ring adopts an with the N atom in an endo position. The mean plane of the oxazolidine ring makes dihedral angles of 77.74 (10) and 45.50 (11)°, respectively, with the 4-bromophenol and 1,3,5-trimethylbenzene rings. In the crystal, adjacent molecules are connected via C—H⋯O hydrogen bonds and C—H⋯π interactions into layers parallel to the (200) plane. The packing is strengthened by van der Waals interactions between parallel molecular layers. A Hirshfeld surface analysis shows that H⋯H (58.2%), C⋯H/H⋯C (18.9%), and Br⋯H/H⋯Br (11.5%) interactions are the most abundant in the crystal packing.
Keywords: crystal structure; 1,3-oxazolidine; hydrogen bond; van der Waals interactions; Hirshfeld surface analysis.
CCDC reference: 2176709
1. Chemical context
Functionalization of amine and et al., 2018; Shikhaliyev et al., 2019; Viswanathan et al., 2019; Gurbanov et al., 2020). In particular, the reaction of 1,2-amino with is an effective tool in the construction of a broad class of organic compounds such as enaminones, ureas, aziridines, oxazolidines, oxazolines, oxazolidinones, oxazines, pyrroles, pyridones, morpholines, acridinones etc (Juhász et al., 2011; Tamura et al., 2014; Sepideh et al., 2018; Khalilov, 2021).
represents a cornerstone of organic synthesis, material science and medicinal chemistry (ZubkovIn the context of our recent studies, herein we report the structural analysis of a 1,3-oxazolidine, synthesized on the base of racemic 1,2-amino alcohol. Theoretically, in the solid state, this 1,3-oxazolidine can exist as eight ) and single-crystal X-ray analysis of the confirmed the 2R,3S,5R- and 2S,3R,5S-configuration of these isomers (Fig. 1).
due to two CH and one N-chiral center. However, NMR analysis of the obtained product indicated the formation of a pair of in a 1:1 ratio (Khalilov, 2021Thus, in the framework of our ongoing structural studies (Naghiyev et al., 2020, 2021, 2022; Khalilov et al., 2022), we report the and Hirshfeld surface analysis of the racemic title compound, 4-bromo-2-[3-methyl-5-(2,4,6-trimethylbenzyl)oxazolidin-2-yl]phenol.
2. Structural commentary
In the title compound, (Fig. 2), the 1,3-oxazolidine ring (O1/N3/C2/C4/C5) adopts an with the N atom in an endo position [the puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.413 (2) Å, φ(2) = 256.7 (3)°]. The mean plane of th oxazolidine ring makes dihedral angles of 77.74 (10) and 45.50 (11)°, respectively, with the 4-bromophenol (C6–C11) and the 1,3,5-trimethylbenzene (C14–C19) rings. The molecular conformation is stabilized by intramolecular O11—H11⋯N3 and C20—H20C⋯O1 hydrogen bonds (Table 1). There are two stereogenic centers in the racaemic title compound and the about the C2 and C5 atoms is R in the chosen The geometric properties of the title compound are normal and consistent with those of related compounds listed in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, adjacent molecules are connected via C—H⋯O hydrogen bonds and C—H⋯π interactions into layers parallel to the (200) plane (Table 1; Figs. 3 and 4). The packing is strengthened by van der Waals interactions between parallel molecular layers.
A Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were obtained with CrystalExplorer17.5 (Turner et al., 2017). The overall two-dimensional fingerprint plot for the title compound is given in Fig. 5a, and those delineated into H⋯H (58.2%), C⋯H/H⋯C (18.9%), and Br⋯H/H⋯Br (11.5%) contacts are shown in Fig. 5b–d, while numerical details of the different contacts are given in Table 2. The O⋯H/H⋯O (8.3%), C⋯C (1.4%), Br⋯C/C⋯Br (1.0%), Br⋯O/O⋯Br (0.5%) and Br⋯Br (0.3%) contacts have little directional influence on the molecular packing. A a result, in the crystal packing, C—H⋯π (ring) and van der Waals interactions are dominant.
|
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for similar structures with a 1,3-oxazolidine ring showed that the five most closely related to the title compound are (S)-5-chloro-N-({2-oxo-3-[4-(3-oxomorpholin-4-yl)phenyl]oxazolidin-5-yl}methyl)-thiophene-2-carboxamide [(I): Shen et al., 2018], 2,2-dichloro-1-(2-phenyl-1,3-oxazolidin-3-yl)ethanone [(II): Ye et al., 2010], (4-benzyl-2-oxo-1,3-oxazolidin-5-yl)- methyl methanesulfonate [(III): Cunico et al., 2010], 2-bromo-4-(3,4-dimethyl-5-phenyl-1,3-oxazolidin-2-yl)-6-methoxyphenol [(IV): Hariono et al., 2012] and (R)-2-phenoxy-1-(4-phenyl-2-sulfanylidene-1,3-oxazolidin-3-yl)ethanone [(V): Caracelli et al., 2011].
In the crystal of (I), classical N—H⋯O hydrogen bonds and weak C— H⋯O hydrogen bonds link the molecules into a three-dimensional supramolecular architecture. In (II), molecules are linked by weak intermolecular C—H⋯O hydrogen bonds, forming one-dimensional chains. In the crystal of (III), N—H⋯O hydrogen bonds, involving one of the sulfur-bound oxo groups as acceptor, lead to the formation of supramolecular chains along the b-axis direction. These chains are reinforced by C—H⋯O contacts, with the carbonyl O atom accepting three such interactions. In (IV), adjacent molecules are connected via O—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π interactions into a zigzag chain along the b-axis direction. In (V), molecules are linked into supramolecular arrays two molecules thick in the bc plane through C—H⋯O, C—H⋯S and C—H⋯π interactions.
5. Synthesis and crystallization
The title compound was synthesized using our recently reported procedure (Khalilov, 2021), and colorless needle-like crystals were obtained upon recrystallization from an ethanol/water solution.
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95 to 1.00 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The hydroxyl H atom was found in a difference-Fourier map and was refined freely.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2176709
https://doi.org/10.1107/S2056989022005928/tx2051sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022005928/tx2051Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022005928/tx2051Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C20H24BrNO2 | F(000) = 808 |
Mr = 390.30 | Dx = 1.365 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 21.1019 (3) Å | Cell parameters from 13703 reflections |
b = 9.01359 (11) Å | θ = 2.1–78.6° |
c = 10.03985 (11) Å | µ = 3.03 mm−1 |
β = 96.1425 (11)° | T = 100 K |
V = 1898.66 (4) Å3 | Needle, colourless |
Z = 4 | 0.32 × 0.04 × 0.03 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3783 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.043 |
φ and ω scans | θmax = 79.6°, θmin = 2.1° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −25→26 |
Tmin = 0.424, Tmax = 0.882 | k = −11→11 |
21431 measured reflections | l = −12→10 |
4096 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: mixed |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.055P)2 + 1.11P] where P = (Fo2 + 2Fc2)/3 |
4096 reflections | (Δ/σ)max = 0.001 |
225 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.54220 (2) | 0.31515 (2) | 0.43375 (2) | 0.02813 (9) | |
O1 | 0.27633 (7) | 0.25150 (17) | 0.58702 (14) | 0.0298 (3) | |
C2 | 0.32957 (9) | 0.1726 (2) | 0.65118 (19) | 0.0232 (4) | |
H2 | 0.3517 | 0.2334 | 0.7256 | 0.028* | |
N3 | 0.30119 (8) | 0.03941 (18) | 0.70533 (15) | 0.0240 (3) | |
C4 | 0.24396 (10) | 0.0998 (2) | 0.7578 (2) | 0.0286 (4) | |
H4A | 0.2548 | 0.1518 | 0.8441 | 0.034* | |
H4B | 0.2124 | 0.0210 | 0.7696 | 0.034* | |
C5 | 0.21970 (10) | 0.2075 (2) | 0.6467 (2) | 0.0275 (4) | |
H5 | 0.1901 | 0.1541 | 0.5785 | 0.033* | |
C6 | 0.37483 (9) | 0.1367 (2) | 0.54907 (18) | 0.0226 (4) | |
C7 | 0.42805 (9) | 0.2251 (2) | 0.53991 (18) | 0.0235 (4) | |
H7 | 0.4364 | 0.3066 | 0.5991 | 0.028* | |
C8 | 0.46904 (9) | 0.1942 (2) | 0.44404 (19) | 0.0229 (4) | |
C9 | 0.45780 (9) | 0.0753 (2) | 0.35676 (18) | 0.0238 (4) | |
H9 | 0.4865 | 0.0541 | 0.2925 | 0.029* | |
C10 | 0.40439 (10) | −0.0118 (2) | 0.36452 (18) | 0.0255 (4) | |
H10 | 0.3961 | −0.0925 | 0.3043 | 0.031* | |
C11 | 0.36252 (9) | 0.0175 (2) | 0.45995 (18) | 0.0237 (4) | |
O11 | 0.31123 (7) | −0.07205 (17) | 0.46493 (15) | 0.0287 (3) | |
H11 | 0.2980 (17) | −0.053 (4) | 0.536 (4) | 0.050 (9)* | |
C12 | 0.34457 (10) | −0.0365 (2) | 0.8069 (2) | 0.0295 (4) | |
H12A | 0.3823 | −0.0707 | 0.7665 | 0.044* | |
H12B | 0.3228 | −0.1218 | 0.8418 | 0.044* | |
H12C | 0.3577 | 0.0323 | 0.8803 | 0.044* | |
C13 | 0.18595 (10) | 0.3429 (2) | 0.6965 (2) | 0.0293 (4) | |
H13A | 0.1502 | 0.3093 | 0.7453 | 0.035* | |
H13B | 0.2162 | 0.3982 | 0.7606 | 0.035* | |
C14 | 0.16029 (10) | 0.4466 (2) | 0.5851 (2) | 0.0288 (4) | |
C15 | 0.19383 (11) | 0.5761 (2) | 0.5574 (2) | 0.0301 (4) | |
C16 | 0.16792 (12) | 0.6723 (3) | 0.4563 (2) | 0.0361 (5) | |
H16 | 0.1904 | 0.7603 | 0.4389 | 0.043* | |
C17 | 0.11055 (12) | 0.6426 (3) | 0.3812 (3) | 0.0430 (6) | |
C18 | 0.07858 (11) | 0.5135 (4) | 0.4079 (3) | 0.0452 (6) | |
H18 | 0.0393 | 0.4915 | 0.3564 | 0.054* | |
C19 | 0.10236 (10) | 0.4145 (3) | 0.5084 (2) | 0.0365 (5) | |
C20 | 0.25709 (13) | 0.6141 (3) | 0.6335 (2) | 0.0393 (5) | |
H20A | 0.2512 | 0.6344 | 0.7273 | 0.059* | |
H20B | 0.2748 | 0.7021 | 0.5938 | 0.059* | |
H20C | 0.2865 | 0.5304 | 0.6291 | 0.059* | |
C21 | 0.08362 (15) | 0.7492 (5) | 0.2732 (3) | 0.0650 (10) | |
H21A | 0.0776 | 0.8468 | 0.3131 | 0.097* | |
H21B | 0.0425 | 0.7119 | 0.2318 | 0.097* | |
H21C | 0.1133 | 0.7581 | 0.2050 | 0.097* | |
C22 | 0.06445 (12) | 0.2765 (4) | 0.5315 (3) | 0.0523 (7) | |
H22A | 0.0859 | 0.1897 | 0.4985 | 0.079* | |
H22B | 0.0217 | 0.2853 | 0.4835 | 0.079* | |
H22C | 0.0611 | 0.2651 | 0.6276 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02612 (13) | 0.02966 (14) | 0.02922 (14) | −0.00322 (7) | 0.00584 (9) | 0.00477 (7) |
O1 | 0.0269 (7) | 0.0344 (8) | 0.0296 (7) | 0.0054 (6) | 0.0103 (6) | 0.0108 (6) |
C2 | 0.0242 (9) | 0.0241 (9) | 0.0216 (8) | −0.0010 (7) | 0.0035 (7) | 0.0011 (7) |
N3 | 0.0258 (8) | 0.0261 (8) | 0.0201 (7) | −0.0015 (6) | 0.0024 (6) | 0.0029 (6) |
C4 | 0.0291 (9) | 0.0332 (10) | 0.0245 (9) | −0.0019 (8) | 0.0076 (7) | 0.0037 (8) |
C5 | 0.0270 (10) | 0.0315 (10) | 0.0249 (9) | −0.0003 (8) | 0.0068 (7) | 0.0021 (8) |
C6 | 0.0254 (9) | 0.0250 (9) | 0.0173 (8) | 0.0018 (7) | 0.0018 (6) | 0.0021 (7) |
C7 | 0.0269 (9) | 0.0231 (8) | 0.0201 (8) | 0.0005 (7) | 0.0007 (7) | 0.0015 (7) |
C8 | 0.0223 (9) | 0.0250 (9) | 0.0212 (9) | −0.0002 (7) | 0.0014 (7) | 0.0040 (7) |
C9 | 0.0257 (9) | 0.0273 (9) | 0.0183 (8) | 0.0048 (7) | 0.0018 (6) | 0.0014 (7) |
C10 | 0.0296 (9) | 0.0266 (9) | 0.0197 (8) | 0.0039 (8) | 0.0005 (7) | −0.0025 (7) |
C11 | 0.0260 (9) | 0.0238 (9) | 0.0209 (8) | −0.0015 (7) | 0.0002 (7) | 0.0039 (7) |
O11 | 0.0297 (7) | 0.0317 (8) | 0.0249 (7) | −0.0075 (6) | 0.0040 (6) | −0.0043 (6) |
C12 | 0.0347 (10) | 0.0290 (10) | 0.0239 (9) | 0.0027 (8) | −0.0009 (8) | 0.0043 (8) |
C13 | 0.0312 (10) | 0.0322 (10) | 0.0260 (10) | 0.0005 (8) | 0.0093 (8) | 0.0018 (8) |
C14 | 0.0282 (9) | 0.0335 (10) | 0.0264 (9) | 0.0076 (8) | 0.0109 (7) | 0.0004 (8) |
C15 | 0.0369 (11) | 0.0319 (10) | 0.0231 (9) | 0.0056 (8) | 0.0102 (8) | −0.0007 (8) |
C16 | 0.0421 (13) | 0.0376 (12) | 0.0314 (11) | 0.0092 (9) | 0.0167 (10) | 0.0062 (9) |
C17 | 0.0364 (12) | 0.0587 (15) | 0.0361 (12) | 0.0159 (11) | 0.0142 (10) | 0.0169 (11) |
C18 | 0.0252 (10) | 0.0668 (17) | 0.0435 (13) | 0.0095 (11) | 0.0032 (9) | 0.0111 (12) |
C19 | 0.0240 (9) | 0.0471 (13) | 0.0392 (11) | 0.0059 (9) | 0.0072 (8) | 0.0041 (10) |
C20 | 0.0515 (14) | 0.0358 (12) | 0.0306 (11) | −0.0086 (10) | 0.0039 (10) | −0.0001 (9) |
C21 | 0.0446 (15) | 0.094 (3) | 0.0574 (17) | 0.0211 (17) | 0.0119 (13) | 0.0422 (19) |
C22 | 0.0265 (11) | 0.0609 (17) | 0.0689 (18) | −0.0046 (12) | 0.0016 (11) | 0.0095 (15) |
Br1—C8 | 1.9019 (19) | C12—H12B | 0.9800 |
O1—C2 | 1.424 (2) | C12—H12C | 0.9800 |
O1—C5 | 1.448 (2) | C13—C14 | 1.513 (3) |
C2—N3 | 1.472 (2) | C13—H13A | 0.9900 |
C2—C6 | 1.509 (3) | C13—H13B | 0.9900 |
C2—H2 | 1.0000 | C14—C19 | 1.404 (3) |
N3—C12 | 1.465 (2) | C14—C15 | 1.407 (3) |
N3—C4 | 1.472 (3) | C15—C16 | 1.401 (3) |
C4—C5 | 1.525 (3) | C15—C20 | 1.505 (3) |
C4—H4A | 0.9900 | C16—C17 | 1.382 (4) |
C4—H4B | 0.9900 | C16—H16 | 0.9500 |
C5—C13 | 1.524 (3) | C17—C18 | 1.385 (4) |
C5—H5 | 1.0000 | C17—C21 | 1.513 (4) |
C6—C7 | 1.388 (3) | C18—C19 | 1.399 (4) |
C6—C11 | 1.404 (3) | C18—H18 | 0.9500 |
C7—C8 | 1.389 (3) | C19—C22 | 1.510 (4) |
C7—H7 | 0.9500 | C20—H20A | 0.9800 |
C8—C9 | 1.388 (3) | C20—H20B | 0.9800 |
C9—C10 | 1.383 (3) | C20—H20C | 0.9800 |
C9—H9 | 0.9500 | C21—H21A | 0.9800 |
C10—C11 | 1.396 (3) | C21—H21B | 0.9800 |
C10—H10 | 0.9500 | C21—H21C | 0.9800 |
C11—O11 | 1.356 (2) | C22—H22A | 0.9800 |
O11—H11 | 0.81 (4) | C22—H22B | 0.9800 |
C12—H12A | 0.9800 | C22—H22C | 0.9800 |
C2—O1—C5 | 108.79 (14) | H12A—C12—H12C | 109.5 |
O1—C2—N3 | 104.01 (15) | H12B—C12—H12C | 109.5 |
O1—C2—C6 | 109.02 (15) | C14—C13—C5 | 113.25 (17) |
N3—C2—C6 | 112.83 (16) | C14—C13—H13A | 108.9 |
O1—C2—H2 | 110.3 | C5—C13—H13A | 108.9 |
N3—C2—H2 | 110.3 | C14—C13—H13B | 108.9 |
C6—C2—H2 | 110.3 | C5—C13—H13B | 108.9 |
C12—N3—C2 | 112.92 (16) | H13A—C13—H13B | 107.7 |
C12—N3—C4 | 113.51 (15) | C19—C14—C15 | 119.3 (2) |
C2—N3—C4 | 102.26 (15) | C19—C14—C13 | 120.0 (2) |
N3—C4—C5 | 101.41 (15) | C15—C14—C13 | 120.7 (2) |
N3—C4—H4A | 111.5 | C16—C15—C14 | 119.4 (2) |
C5—C4—H4A | 111.5 | C16—C15—C20 | 118.9 (2) |
N3—C4—H4B | 111.5 | C14—C15—C20 | 121.7 (2) |
C5—C4—H4B | 111.5 | C17—C16—C15 | 121.8 (2) |
H4A—C4—H4B | 109.3 | C17—C16—H16 | 119.1 |
O1—C5—C13 | 110.61 (17) | C15—C16—H16 | 119.1 |
O1—C5—C4 | 104.45 (16) | C16—C17—C18 | 118.2 (2) |
C13—C5—C4 | 113.71 (17) | C16—C17—C21 | 120.5 (3) |
O1—C5—H5 | 109.3 | C18—C17—C21 | 121.3 (3) |
C13—C5—H5 | 109.3 | C17—C18—C19 | 122.1 (2) |
C4—C5—H5 | 109.3 | C17—C18—H18 | 119.0 |
C7—C6—C11 | 119.50 (17) | C19—C18—H18 | 119.0 |
C7—C6—C2 | 119.82 (17) | C18—C19—C14 | 119.2 (2) |
C11—C6—C2 | 120.64 (17) | C18—C19—C22 | 118.8 (2) |
C6—C7—C8 | 119.94 (18) | C14—C19—C22 | 122.0 (2) |
C6—C7—H7 | 120.0 | C15—C20—H20A | 109.5 |
C8—C7—H7 | 120.0 | C15—C20—H20B | 109.5 |
C9—C8—C7 | 121.00 (18) | H20A—C20—H20B | 109.5 |
C9—C8—Br1 | 119.54 (14) | C15—C20—H20C | 109.5 |
C7—C8—Br1 | 119.46 (15) | H20A—C20—H20C | 109.5 |
C10—C9—C8 | 119.20 (17) | H20B—C20—H20C | 109.5 |
C10—C9—H9 | 120.4 | C17—C21—H21A | 109.5 |
C8—C9—H9 | 120.4 | C17—C21—H21B | 109.5 |
C9—C10—C11 | 120.70 (18) | H21A—C21—H21B | 109.5 |
C9—C10—H10 | 119.7 | C17—C21—H21C | 109.5 |
C11—C10—H10 | 119.7 | H21A—C21—H21C | 109.5 |
O11—C11—C10 | 118.61 (18) | H21B—C21—H21C | 109.5 |
O11—C11—C6 | 121.74 (17) | C19—C22—H22A | 109.5 |
C10—C11—C6 | 119.65 (18) | C19—C22—H22B | 109.5 |
C11—O11—H11 | 105 (2) | H22A—C22—H22B | 109.5 |
N3—C12—H12A | 109.5 | C19—C22—H22C | 109.5 |
N3—C12—H12B | 109.5 | H22A—C22—H22C | 109.5 |
H12A—C12—H12B | 109.5 | H22B—C22—H22C | 109.5 |
N3—C12—H12C | 109.5 | ||
C5—O1—C2—N3 | 23.8 (2) | C7—C6—C11—O11 | 179.93 (17) |
C5—O1—C2—C6 | 144.39 (16) | C2—C6—C11—O11 | −2.2 (3) |
O1—C2—N3—C12 | −163.70 (15) | C7—C6—C11—C10 | 0.9 (3) |
C6—C2—N3—C12 | 78.3 (2) | C2—C6—C11—C10 | 178.71 (17) |
O1—C2—N3—C4 | −41.36 (18) | O1—C5—C13—C14 | 64.6 (2) |
C6—C2—N3—C4 | −159.35 (16) | C4—C5—C13—C14 | −178.21 (18) |
C12—N3—C4—C5 | 163.78 (17) | C5—C13—C14—C19 | 80.4 (2) |
C2—N3—C4—C5 | 41.84 (18) | C5—C13—C14—C15 | −99.8 (2) |
C2—O1—C5—C13 | 125.28 (18) | C19—C14—C15—C16 | 1.7 (3) |
C2—O1—C5—C4 | 2.6 (2) | C13—C14—C15—C16 | −178.05 (18) |
N3—C4—C5—O1 | −27.6 (2) | C19—C14—C15—C20 | −178.2 (2) |
N3—C4—C5—C13 | −148.32 (17) | C13—C14—C15—C20 | 2.1 (3) |
O1—C2—C6—C7 | 98.9 (2) | C14—C15—C16—C17 | −1.0 (3) |
N3—C2—C6—C7 | −146.13 (17) | C20—C15—C16—C17 | 178.9 (2) |
O1—C2—C6—C11 | −79.0 (2) | C15—C16—C17—C18 | −0.1 (4) |
N3—C2—C6—C11 | 36.0 (2) | C15—C16—C17—C21 | 179.6 (2) |
C11—C6—C7—C8 | −0.7 (3) | C16—C17—C18—C19 | 0.5 (4) |
C2—C6—C7—C8 | −178.59 (17) | C21—C17—C18—C19 | −179.2 (3) |
C6—C7—C8—C9 | −0.2 (3) | C17—C18—C19—C14 | 0.2 (4) |
C6—C7—C8—Br1 | −179.44 (14) | C17—C18—C19—C22 | 179.8 (3) |
C7—C8—C9—C10 | 1.0 (3) | C15—C14—C19—C18 | −1.3 (3) |
Br1—C8—C9—C10 | −179.76 (14) | C13—C14—C19—C18 | 178.4 (2) |
C8—C9—C10—C11 | −0.9 (3) | C15—C14—C19—C22 | 179.1 (2) |
C9—C10—C11—O11 | −179.15 (17) | C13—C14—C19—C22 | −1.1 (3) |
C9—C10—C11—C6 | −0.1 (3) |
Cg2 and Cg3 are the centroids of the 4-bromophenol (C6–C11) and 1,3,5-trimethylbenzene (C14–C19) rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H11···N3 | 0.81 (4) | 1.89 (4) | 2.644 (2) | 155 (3) |
C4—H4A···O1i | 0.99 | 2.58 | 3.564 (2) | 171 |
C20—H20B···O11ii | 0.98 | 2.57 | 3.548 (3) | 173 |
C20—H20C···O1 | 0.98 | 2.55 | 3.332 (3) | 136 |
C2—H2···Cg2i | 1.00 | 2.91 | 3.908 (2) | 176 |
C4—H4B···Cg3i | 0.99 | 2.88 | 3.622 (2) | 132 |
C21—H21C···Cg3iii | 0.98 | 2.93 | 3.723 (4) | 138 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, −y+3/2, z−1/2. |
Contact | Distance | Symmetry operation |
Br1···H10 | 2.96 | 1 - x, 1/2 + y, 1/2 - z |
Br1···C12 | 3.598 | 1 - x, 1/2 + y, 3/2 - z |
C9···C8 | 3.409 | 1 - x, -y, 1 - z |
H9···H7 | 2.45 | x, 1/2 - y, -1/2 + z |
H11···H20B | 2.35 | x, -1 + y, z |
C15···H21C | 2.80 | x, 3/2 - y, 1/2 + z |
H22B···C18 | 3.07 | -x, 1 - y, 1 - z |
H21B···H22B | 2.51 | -x, 1/2 + y, 1/2 - z |
Acknowledgements
Authors' contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, ANK, MA and EAF; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, SÖY, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and EAF; supervision, ANK and MA.
Funding information
This work was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].
References
Caracelli, I., Coelho, D. C. S., Olivato, P. R., Correra, T. C., Rodrigues, A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2755–o2756. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Cunico, W., Gomes, C. R. B., Tiekink, E. R. T., Vellasco Junior, W. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o267–o268. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633. Web of Science CSD CrossRef CAS Google Scholar
Hariono, M., Ngah, N., Wahab, H. A. & Abdul Rahim, A. S. (2012). Acta Cryst. E68, o35–o36. Web of Science CSD CrossRef IUCr Journals Google Scholar
Juhász, M., Lázár, L. & Fülöp, F. (2011). Tetrahedron Asymmetry, 22, 2012–2017. Google Scholar
Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723. Google Scholar
Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. Web of Science CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sepideh, F., Zare, F. L., Mohammad, N., Robab, M. & Esmail, V. (2018). J. CO2 Util., 25, 194-204. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shen, J., Tang, G.-P. & Hu, X.-R. (2018). Acta Cryst. E74, 51–54. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tamura, M., Honda, M., Nakagawa, Y. & Tomishige, K. (2014). J. Chem. Technol. Biotechnol. 89, 19–33. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. University of Western Australia. Google Scholar
Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. Web of Science CrossRef CAS PubMed Google Scholar
Ye, F., Fu, Y. & Zhao, S. (2010). Acta Cryst. E66, o445. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.